

Recent news on SM and BSM Higgs from ATLAS+CMS

Shu Li Tsung-Dao Lee Institute & Shanghai Jiao Tong University

On behalf of ATLAS+CMS Collaborations

LHC data-taking at 13TeV

Higgs Physics at the LHC

 Run-2 emphasis: precision (γγ, 4l), new exploration (bb, ττ, ttH,...), combination, kinematics, properties ...

Run-II headlines: observations with the 3rd generation fermions!

Yukawas at LHC		tau	b	top	
	Exp. Sig.	5.4σ	5.5σ	5.1σ	
ATLAS	Obs. Sig.	6.4σ	5.4σ	6.3σ	
	mu	1.09±0.35	1.01±0.20	1.32±0.27	
CMS	Exp. Sig.	5.9σ	5.5σ	4.2σ	
	Obs. Sig.	5.9σ	5.6σ	5.2σ	
	mu	1.09±0.27	1.04±0.20	1.26±0.26	
Paper References		PRD 99 (2019) 072001 PLB 779 (2018) 283	PLB 786 (2018) 59 PRL 121 (2018) 121801	PLB 784 (2018) 173 PRL 120 (2018) 231801	

New Observations!

Higgs Discovery 2012

New adventures... 4

Observation of H(\rightarrow bb) decays

Observation of Higgs Associated Production with Top Quarks

- First direct access to top yukawa!
- Experimental challenges
 - Complex final states (decays)
 - Enormous bgd (except γγ) contaminations vs small signal rates~O(0.5)pb@13TeV
- CMS obs.(exp.) 5.2(4.2) σ
- ATLAS obs.(exp.) 6.3(5.1) σ

ttH observation through single channel: ttH, $H \rightarrow \gamma \gamma$

- Observation and measurement of ttH production in the diphoton channel with 139 fb⁻¹ of full Run-II data of ATLAS: obs./exp. 4.9/4.2 σ
- Events classified in 7 "leptonic"/"hadronic" categories based on multivariate classifier
- Background and signal are modeled with analytic function forms
- Simultaneous fit to the m_{yy} spectrum in these seven regions

ATLAS-CONF-2019-004

Measured Cross-Section: $\sigma_{ttH} \times B_{\gamma\gamma} = 1.59 \stackrel{+0.38}{_{-0.36}} (\text{stat.}) \stackrel{+0.15}{_{-0.12}} (\text{exp.}) \stackrel{+0.15}{_{-0.11}} (\text{th.}) \text{ fb}$ Comparison w.r.t. SM: $\mu_{ttH} = 1.38 \stackrel{+0.33}{_{-0.31}} (\text{stat.}) \stackrel{+0.13}{_{-0.11}} (\text{exp.}) \stackrel{+0.22}{_{-0.14}} (\text{th.})$

ttH observation through single channel: ttH, $H \rightarrow \gamma \gamma$

CMS ttH($\rightarrow \gamma \gamma$) results with partial dataset (NO 2018 inclusion) Similar analysis with similar performance, difference in sensitivity largely due to incomplete dataset: **obs./exp. 4.1/2.7 o**

Simplified Template Cross Sections (STXS): Hybrid Fiducial

•

Invariant mass in $H(\rightarrow 4l \text{ and } \gamma \gamma)$

- High purity and clean final state channels for precision studies of Higgs properties
- 41: Small branching fraction (0.0124% at mH = 125 GeV), final states are fully reconstructable, S/B better than 2
- Diphoton: Small branching fraction (0.23% at mH = 125.09 GeV), final states are fully reconstructable, look for a narrow peak on a smooth background

STXS example in $H \rightarrow ZZ \rightarrow 4I$

Example measurement summary plot here: Cross Section * BR(H→ZZ*→4l) More similar STXS (*BR(yy)) are measured in H->yy, see: ATLAS-CONF-2018-028

CMS STXS exploration in $H \rightarrow ZZ \rightarrow 4I$

CMS-PAS-HIG-19-001

CMS full Run2 H \rightarrow ZZ \rightarrow 4l analysis already exploiting STXS stage 1.1

STXS in H(\rightarrow bb)

• Cross section measurements of WH and ZH in different $p_T(V)$ regions in the STXS framework

Measurement $H \rightarrow \tau \tau$ decays post observations

- Targetting ggF/VBF production modes.
- Improved background modeling for genuine taus (embedding) and reducible background.
 Classification using a Multi-Class NN technique with 8 categories.
- Split the ggH, bbH and VBF production modes: σ(gg→H,bbH)BR(H→ττ)= 1.11 ± 0.81 (stat) ± 0.78 (syst) pb and σ(VBF+VHqq)BR(H→ττ)= 0.34 ± 0.08 (stat) ± 0.09 (syst) pb.

STXS combination

ATLAS-CONF-2019-005							
	ggF	VBF	VH	ttH+tH	σ _{vbf} []		
Н→үү	v	 ✓ 	 ✓ 	×			
H→ZZ	 ✓ 	 ✓ 	✓	 ✓ 			
H→WW	 ✓ 	 ✓ 	 ✓ 	 ✓ 			
Н→тт	 ✓ 	 ✓ 		 ✓ 			
H→bb	v	~	 ✓ 	~			

✓: channel included in the combination : channel available but not included in combination

- Combination of all channels including STXSs (ATLAS)
- All main channels entering the combination (diphoton, ZZ*, WW*, bb, tautau, ttH)
- Correlation matrix indicating the level of degeneracy of different STXSs and the resolution effects from one bin to the other. Fixed branching fraction for simplicity

STXS results assuming the SM BRs

ATLAS Preliminary $\vdash \bullet \dashv Total$ $\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1}$	Stat. Syst. SM		ggH		
$m_H = 125.09 \text{ GeV}, y_{,l} < 2.5$			•	· · · · · · · · · · · · · · · · · · ·	
p _{SM} = 81%		0-iet	1-iet	>2-ie	et
	Total Stat. Syst.		. jot	,	
$gg \rightarrow H$, 0-jet	■ 1.18 ±0.13 (±0.10, ±0.09)				
$gg \rightarrow H$, 1-jet, $p_T^H < 60 \text{ GeV}$	$0.53 \begin{array}{c} +0.39 \\ -0.38 \end{array} \begin{pmatrix} +0.32 \\ -0.31 \end{pmatrix} \begin{array}{c} +0.22 \\ -0.21 \end{pmatrix}$	●	p _⊤ (H) < 60 GeV	р _т (Н) < 200	GeV 🗲
$gg \rightarrow H$, 1-jet, 60 $\leq p_T^H <$ 120 GeV	$\begin{array}{c} 0.82 \\ -0.31 \\ -0.27 \\ -0.31 \end{array} \begin{pmatrix} +0.28 \\ +0.17 \\ -0.27 \\ -0.15 \end{pmatrix}$				
$gg \rightarrow H$, 1-jet, 120 $\leq p_{T}^{H} <$ 200 GeV	$\bullet - 1 \qquad 1.18 -0.63 (+0.58 +0.36) \\ -0.63 (-0.56, -0.28) \\ -0.63$		60 GeV< p⊤(H)	< 120 GeV	
$gg \rightarrow H, \geq 1$ -jet, $p_{\tau}^{H} \geq 200 \text{ GeV}$	$1.79 \begin{array}{c} +0.62 \\ -0.58 \\ -0.58 \\ -0.52 \\ -0.52 \\ -0.26 \\ -0$				
$gg \rightarrow H, \ge 2$ -jet, $p_T^H < 200 \text{ GeV}$	$1.02 \begin{array}{c} +0.48 \\ -0.45 \end{array} \begin{pmatrix} +0.39 \\ -0.38 \end{pmatrix} \begin{pmatrix} +0.29 \\ -0.38 \end{pmatrix}$	▶	120 GeV< p⊤(H)	< 200 GeV	
<i>qq→Hqq</i> , VBF topo + Rest	1.37 +0.32 (+0.25 +0.21)	4	р _т (H) > 200	GeV (BSM)	↓
$qq \rightarrow Hqq$, VH topo	-0.11 $^{+1.19}_{-1.00}$ $(^{+1.15}_{-0.98}, -0.21)$		1,	. ,	
$qq \rightarrow Hqq, p_T^j \ge 200 \text{ GeV}$	-0.88 ^{+1.30} _{-1.28} (^{+1.15} _{-1.10} , ^{+0.61} _{-0.64})				
		·	EW qqH (VBF+V	/(had)H)	
$qq \rightarrow H l v, p_T^V < 250 \text{ GeV}$	+0.75 +0.57 +0.48 +0.75 (-0.56, -0.44)				1
$qq \rightarrow Hlv, p_{\tau}^{V} \ge 250 \text{ GeV}$	$= 1 \qquad 1.14 \begin{array}{c} +0.72 \\ -0.68 \\ -0.68 \end{array} \begin{pmatrix} +0.61 \\ -0.57 \\ -0.37 \end{pmatrix}$		VBF topo	ology	
	0.00 0.07		(m _{jj} > 400 GeV,	Δη _{ii} > 2.8)	
$gg/qq \rightarrow HII, p_{\tau}^{V} < 150 \text{ GeV}$	-0.85 +0.82 +0.63 +0.52 +0.63 +0.52 +0.63 +0.52 +0.63 +0.52 +0.63 +0.64 +0.6		+ res	t	
$gg/qq \rightarrow Hll$, $150 \le p_{\tau}^{V} < 250 \text{ GeV}$	$\begin{array}{c} -0.75 \\ -0.57 \\ -0.57 \\ -0.58 \\ -0.58 \\ -0.58 \\ \pm 0.38 \end{array}$				
$gg/qq \rightarrow HII, p_{\tau}^{V} \ge 250 \text{ GeV}$			VH topo	logy	
		H	(60 CoV/< m		H Yang
<i>ttH</i> + <i>tH</i>	+0.26 (+0.17 +0.20)				
					LHC Semi
-6 -4 -2 0	2 4 6	հ	▶ p _T (jet1) > 200 (GeV (BSM)	
	Parameter normalized to SM value				• · · · · · · · · · · · · · · · · · · ·

VH, H(\rightarrow WW) at 13TeV

Measurement of the Higgs boson production cross sections via associated WH and ZH production using $H \rightarrow WW * \rightarrow \ell \nu \ell \nu$ decays.

arXiv:1903.10052

- Compatible with SM
 - Within 1.3(1.5)σ of SM for WH(ZH)
- Observed (expected) VH significance: 4.1σ (1.9σ)

High purity CR for Top and ZZ backgrounds

Combination of Main Decay and Production Channels Towards HL-LHC

M. Kato Aspen2c)19				٧s	= 14 TeV, 3000 fb ⁻¹ per experimer	nt
ATLA	S+CMS Run1	ATLAS Run2	ATLAS+CMS HL-LHC		Total Statistical Experimental Theory	ATLAS and CMS HL-LHC Projection Uncertainty [%]	Experimenta systematics non negligibl
κ_γ	13%	9%	1.8%	κ_{γ}	12% 4%	1.8 0.8 1.0 1.3	
κ_W	11%	8.6%	1.7%	κ _W	=_	1.7 0.8 0.7 1.3	
κ_Z	11%	7.2%	1.5%	κ _z	☴.	1.5 0.7 0.6 1.2	
κ_g	14%	11%	2.5%	κ _g	= .	2.5 0.9 0.8 2.1	
κ_t	30%	14%	3.4%	κ _t	=	3.4 0.9 1.1 3.1	
κ_b	26%	18%	3.7%	κ _b		3.7 1.3 1.3 3.2	
$\kappa_{ au}$	15%	14%	1.9%	κ_{τ}	= .	1.9 0.9 0.8 1.5	
(JHEP 08 (2016) 045	ATLAS-CONF-2019-04	HL-LHC YR 1902.00134	κ _μ κ _{Ζγ}		4.3 3.8 1.0 1.7 9.8 7.2 1.7 6.4	
		Impr facto CL	oved TH and PDF uncertaintie or of 2 w.r.t. current (motivated urrent PDF studies and current uncertainties assumptions)	s by a 0 from TH	0.02 0.04 0.0	06 0.08 0.1 0.12 0.1 Expected uncertainty	4 y

HL-LHC: high-luminosity LHC (~2026-2038), 3000/fb per experiment at $\sqrt{s} = 14$ TeV In need of theorists' efforts for those with theo. unc. dominance \bigcirc

Quick glimpse of the rare decays

120

120

M₄₁ (GeV)

140

M_{4u} (GeV)

140

Invisible decays of the Higgs (NEW!)

$H \rightarrow inv.$ Combination (NEW!)

The observed and expected upper limits on BR($H \rightarrow inv$) at 95% CL from direct searches for invisible decays of the 125 GeV Higgs boson and their statistical combinations in Run 1 and 2.

Comparison of the upper limits at 90% CL from DD experiments on the spinindependent WIMP-nucleon scattering cross section to the observed exclusion limits from this analysis, assuming Higgs portal scenarios where the 125 GeV Higgs boson decays to a pair of DM particles.

Inv. Higgs at HL-LHC

CMS projection for VBF: BR($H \rightarrow inv$)<3.8%

ATLAS projection for VH: BR(H→inv)<8%

Combination VH and VBF and consider ATLAS ~ CMS Br(H→inv) < 2.5%

More can be found: HL-LHCYR 1902.00134

BSM Higgs searches: heavy $bH(\rightarrow bb)$

Search for heavy neutral Higgs bosons produced in association with b-quarks and decaying to b-quarks with the results interpreted within Two Higgs Doublet Model and the Minimal Supersymmetric SM. (more channels explored: check out arXiv:1901.08144 for bH($\rightarrow \mu\mu$))

Di-Higgs Prospects at HL-LHC

- Combine 4b, bbγγ and bbττ (+bbVV from CMS) final states, 3000 fb⁻¹ at 14 TeV.
- When neglecting(including) syst.
 - exp. significance 3.5 (3.0) σ
 - the signal strength w.r.t. SM prediction to be measured with an accuracy of 31(40)%. Self-coupling constrained to $-0.1(-0.4) \le \lambda_{HHH} / \lambda_{HHH}^{SM} \le 2.7 U 5.5 \le \lambda_{HHH} / \lambda_{HHH}^{SM} \le 6.9(7.3)$, at 95% CL, and the measured value of $\lambda_{HHH} / \lambda_{HHH}^{SM}$ is expected to be $1.0^{+0.7(+0.9)}_{-0.6(-0.8)}$

Summary

- When there is yet NO lepton collider, (HL-)LHC will remains the only Higgs factory. In the event of a lepton collider, the role still remains despite the new collider would have cleanness ⁽ⁱ⁾
- All SM Higgs measurements perform consistent results w.r.t. predictions within current accuracy (in need of higher precision!), third Generation Yukawa is established and to be continued
- Active program in both ATLAS and CMS and in between, to improve the measured precisions on cross-sections, couplings, properties and explore the extended BSM scalar sectors
- A lot to cover... tend to be selective to the most recent and general topics latest results (seeing parallel talks for more)

backup

STXS results assuming the SM BRs

ATLAS Preliminary $rightarrow Total Stat. Syst. SM\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1}m_H = 125.09 \text{ GeV}, y_{L} < 2.5$							
$p_{\rm SM} = 81\%$							
		Total St	at. Syst.				
$gg \rightarrow H$, 0-jet	1.18	±0.13 (±0	.10, ±0.09)				
$gg \rightarrow H$, 1-jet, $p_T^H < 60 \text{ GeV}$	0.53	+0.39 -0.38 (+0	.32 +0.22 .31, -0.21)				
$gg \rightarrow H$, 1-jet, $60 \le p_T^H < 120 \text{ GeV}$	0.82	+0.33 (+0	.28 +0.17 .27, -0.15)				
$gg \rightarrow H$, 1-jet, 120 $\leq p_{T}^{H} <$ 200 GeV	H 1.18	+0.68 (+0	.58 +0.36 .56, -0.28)				
$gg \rightarrow H, \geq 1$ -jet, $p_T^H \geq 200 \text{ GeV}$	■ 1.79	+0.62 -0.58 (+0 -0	.53 +0.32 .52, -0.26)				
$gg \rightarrow H, \ge 2$ -jet, $p_T^H < 200 \text{ GeV}$	1.02	+0.48 (+0	.39 +0.29 .38, -0.24)				
$qq \rightarrow Hqq$, VBF topo + Rest	l 1.37	+0.32 (+0	.25 +0.21				
$qq \rightarrow Hqq$, VH topo	-0.11	+1.19 -1.00 (+1 -0	.15 +0.29 .98, -0.21)				
$qq \rightarrow Hqq, p_{T}^{i} \ge 200 \text{ GeV}$	-0.88	+1.30 -1.28 (+1 -1	.15 +0.61 .10, -0.64)				
<i>qq</i> → <i>Hlν</i> , <i>p</i> ^{<i>v</i>} < 250 GeV	■ 1.70	+0.75 +0	.57 +0.48				
$qq \rightarrow Hlv, p^{V} \ge 250 \text{ GeV}$	H 1.14	+0.72 +0	.56', -0.44' .61 +0.39				
		-0.68 \-0	.57' -0.37'				
$gg/qq \rightarrow Hll, p_{\tau}^{V} < 150 \text{ GeV}$	0.85	+0.82 -0.79 (+0	.63 +0.52 .61, -0.49)				
$gg/qq \rightarrow HII$, 150 $\leq p_T^V < 250 \text{ GeV}$	0.62	±0.68 (⁺⁰ ₋₀	.57 .56, ±0.38)				
$gg/qq \rightarrow HII, p_{\tau}^{V} \ge 250 \text{ GeV}$	•	+0.94 -0.82 (+0 -0	.81 +0.47 .77, _0.29)				
ttH + tH	1.20	+0.26 -0.24 (±0	.17, +0.20 -0.18)				
-б -4 -2 0 Ра	2 arameter nor	4 malized t	o SM value				

- Overall good compatibility with SM (p-value 81%)
- Statistical precision, in particular in most BSMsensitive regions is still
 H. Yang LHC Seminar
 limited: more data will help!

$H \rightarrow inv.$ Combination (NEW!)

Analysis	\sqrt{s}	Int. luminosity	Observed	Expected	$p_{\rm SM}$ -value	Reference
Run 2 VBF	13 TeV	36.1 fb^{-1}	0.37	$0.28\substack{+0.11 \\ -0.08}$	0.19	[36]
Run 2 $Z(\text{lep})H$	$13 { m TeV}$	$36.1 \ {\rm fb}^{-1}$	0.67	$0.39\substack{+0.17\\-0.11}$	0.06	[37]
$\operatorname{Run}2V(\operatorname{had})H$	$13 { m TeV}$	$36.1 \ {\rm fb}^{-1}$	0.83	$0.58\substack{+0.23 \\ -0.16}$	0.12	[38]
Run 2 Comb.	13 TeV	36.1 fb^{-1}	0.38	$0.21\substack{+0.08 \\ -0.06}$	0.03	this Letter
Run 1 Comb.	$7,8~{ m TeV}$	$4.7, 20.3 \text{ fb}^{-1}$	0.25	$0.27\substack{+0.10 \\ -0.08}$		[35]
Run 1+2 Comb.	$7, 8, 13 { m ~TeV}$	$4.7, 20.3, 36.1 \text{ fb}^{-1}$	0.26	$0.17\substack{+0.07 \\ -0.05}$	0.10	this Letter