Hidden Sectors and Long-Lived Particle Signatures
Outline

1. Theory and Motivation for the Lifetime Frontier
2. LLPs at the LHC
3. Going beyond the LHC
4. Complementarity with Cosmology and Astrophysics
5. Conclusion
1. Theory and Motivation for the Lifetime Frontier
Motivation

The usual fundamental mysteries (Hierarchy Problem, DM, Baryogenesis, Neutrinos, …) aren’t going anywhere!

Maybe our prompt searches for high-pT objects have been looking in the wrong place?

Long-Lived Particles (LLPs) occur in the SM. Tiny decay width for many reasons (approx symmetry, heavy mediator, etc…).

Bottom-up point of view: same mechanisms \rightarrow LLPs in BSM theories.

Top-down point of view: LLPs can solve these fundamental mysteries!
Most of these scenarios are still very poorly constrained at the LHC!
Two Examples

WIMP Baryogenesis:

Meta-stable WIMP-like parent can be made at colliders with observable decay length.

Neutral Naturalness:

Discrete Symmetry relates SM to mirror copy with its own set of gauge forces

Neutral top partners stabilize Higgs mass
Bottom-up: Hidden Sectors

Particles & forces hidden from us due to small coupling, not high mass.

Generically arise due to the grammar of QFT.

Confirmed examples: ψ’s, DM

Give non-minimal IR spectra from minimal theory input (e.g. QCD cousins like Hidden Valleys)

Can couple to SM via small portal couplings, e.g. **Heavy Mediators** **Higgs Portal** **Photon Portal**
Lessons

1. Exotic Higgs Decays as probes
LHC can probe tiny exotic branching ratios if decays spectacular.
Sizable Higgs Portal couplings to new physics are generic.

2. Long Lived Particles (LLPs) are generic
Once produced, Hidden Sector states can only decay back to SM via small portal couplings, generically leading to long lifetimes.
The LLP lifetime is (almost…) a free parameter!

3. Complementarity between Cosmology and Colliders

Models which avoid signatures in one will often show up in the other
(e.g. dark radiation, DM with structure, etc.)
2. LLPs at the LHC
Looking for LLPs: Rules of the game

LLPs are spectacular signatures:
- if they are charged/colored, very conspicuous
- invisible if neutral, but their decay is spectacular, usually reconstructed as a “displaced vertex” (DV)

Neutral LLPs: geometrical nature can be difficult to trigger on at L1. Backgrounds low but hard to predict, so often try to eliminate BG completely. (MET searches are usually insensitive due to small xsecs.)

Most searches today & near future try to solve these problems via “LLP + X” strategy. Require:
- geometric nature of LLP decay (“LLP”)
- something else (“X”) to eliminate background (X could be a second LLP) and help triggering (high HT, lepton, …)
Recent Analyses

These analyses are difficult and take a long time.

Significant experimental progress in recent years!

For Neutral LLPs, *most* current cutting edge searches could be classified as:

- standard prompt trigger + offline DV search (e.g. prompt lepton + DVs from VH, H->LLPs)
- ATLAS Muon System: L1 trigger, look for any DV inside MS, muon DVs anywhere
- CMS displaced jet HLT triggers: lower L1 HT cut than prompt, displaced search at HLT

(there are also searches in Calorimeter, e.g. ATLAS 1902.03094, disappearing track searches, etc…)
H → 2a → 4b (ATLAS)

Searches for VH production, $H \rightarrow 2a \rightarrow 4b$.

TRIGGER: relies on lepton from V. **Exactly what we want** for inclusive LLP searches from exotic Higgs decays, since LLP in this mass range is difficult to trigger on.

HOWEVER, this is a **PROMPT** search where they compute sensitivities to macroscopic lifetimes as well. *(Important new way of presenting prompt results!)*

Hopefully dedicated LLP analyses with this trigger coming in the near future.
We need this channel for Neutral Naturalness!!

\[
\begin{aligned}
\text{\(\sqrt{s} = 14 \text{ TeV}, 3000 fb^{-1}, N > 4\)}
\end{aligned}
\]
1 or 2 jj DVs inside ATLAS Muon System

ATLAS MS can trigger on hadronic LLP decay at L1!

Require either 2DV's, or
1DV + (MET > 30 GeV), or 1DV + (pTJJ > 150 GeV)

1DV search has significant background, but extends long-lifetime reach!

1811.07370
I μμ DV anywhere with ATLAS MS

ATLAS MS can trigger on L1. Very inclusive search for single LLP → μμ anywhere within 4m of beam

Low-mass SR: fully inclusive. $N_{BG} \sim 10$, equiv to $\sigma_{BG} \sim 0.3$fb. Not zero BG! (surprise?)

High-mass SR: MET > 110 GeV. $N_{BG} \sim 0$

1808.03057
CMS can trigger on displaced jets at HLT as long as event passes L1 HT seed → **HT > 400 GeV**

Benchmark model of LLP X pair production via Z* mediator. X → jets.

Very efficient for heavy LLPs. Stringent HT cut eliminates BG.

Surprising: also get significant limits for mX = 50 GeV!

Why not use this to get limits on exotic Higgs decays? (Naively expect <~ 1% efficiency from boosted fraction pTTh > 200 GeV → Br limit 0.few?)
What’s next?
A Coordinated LLP Search Program

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

March 6, 2019

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly...

Simplified Model Roadmap of LLP Signature Space:

<table>
<thead>
<tr>
<th>Production</th>
<th>Decay</th>
<th>γγ(+inv.)</th>
<th>γ + inv.</th>
<th>jj(+inv.)</th>
<th>jjℓ</th>
<th>ℓ+ℓ−(+inv.)</th>
<th>ℓ±_a ℓ±_β≠a (+inv.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP: sneutrino pair or neutralino pair</td>
<td>†</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td></td>
</tr>
<tr>
<td>HP: squark pair, q → jX or gluino pair g → jjX</td>
<td>†</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td></td>
</tr>
<tr>
<td>HP: slepton pair, l → ℓX or chargino pair, χ → WX</td>
<td>†</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td>SUSY</td>
<td></td>
</tr>
<tr>
<td>HIG: h → XX or → XX + inv.</td>
<td>Higgs, DM*</td>
<td>†</td>
<td>Higgs, DM*</td>
<td>RHv</td>
<td>Higgs, DM*</td>
<td>RHv*</td>
<td></td>
</tr>
<tr>
<td>HIG: h → X + inv.</td>
<td>DM*, RHv</td>
<td>†</td>
<td>DM*</td>
<td>RHv</td>
<td>DM*</td>
<td>†</td>
<td></td>
</tr>
<tr>
<td>RES: Z(Z') → XX or → XX + inv.</td>
<td>Z', DM*</td>
<td>†</td>
<td>Z', DM*</td>
<td>RHv</td>
<td>Z', DM*</td>
<td>†</td>
<td></td>
</tr>
<tr>
<td>RES: Z(Z') → X + inv.</td>
<td>DM</td>
<td>†</td>
<td>DM</td>
<td>RHv</td>
<td>DM</td>
<td>†</td>
<td></td>
</tr>
<tr>
<td>CC: W(W') → ℓX</td>
<td>†</td>
<td>†</td>
<td>RHv*</td>
<td>RHv</td>
<td>RHv*</td>
<td>RHv*</td>
<td></td>
</tr>
</tbody>
</table>
A Coordinated LLP Search Program

Identify and Target Gaps in Coverage:
e.g. for exotic Higgs decays with relatively high rate (Br = 0.5)

![Graph showing regions where $\mathcal{B}(H^0 \rightarrow \pi\pi) > 50\%$ is excluded at 95\% CL]

- ATLAS 20.3 fb$^{-1}$ at 8 TeV
- LHCb 2.0 fb$^{-1}$ at 7-8 TeV
- CMS 18.5 fb$^{-1}$ at 8 TeV

e.g. Dark Showers
hidden valley can give rise to high-multiplicity soft final states (soft unclustered energy patterns SUEPs). **Soft Multi-Muon Searches?**

... and more
Upgrades: L1 DV triggers

L1 tracking upgrade considered at ATLAS and CMS to reduce Pile-Up.

CMS in particular could use track stubs at L1 to reconstruct DV

Example: H → XX, both X decay to hadrons in tracker

For shorter lifetimes, gain ~ order of magnitude in reach compared to e.g. VH search??

Gershtein1705.04321
Upgrades: fancy calorimeters

ATLAS and CMS forward calo upgrades have ~30ps timing, great spatial resolution.

In CMS case, get 4D shower reconstruction.

LLP Opportunities:

1. Search for LLPs decaying to photon via timing information

2. Reconstruct LLP decays in great detail, get a “Calo DV”!
Could L1 trigger on this!
Rival the ATLAS MS for DV searches???
Upgrades: Timing

E.g. CMS MIP timing detector in the barrel for PU reduction

Will obviously be extremely useful for LLP searches as well!

Interesting challenge: can timing information be used for triggering?

Timing in tracker will definitely not eliminate LLP background to zero (plenty of BG is out-of-time), but incorporating timing information into LLP searches has the potential to significantly increase LLP sensitivity.

See Jia Liu’s talk
3. Going beyond the LHC
MAssive Timing Hodoscope for Ultra-Stable NeutraL Particles

Chou, DC, Lubatti 1606.06298
DC, Peskin 1705.06327
Physics Case White Paper 1806.07396
European Strategy submission: 1901.04040 & 1901.09966

Easy reading:
Physics Today article about LLPs and hidden sectors (DC, Raman Sundrum, June 2017)

In-depth feature article in Quanta and Wired magazine, September 2018

mathusla.web.cern.ch
The Problem of Long Lifetimes

LLP lifetime is free parameter up to BBN bound of $\sim 10^7 m$

If LLP lifetime is $>>$ detector size, then acceptance is

$$(\text{angular coverage}) \times (\text{detector size}) / (\text{decay length})$$

so Ultra-Long-Lived particle decays are always inherently rare events.

\rightarrow zero-background environment is critical!
An external LLP detector for the HL-LHC

... searches for LLPs by reconstructing displaced vertices in air-filled decay volume, removed from LHC collision backgrounds.
LLP DV signal has to satisfy many stringent geometrical and timing requirements (“4D DV” with cm/ns precision)

These signal requirements + a few extra geometry and timing cuts veto all backgrounds!

MATHUSLA can search for neutral LLP decays with near-zero backgrounds!
Sensitivity

LLP cross section reach
(exotic Higgs decay example)

Any LLP production process with $\sigma > \text{fb}$ can give signal.

$\sqrt{s} = 14 \text{ TeV}$

Up to 1000x better sensitivity than main detectors

200m x 200m x 20m detector volume is physics benchmark sensitivity that can be reached by realistic detector shape near CMS.
A high-mass LLP example: Higgsinos

Number of observed higgsino → gravitino events

μ [GeV]

$\tau [m]$
Guaranteed Physics Return

MATHUSLA is an excellent Cosmic Ray Telescope!

Has unique abilities in CR experimental ecosystem (precise resolution, directionality, full coverage of its area)

mostly muons at sea level
A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS

MATHUSLA:
A Detector Proposal to Explore the Lifetime Frontier at the HL-LHC

Input to the update process of the European Strategy for Particle Physics
18. December 2018

Henry Lubatti (Corresponding Author),1,* Cristiano Alpigiani,1 Juan Carlos Arteaga-Velázquez,2 Austin Ball,3 Liron Barak,4 James Beacham,5 Yan Benhammo,4 Karen Salomé Caballero-Mora,6 Paolo Camarri,7 Tingting Cao,4 Roberto Cardarelli,7 John Paul Chou,6 David Curtin,9 Albert de Roeck,3 Giuseppe Di Sciascio,7 Miriam Diamond,9 Marco Drewes,10 Sarah C. Eno,11 Rouven Essig,12 Jared Evans,13 Erez Etzion,4 Arturo Fernández Téllez,14 Oliver Fischer,15 Jim Freeman,16 Stefano Giagu,17 Brandon Gomes,8 Andy Haas,18 Yuekun Heng,19 Giuseppe Iaselli,20 Ken Johns,21 Muge Karagoz,11 Audrey Kvam,1 Dragoslav Lazic,22 Liang Li,23 Barbara Liberti,7 Zhen Liu,11 Giovanni Marsella,24 Piter A. Paye Mamani,25 Mario Iván Martínez Hernández,14 Matthew McCullough,3 David McKeen,26 Patrick Meade,12 Gilad Mizrahi,4 David Morrissey,26 Meny Raviv Moshe,4 Antonio Policicchio,17 Mason Proffitt,1 Marina Reggiani-Guzzo,27 Mario Rodríguez-Cahuantzi,14 Joe Rothberg,1 Rinaldo Santonico,7 Marco Schioppa,28 Jessie Shelton,29 Brian Shuve,30 Yiftah Silver,4 Daniel Stolarski,31 Martin A. Subieta Vasquez,25 Guillermo Tejeda Muñoz,14 Steffie Ann Thayil,8 Yuhsin Tsai,11 Emma Torro,1 Gordon Watts,1 Charles Young,32 and Jose Zurita33
MATHUSLA collaboration

Now trying to secure O(million USD) funding for detector R&D, larger-scale prototype, preparing TDR in next few years

Full-scale detector cost @ HL-LHC < 100 million USD
LLP Detector Ecosystem
Other Proposed External LLP Detectors for the LHC (for light LLPs)

CODEX-b:
“mini-MATHUSLA” near LHCb

Gligorov, Knapen, Papucci, Robinson, 1708.09395

FASTER: tracker telescope staring along beam axis into ATLAS collision

Relatively Cheap & **FUNDED!!!**
Feng, Galon, Kling, Trojanowski 1710.09387
Physics case for SHiP examined by Physics Beyond Colliders (PBC) working group at CERN.

PBC compared SHiP reach for low-mass LLP simplified models to MATHUSLA, CODEX, Faser. (This does not examine full physics case for MATHUSLA & CODEX, which can probe higher masses.)
Compare reach for
low-mass LLP scenarios
For $< \sim \text{GeV}$ dark photon + invisible or milli-charged states, need LDMX, milliQan
very complementary coverage... MATHUSLA, SHiP and FASER cover longer, intermediate and shorter lifetimes.
Dark Scalar with exotic higgs decays

LHC external detectors probe higher masses
Sterile RH Neutrinos

very complementary coverage…
Axion-like Particles

pure fermion coupling

pure photon coupling

Theory predictions still very uncertain for pure gluon coupling scenario

PBC BSM working group report 1901.09966
4. Collider \leftrightarrow Cosmo/Astro

Complementarity
If a hidden sector cannot decay to the SM, it is produced in the early universe and still around!

3. Complementarity between Cosmology and Colliders

Models which avoid signatures in one will often show up in the other

(e.g. dark radiation, DM with structure, etc.)
Collider ↔ Cosmo/Astro

Bottom-up investigations of cosmology (CMB, LSS) and astro signals (stellar cooling, ...) of minimal hidden sectors is very important.

But hidden sector can be arbitrarily complicated! Start with examples motivated by fundamental questions (e.g. Neutral Naturalness) to explore richer signature space!

For example: BBN, LSS, CMB, direct detection .. in the Asymmetrically Reheated Minimal Twin Higgs

1803.03263, 1905.xxxxx Chacko, DC, Geller, Tsai

Even funner: Dark Matter Mirror Stars!
Motivated by Hierarchy Problem.
Observable with optical & Xray observations, and extremely weird.

See parallel talk by Jack Setford!
5. Conclusion
LLPs at colliders: Conclusion

LLPs and Hidden Sectors are highly top-down and bottom-up motivated. Huge signature space still very unconstrained.

Recent LHC analyses make significant progress to extend searches. Enhance our understanding of what main detectors can/cannot do.

Embarking on systematic search program: simplified models, address gaps in coverage, etc.

ATLAS/CMS upgrades will bring exciting new capabilities (L1 tracking, 4D high-res calorimetry, 4D tracking)

External detectors like MATHUSLA, CODEX, FASER give huge bang-for-buck and extend LHC LLP reach for MeV to TeV masses

For low-mass models, this is highly complementary to SHiP reach.
— Thank you —
Backup
LLP searches: MET vs DV