Astroparticle Physics: On the Capture of Dark Matter in Stars

Nicole F. Bell University of Melbourne

Outline

- **Introduction**
- Dark matter capture in the Sun
- Capture in Neutron Stars
	- **Black Holes**
	- o Gravitational waves
	- o Kinetic heating
		- \triangleright DM-nucleon scattering
		- DM-lepton scattering
- **Summary**

Introduction - Direct Detection

Spin-independent (SI) interactions \rightarrow stringent bounds

Spin-dependent (SD) interactions \rightarrow much weaker bounds

Introduction - Direct Detection

Sensitivity depends on interaction type

- Enhanced cross sections for SI scattering
- Smaller cross sections for SD scattering

Limited by kinematics

- Some interactions feature only momentum or velocity suppressed cross section \rightarrow these are very small numbers
- Mass of the target nuclei (or electron mass)
- Experimental thresholds for detecting recoil energy

An alternative approach \rightarrow capture in the Sun, Earth, or Neutron Stars

Dark matter can accumulate in the Earth, Sun, or other stars, in considerable amounts.

Complementary to direct detection experiments.

• Accumulates and annihilates in centre of Sun

gravitationally bound to star

• Only neutrinos escape Sun \rightarrow IceCube, SuperK

• Dark matter scatters, loses energy, becomes

In equilibrium:

Solar WIMPs

Annihilation rate = Capture rate

- \rightarrow controlled by DM-nucleon scattering cross section.
- \rightarrow probes the same quantity as direct detection experiments

Solar WIMPs

- For *spin-dependent* interactions: \rightarrow strong solar WIMP limits
- For *spin-independent* interactions: \rightarrow direct detection wins

Secluded models \rightarrow long lived mediators

If captured DM annihilates to a light, long-lived mediator

 \triangleright Annihilation products can escape the Sun

Pospolov & Ritz;

NFB & Petraki;

Volansky;

Schuster,Toro & Yavin;

Leane, Ng & Beacom;

- \triangleright If decay occurs beyond solar core \rightarrow High energy neutrino signal less attenuated
- \triangleright If decay occurs between Sun and Earth \rightarrow solar gamma rays or cosmic rays

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 8 (1998) 2019 – CORPUS CHRISTI, TEXAS -

$Secluded models \rightarrow long lived mediators$ $HAWC arXiv:1808.05624$

Leane, Ng & Beacom, arXiv:1703.04629

Neutron Stars

Due to their density, neutron stars capture dark matter very efficiently.

Capture probability is of order unity when

$$
\sigma_{n\chi} > \sigma_{th} \sim 10^{-45} \text{cm}^2
$$

Neutron Stars → Black holes?

Kouvaris; Kouvaris & Tinyakov; McDermott, Yu & Zurek; Bramante, Fukushima & Kumar; NFB, Petraki & Melatos; Bertone, Nelson & Reddy; and others.

- Due to their density, neutron stars capture dark matter very efficiently
- Can neutron stars accumulate so much dark matter that they would collapse to back holes? Yes, but typically only if:
	- No annihilation (e.g. asymmetric DM)
	- DM is bosonic and condenses to a small self gravitating BEC, or
	- DM is fermionic with attractive self-interactions, and
	- No repulsive-self interactions that prevent collapse (even very very tiny selfinteraction is enough) NFB, Petraki & Melatos, PRD 2013

 \rightarrow Black hole quite unlikely for typical WIMP-like dark matter

Neutron star mergers → gravitational waves Nelson, Reddy

& Zhou, 1803.03266

- Light DM + light mediators (MeV scale)
	- **► DM component extents to large radii → NS dark matter halo**
- Increases the NS tidal deformability, Λ .
	- \triangleright LIGO observation of NS-NS merger, GW170817, constrains $\Lambda < 800$
	- > strong bounds, even for small DM component \sim 10⁻⁴ M_{\odot}

Neutron star mergers \rightarrow gravitational waves

- **Heavier mediators DM core**
- Very large DM fraction from capture is unlikely. But mixed DM-neutron stars could form in some asymmetric DM models.
- If DM \sim 10% of NS mass
	- \implies Distinctive gravitational wave signatures for NS-NS mergers.

J.Ellis et al., 1710.05540

Neutron Star Kinetic Heating

Collisions transfer the dark matter kinetic energy to the neutron star → heats it up

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 14

Detecting the Heating

Nearby ≲ 50 pc isolated old NSs

M. Baryakhtar et al. PRL 119, 131801 (2017) arXiv:1704.01577

FAST (radio) JWST (NIRCam)

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 15

Dark matter annihilation

\rightarrow additional heating

Bramante, Delgardo and Martin; Raj, Tanedo and Yu

- Capture (plus subsequent energy loss) → DM *kinetic energy* heats neutron star ~ 1700K
- Annihilation of thermalised dark matter → DM *rest mass energy* heats neutron star \sim additional 700K

Thermalisation is essentially guaranteed for unsuppressed DM-nucleon scattering. If there is some kinematic suppression of the scattering process, it can take much longer (velocity or momentum suppressions; inelastic, etc)

Neutron Star Heating: Advantages

 \checkmark Higher probability of gravitational capture.

 \checkmark DM particles accelerated to $\mathcal{O}(0.5c)$ momentum **suppression**

 \checkmark Cross section for efficient trapping $\mathcal{O}(10^{-45} \text{ cm})$

Unlike direct detection, not restricted by **recoil detection threshold.**

 \checkmark SI and SD cross sections of similar size

Elastic and inelastic scattering cross sections of **same order of magnitude.**

Kinetic Heating: Sensitivity

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 18 18

Kinematics

Pauli blocking from degenerate neutrons restricts scattering when $m_{DM} < 1$ GeV. Need: momentum transfer > neutron Fermi momentum

Momentum transfer in single collision not sufficient for capture when $m_{DM} > 10^6$ GeV

Direct Detection vs Neutron Stars

Projected neutron star kinetic heating sensitivity comparable to direct detection experiments for scalar and vectorinteractions

For all other interaction types, neutron stars have greater sensitivity, typically by orders of magnitude.

Neutron star sensitivity - SI scattering $\bar{\chi}\gamma_\mu\chi\;\bar{q}\gamma^\mu q$

Neutron star kinetic heating sensitivity comparable to Xenon 1T Direct Detection limits for vector-vector interaction

Momentum suppressed scattering

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 2019 – 22

Spin-dependent scattering (pseudoscalar)

Inelastic dark matter

Two *almost degenerate* dark matter states: χ_1 and χ_2

Inelastic in the sense that the dominant interaction is off-diagonal:

 $\chi_1 + n \to \chi_1 + n$ highly suppressed $\chi_1 + \ n \to \chi_2 + \ n$ kinematically forbidden except for δm \ll

Well motivated if dark matter is quasi-Dirac (small Majorana mass)

Inelastic dark matter

Assume all dark matter in Universe today is in χ_1 state

- \rightarrow The only scattering process is $\chi_1 n \rightarrow \chi_2 n$
	- Xenon based DD experiments restricted to $\delta m < 180$ keV
	- Capture in the Sun can probe only slightly higher mass splittings
	- Neutron stars can probe much higher mass splittings, because the dark matter has a lot more kinetic energy (quasi-relativistic, due to acceleration on infall) $\delta m < 330$ MeV

Inelastic scattering cross section

NFB, Busoni, Robles, arXiv:1807.02840 (JCAP 2018)

Maximum mass splitting

$$
k=\frac{\delta m}{m_\chi}\leq k_{\text{MAX}}
$$

$$
k_{MAX} = \sqrt{1 + \frac{2}{\mu \sqrt{B}} + \frac{1}{\mu^{2}} - 1 - \frac{1}{\mu}}
$$

$$
B = 1 - \frac{2GM_{\star}}{c^2 R_{\star}} \simeq 0.55
$$

$$
m_{\infty}
$$

$$
\mu = \frac{1}{m_T}
$$
 ln NSs

$$
m_T = m_n
$$

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 2019 – 26

Leptons in Neutron Stars

Beta-decay equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

Leptons in Neutron Stars

Beta-decay equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

Leptons in Neutron Stars

Lepton density of few % in NS core, lower in crust. Fermi-momentum ~ constant in core.

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 29

Neutron Star Equation of State

Pearson et al, Mon. Not. Roy. Astron. Soc. 481 no. 3, (2018)

Composition varies according to the neutron star EoS

Insensitive to details of NS Equation of State

NFB, Busoni & Robles arXiv:1904.09803

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 31

Neutron star limits on leptophilic DM

Leptophilic dark matter \rightarrow loop-level quark couplings

1-loop photon-mediated diagrams are the most important. (Non-zero only for certain operators)

Other cases suppressed by Z-mass or by two loops.

Lepton operators \rightarrow Quark operators

Scalar interactions NFB, Busoni & Robles arXiv:1904.09803

Vector interactions (L5)

NFB, Busoni & Robles arXiv:1904.09803

SUSY 2019 – CORPUS CHRISTI, TEXAS - 23 MAY 2019 – N. BELL, U.MELBOURNE 36

Vector interactions

Very good NS sensitivity for muon and electron scattering.

DD more sensitive only for vector-vector scattering of > 1GeV DM.

NFB, Busoni & Robles arXiv:1904.09803

Summary & Conclusions

- Dark matter capture in stars \rightarrow cosmic laboratory to probe DM scattering interactions
- Solar capture \rightarrow interesting new results
- Neutron Stars \rightarrow completely different kinematic regime to direct detection experiments
	- o Scattering of quasi-relativistic dark matter with neutron stars:
		- \triangleright no velocity or momentum suppressions
		- \triangleright access larger mass splittings in inelastic models
		- \triangleright Excellent sensitivity to DM-lepton scattering cross sections, with electron and especially muon scattering.
		- \triangleright Neutron Star kinetic heating sensitivity is better than current and forthcoming Direct Detection experiments, for both nucleon and electron scattering.