# Astroparticle Physics: On the Capture of Dark Matter in Stars

Nicole F. Bell University of Melbourne





## Outline

- Introduction
- Dark matter capture in the Sun
- Capture in Neutron Stars
  - Black Holes
  - Gravitational waves
  - Kinetic heating
    - DM-nucleon scattering
    - DM-lepton scattering
- Summary





## Introduction - Direct Detection



Spin-independent (SI) interactions

→ stringent bounds



Spin-dependent (SD) interactions

→ much weaker bounds

## Introduction - Direct Detection

#### Sensitivity depends on interaction type

- Enhanced cross sections for SI scattering
- Smaller cross sections for SD scattering

### Limited by kinematics

- Some interactions feature only momentum or velocity suppressed cross section → these are very small numbers
- Mass of the target nuclei (or electron mass)
- Experimental thresholds for detecting recoil energy

## An alternative approach

→ capture in the Sun, Earth, or Neutron Stars

Dark matter can accumulate in the Earth, Sun, or other stars, in considerable amounts.

Complementary to direct detection experiments.



## Solar WIMPs

- Dark matter scatters, loses energy, becomes gravitationally bound to star
- Accumulates and annihilates in centre of Sun
- Only neutrinos escape Sun → IceCube, SuperK

#### In equilibrium:

Annihilation rate = Capture rate

- → controlled by DM-nucleon scattering cross section.
- probes the same quantity as direct detection experiments



products may be detected.

## Solar WIMPs

- For *spin-dependent* interactions:
  - → strong solar WIMP limits
- For *spin-independent* interactions:
  - → direct detection wins



## Secluded models → long lived mediators

If captured DM annihilates to a light, long-lived mediator

- > Annihilation products can escape the Sun
- > If decay occurs beyond solar core -> High energy neutrino signal less attenuated
- $\rightarrow$  If decay occurs between Sun and Earth  $\rightarrow$  solar gamma rays or cosmic rays

Batell, Pospolov, Ritz & Shang; Pospolov & Ritz; Schuster, Toro & Yavin; Meade, Nussinov, Papucci & Volansky; NFB & Petraki: Feng, Smolinsky & Tanedo; Leane, Ng & Beacom;



Short-lived mediators



Long-lived mediators

Leane, Ng & Beacom, arXiv:1703.04629

## Secluded models → long lived mediators

HAWC arXiv:1808.05624

Leane, Ng & Beacom, arXiv:1703.04629



## **Neutron Stars**



Due to their density, neutron stars capture dark matter very efficiently.

Capture probability is of order unity when

$$\sigma_{n\chi} > \sigma_{th} \sim 10^{-45} \text{cm}^2$$

## Neutron Stars → Black holes?

Kouvaris; Kouvaris & Tinyakov; McDermott, Yu & Zurek; Bramante, Fukushima & Kumar; NFB, Petraki & Melatos; Bertone, Nelson & Reddy; and others.

- Due to their density, neutron stars capture dark matter very efficiently
- Can neutron stars accumulate so much dark matter that they would collapse to back holes? Yes, but typically only if:
  - No annihilation (e.g. asymmetric DM)
  - DM is bosonic and condenses to a small self gravitating BEC, or
  - DM is fermionic with attractive self-interactions, and
  - No repulsive-self interactions that prevent collapse (even very <u>very</u> tiny selfinteraction is enough) NFB, Petraki & Melatos, PRD 2013
  - → Black hole quite unlikely for typical WIMP-like dark matter

## Neutron star mergers → gravitational waves

Nelson, Reddy & Zhou, 1803.03266

- Light DM + light mediators (MeV scale)
  - ➤ DM component extents to large radii → NS dark matter halo
- Increases the NS tidal deformability,  $\Lambda$ .
  - $\succ$  LIGO observation of NS-NS merger, GW170817, constrains  $\Lambda < 800$
  - $\succ$  strong bounds, even for small DM component  $\sim 10^{-4} M_{\odot}$





## Neutron star mergers → gravitational waves

#### Heavier mediators → DM core

- Very large DM fraction from capture is unlikely. But mixed DM-neutron stars could form in some asymmetric DM models.
- If DM ~ 10% of NS mass
   ⇒ Distinctive gravitational wave signatures for NS-NS mergers.

#### J.Ellis et al., 1710.05540



## **Neutron Star Kinetic Heating**

Collisions transfer the

dark matter kinetic energy

to the neutron star

→ heats it up



M. Baryakhtar et al. PRL 119, 131801 (2017) arXiv:1704.01577





## Detecting the Heating

Nearby ≤ 50 pc isolated old NSs

M. Baryakhtar et al. PRL 119, 131801 (2017) arXiv:1704.01577



FAST (radio)









JWST (NIRCam)

## Dark matter annihilation

## → additional heating

Bramante, Delgardo and Martin; Raj, Tanedo and Yu

- Capture (plus subsequent energy loss)
  - → DM *kinetic energy* heats neutron star ~ 1700K
- Annihilation of thermalised dark matter
  - → DM *rest mass energy* heats neutron star ~ additional 700K

Thermalisation is essentially guaranteed for unsuppressed DM-nucleon scattering. If there is some kinematic suppression of the scattering process, it can take much longer (velocity or momentum suppressions; inelastic, etc)

## Neutron Star Heating: Advantages

- √ Higher probability of gravitational capture.
- ✓ DM particles accelerated to  $\mathcal{O}(0.5c)$



- ✓ Cross section for efficient trapping  $\mathcal{O}(10^{-45}\ cm)$
- ✓ Unlike direct detection, not restricted by recoil detection threshold.
- ✓ SI and SD cross sections of similar size
- ✓ Elastic and inelastic scattering cross sections of same order of magnitude.

## Kinetic Heating: Sensitivity



## **Kinematics**



Pauli blocking from degenerate neutrons restricts scattering when  $m_{DM} < 1 \ {\rm GeV}.$ 

Need: momentum transfer > neutron Fermi momentum

Momentum transfer in single collision not sufficient for capture when  $m_{DM}>10^6\ {\rm GeV}$ 

## **Direct Detection vs Neutron Stars**

| Operator                                                                 | Coupling         | Interaction | Mom. sup. | DD vs. NS |
|--------------------------------------------------------------------------|------------------|-------------|-----------|-----------|
| $\bar{\chi}\chi \; \bar{q}q$                                             | $y_q/\Lambda^2$  | SI          | X         | NS or DD  |
| $\bar{\chi}\gamma^5\chi \; \bar{q}q$                                     | $iy_q/\Lambda^2$ | SI          | ~         | NS        |
| $\bar{\chi}\chi \; \bar{q}\gamma^5 q$                                    | $iy_q/\Lambda^2$ | SD          | <b>✓</b>  | NS        |
| $\bar{\chi}\gamma^5\chi \; \bar{q}\gamma^5q$                             | $y_q/\Lambda^2$  | SD          | <b>✓</b>  | NS        |
| $\bar{\chi}\gamma_{\mu}\chi\;\bar{q}\gamma^{\mu}q$                       | $1/\Lambda^2$    | SI          | X         | NS or DD  |
| $\bar{\chi}\gamma_{\mu}\gamma^{5}\chi \; \bar{q}\gamma^{\mu}q$           | $1/\Lambda^2$    | SI, SD      | ~         | NS        |
| $\bar{\chi}\gamma_{\mu}\chi \; \bar{q}\gamma^{\mu}\gamma^5 q$            | $1/\Lambda^2$    | SD          | <b>✓</b>  | NS        |
| $\bar{\chi}\gamma_{\mu}\gamma^{5}\chi \; \bar{q}\gamma^{\mu}\gamma^{5}q$ | $1/\Lambda^2$    | SD          | X         | NS        |
| $\bar{\chi}\sigma_{\mu\nu}\chi\;\bar{q}\sigma^{\mu\nu}q$                 | $1/\Lambda^2$    | SD          | ×         | NS        |
| $\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\;\bar{q}\sigma^{\mu\nu}q$         | $i/\Lambda^2$    | SI          | <b>~</b>  | NS        |

Projected neutron star kinetic heating sensitivity comparable to direct detection experiments for scalar and vectorinteractions

For all other interaction types, neutron stars have greater sensitivity, typically by orders of magnitude.

## Neutron star sensitivity - SI scattering

 $\bar{\chi}\gamma_{\mu}\chi \; \bar{q}\gamma^{\mu}q$ 

Neutron star kinetic heating sensitivity comparable to Xenon 1T Direct Detection limits for vector-vector interaction



## Momentum suppressed scattering

$$\bar{\chi}\chi \; \bar{q}\gamma^5 q$$

Non relativistic limit – Direct Detection regime

$$rac{d\sigma}{d\cos heta} = rac{c_N^P m_N^2}{\Lambda^4} rac{\mu^2 q_{tr}^2}{8\pi (\mu+1)^2} ext{ Momentum suppressed}$$

Relativistic limit – Neutron Star regime

$$rac{d\sigma}{d\cos\theta} = rac{c_N^P m_N^2}{\Lambda^4} rac{t\left(t - 4m_\chi^2
ight)}{32\pi s}$$



## Spin-dependent scattering (pseudoscalar)

$$\bar{\chi}\gamma^5\chi \; \bar{q}\gamma^5q$$

Non relativistic limit – Direct Detection regime

$$\frac{d\sigma}{d\cos\theta} = \frac{c_N^P m_N^2}{\Lambda^4} \frac{\mu^2 q_{tr}^4}{32\pi(\mu+1)^2 m_\chi^2} \ \ \begin{array}{c} \text{Momentum} \\ \text{suppressed as} \\ q^4 \text{ and SD} \end{array}$$

Relativistic limit – Neutron Star regime

$$\frac{d\sigma}{d\cos\theta} = \frac{c_N^P m_N^2}{\Lambda^4} \frac{t^2}{32\pi s}$$



## Inelastic dark matter

Two almost degenerate dark matter states:  $\chi_1$  and  $\chi_2$ 

$$m_{\chi}$$
  $\chi_{1}$   $\chi_{2}$   $m_{\chi} + \delta m$ 

Inelastic in the sense that the dominant interaction is off-diagonal:

$$\chi_1+n o \chi_1+n$$
 highly suppressed  $\chi_1+n o \chi_2+n$  kinematically forbidden except for  $\delta m \ll m$ 

Well motivated if dark matter is quasi-Dirac (small Majorana mass)

## Inelastic dark matter

#### Assume all dark matter in Universe today is in $\chi_1$ state

- $\rightarrow$  The only scattering process is  $\chi_1 n \rightarrow \chi_2 n$ 
  - Xenon based DD experiments restricted to  $\delta m < 180 \text{ keV}$
  - Capture in the Sun can probe only slightly higher mass splittings
  - Neutron stars can probe much higher mass splittings, because the dark matter has a lot more kinetic energy (quasi-relativistic, due to acceleration on infall)  $\delta m < 330~{\rm MeV}$

## Inelastic scattering cross section

Maximum mass splitting

$$k = \frac{\delta m}{m_\chi} \le k_{ ext{MAX}}$$

$$k_{MAX} = \sqrt{1 + \frac{2}{\mu\sqrt{B}} + \frac{1}{\mu^2}} - 1 - \frac{1}{\mu}$$

$$B = 1 - \frac{2GM_{\star}}{c^2R_{\star}} \simeq 0.55$$

$$\mu = rac{m_\chi}{m_T}$$
 In NSs  $m_T = m_n$ 

NFB, Busoni, Robles, arXiv:1807.02840 (JCAP 2018)



## **Leptons in Neutron Stars**



Beta-decay equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

## **Leptons in Neutron Stars**



Beta-decay equilibrium in the core determines the composition:

- Degenerate neutrons
- Smaller and approximately equal electron and proton abundances
- Small muon component

## **Leptons in Neutron Stars**

Lepton density of few % in NS core, lower in crust. Fermi-momentum ~ constant in core.



## **Neutron Star Equation of State**

Pearson et al, Mon. Not. Roy. Astron. Soc. 481 no. 3, (2018)

| EoS                                              | BSk24-1               | BSk24-2               | BSk25-1               | BSk25-2               |  |
|--------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| $\rho_c  [\mathrm{g  cm^{-3}}]$                  | $7.76 \times 10^{14}$ | $2.00 \times 10^{15}$ | $7.46 \times 10^{14}$ | $2.10 \times 10^{15}$ |  |
| $M [M_{\odot}]$                                  | 1.500                 | 2.271                 | 1.400                 | 2.222                 |  |
| R [km]                                           | 12.593                | 11.310                | 12.387                | 11.166                |  |
| NS core                                          |                       |                       |                       |                       |  |
| $M_{\rm core} [M_{\odot}]$                       | 1.483                 | 2.266                 | 1.383                 | 2.217                 |  |
| $R_{\rm core} [{\rm km}]$                        | 11.643                | 10.977                | 11.389                | 10.834                |  |
| $\langle Y_n(r) \rangle$                         | 92.68~%               | 86.43 %               | 93.69 %               | 86.41 %               |  |
| $\langle Y_p(r) \rangle$                         | 7.32~%                | 13.57%                | 6.31~%                | 13.59 %               |  |
| $\langle Y_e(r) \rangle$                         | 5.46~%                | 8.41 %                | 4.86 %                | 8.37 %                |  |
| $\langle Y_{\mu}(r) \rangle$                     | 1.85~%                | 5.16~%                | 1,44 %                | 5.22%                 |  |
| $\langle p_{F,n}(r) \rangle \; [\text{MeV}]$     | 372.56                | 426.11                | 374.80                | 428.72                |  |
| $\langle p_{F,p}(r) \rangle \; [\mathrm{MeV}]$   | 160.23                | 230.36                | 152.79                | 230.57                |  |
| $\langle p_{F,e}(r) \rangle \; [\mathrm{MeV}]$   | 145.64                | 197.67                | 140.31                | 197.98                |  |
| $\langle p_{F,\mu}(r) \rangle \; [\mathrm{MeV}]$ | 50.38                 | 89.58                 | 45.66                 | 90.01                 |  |

Composition varies according to the neutron star EoS

## Insensitive to details of NS Equation of State



NFB, Busoni & Robles arXiv:1904.09803

## Neutron star limits on leptophilic DM



## Leptophilic dark matter → loop-level quark couplings

1-loop photon-mediated diagrams are the most important.
(Non-zero only for certain operators)



Other cases suppressed by Z-mass or by two loops.





| Name | Operator                                                                     | Coupling $G$        |
|------|------------------------------------------------------------------------------|---------------------|
| L1   | $ar{\chi}\chi$ $ar{\ell}\ell$                                                | $y_\ell/\Lambda^2$  |
| L2   | $\bar{\chi}\gamma^5\chi$ $\bar{\ell}\ell$                                    | $iy_\ell/\Lambda^2$ |
| L3   | $ar{\chi}\chi\;ar{\ell}\gamma^5\ell$                                         | $iy_\ell/\Lambda^2$ |
| L4   | $\bar{\chi}\gamma^5\chi\ \bar{\ell}\gamma^5\ell$                             | $y_\ell/\Lambda^2$  |
| L5   | $\bar{\chi}\gamma_{\mu}\chi\ \bar{\ell}\gamma^{\mu}\ell$                     | $1/\Lambda^2$       |
| L6   | $\bar{\chi}\gamma_{\mu}\gamma^{5}\chi\ \bar{\ell}\gamma^{\mu}\ell$           | $1/\Lambda^2$       |
| L7   | $ar{\chi}\gamma_{\mu}\chi\ ar{\ell}\gamma^{\mu}\gamma^5\ell$                 | $1/\Lambda^2$       |
| L8   | $\bar{\chi}\gamma_{\mu}\gamma^{5}\chi\;\bar{\ell}\gamma^{\mu}\gamma^{5}\ell$ | $1/\Lambda^2$       |
| L9   | $\bar{\chi}\sigma_{\mu\nu}\chi\;\bar{\ell}\sigma^{\mu\nu}\ell$               | $1/\Lambda^2$       |
| L10  | $\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\;\bar{\ell}\sigma^{\mu\nu}\ell$       | $i/\Lambda^2$       |

## Lepton operators → Quark operators

| Operator | Coupling                               | Induced by |
|----------|----------------------------------------|------------|
| D1       | $2 \text{ loop } (\gamma, \mathbf{Z})$ | L1         |
| D2       | -                                      | -          |
| D3       | $2 \text{ loop } (\gamma, \mathbf{Z})$ | L3         |
| D4       | -                                      | -          |
| D5       | 1 loop $(\gamma)$                      | L5         |
|          | 1 loop (Z)                             | L5, L7     |
| D6       | 1 loop $(\gamma)$                      | L6         |
|          | 1 loop (Z)                             | L6, L8     |
| D7       | 1 loop (Z)                             | L5, L7     |
| D8       | 1 loop (Z)                             | L6, L8     |

## Scalar interactions



## Vector interactions (L5)



NFB, Busoni & Robles arXiv:1904.09803

## Vector interactions

Very good NS sensitivity for muon and electron scattering.

DD more sensitive only for vector-vector scattering of > 1GeV DM.

NFB, Busoni & Robles arXiv:1904.09803



## **Summary & Conclusions**

- Dark matter capture in stars → cosmic laboratory to probe DM scattering interactions
- Solar capture → interesting new results
- Neutron Stars -> completely different kinematic regime to direct detection experiments
  - Scattering of quasi-relativistic dark matter with neutron stars:
    - > no velocity or momentum suppressions
    - > access larger mass splittings in inelastic models
    - ➤ Excellent sensitivity to DM-lepton scattering cross sections, with electron and especially muon scattering.
    - ➤ Neutron Star kinetic heating sensitivity is better than current and forthcoming Direct Detection experiments, for both nucleon and electron scattering.