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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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First detection: GW150914

• Masses  

• Peak luminosity 

m1 = 36+5
�4M� m2 = 29+4

�4M�

L ⇠ 1023L� ⇠ 1013LMWG

LVC PRL 116, 061102 (2016)
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FIG. 10. Time-frequency maps and reconstructed signal waveforms for the ten BBH events. Each event is represented with three panels
showing whitened data from the LIGO detector where the higher SNR was recorded. The first panel shows a normalized time-frequency
power map of the GW strain. The remaining pair of panels shows time domain reconstructions of the whitened signal, in units of the standard
deviation of the noise. The upper panels show the 90% credible intervals from the posterior probability density functions of the waveform
time series, inferred using CBC waveform templates from Bayesian inference (LALInference) with the PhenomP model (red band), and by
the BayesWave wavelet model (blue band) [52]. The lower panels show the point estimates from the cWB search (solid lines), along with a
90% confidence interval (green band) derived from cWB analyses of simulated waveforms from the LALInference CBC parameter estimation
injected into data near each event. Visible di↵erences between the di↵erent reconstruction methods have been verified to be consistent with a
noise origin (see text for details).
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GWTC-1: Catalog of detections
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FIG. 4. Parameter estimation summary plots I. Posterior probability densities of the masses, spins, and SNR of the GW events. For the
two-dimensional distributions, the contours show 90% credible regions. Left panel: Source frame component masses m1 and m2. We use the
convention that m1 � m2, which produces the sharp cut in the two-dimensional distribution. Lines of constant mass ratio q = m2/m1 are shown
for 1/q = 2, 4, 8. For low-mass events, the contours follow lines of constant chirp mass. Right panel: The mass Mf and dimensionless spin
magnitude af of the final black holes. The colored event labels are ordered by source frame chirp mass. The same color code and ordering
(where appropriate) apply to Figs. 5 to 8.

stellar-mass BHs [126–128]. The posterior distribution of the
heavier component in the heaviest BBH, GW170729, grazes
the lower boundary of the possible mass gap expected from
pulsational pair instability and pair instability supernovae at
⇠ 60 � 120M� [129–131]. The lowest-mass BBH systems,
GW151226 and GW170608, have 90% credible lower bounds
on m2 of 5.6 M� and 5.9 M�, respectively, and therefore lie
above the proposed BH mass gap region [132–135] of 2�5M�.
The component masses of the BBHs show a strong degener-
acy with each other. Lower mass systems are dominated by
the inspiral of the binary, and the component mass contours
trace out a line of constant chirp mass Eq. (5) which is the
best measured parameter in the inspiral [33, 60, 116]. Since
higher-mass systems merge at a lower GW frequency, their
GW signal is dominated by the merger of the binary. For high
mass binaries the total mass can be measured with accuracy
comparable to that of the chirp mass [136–138].

We show posteriors for the ratio of the component
masses Eq. (6) in the top left panel of Fig. 5. This parameter
is much harder to constrain than the chirp mass. The width
of the posteriors depends mostly on SNR and so the mass
ratio is best measured for the loudest events, GW170817,
GW150914 and GW170814. Even though GW170817 has
the highest SNR of all events, its mass ratio is less well con-
strained, because the signal power comes predominantly from
the inspiral, while the merger contributes little compared to
BBH [139]. GW151226 and GW151012 have posterior sup-
port for more unequal mass ratios than the other events, with
lower bounds of 0.28 and 0.30 at 90% credible level.

The final mass, radiated energy, final spin, and peak lumi-

nosity of the BH remnant from a BBH coalescence are com-
puted using averages of fits to numerical relativity (NR) re-
sults7 [14, 140–144]. Posteriors for the mass and spin of the
BH remnant for BBH coalescences are shown in the right
panel of Fig. 4. Only a small fraction (0.02–0.07) of the bi-
nary’s total mass is radiated away in GWs. The amount of
radiated energy scales with its total mass. The heaviest rem-
nant BH found is GW170729, at 80.3+14.6

�10.2M� while the light-
est remnant BH is GW170608, at 17.8+3.2

�0.7M�.
GW mergers reach extraordinary values of peak luminos-

ity which is independent of the total mass. While it de-
pends on mass ratio and spins, the posteriors overlap to a
large degree for the observed BBH events. Because of its
relatively high spin GW170729 has the highest value `peak =
4.2+0.9
�1.5 ⇥ 1056 erg s�1.

C. Spins

The spin vectors of compact binaries can a priori point in
any direction. Particular directions in the spin space are easier
to constrain and we focus on these first. An averaged pro-
jection of the spins parallel to the Newtonian orbital angular
momentum of the binary can be measured best. This e↵ec-
tive aligned spin �e↵ is defined by Eq. (4). Positive (nega-

7 The fits for the final mass and spin can be di↵erent from the fits used inter-
nally in the waveform models used in the analyses.
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stellar-mass BHs [126–128]. The posterior distribution of the
heavier component in the heaviest BBH, GW170729, grazes
the lower boundary of the possible mass gap expected from
pulsational pair instability and pair instability supernovae at
⇠ 60 � 120M� [129–131]. The lowest-mass BBH systems,
GW151226 and GW170608, have 90% credible lower bounds
on m2 of 5.6 M� and 5.9 M�, respectively, and therefore lie
above the proposed BH mass gap region [132–135] of 2�5M�.
The component masses of the BBHs show a strong degener-
acy with each other. Lower mass systems are dominated by
the inspiral of the binary, and the component mass contours
trace out a line of constant chirp mass Eq. (5) which is the
best measured parameter in the inspiral [33, 60, 116]. Since
higher-mass systems merge at a lower GW frequency, their
GW signal is dominated by the merger of the binary. For high
mass binaries the total mass can be measured with accuracy
comparable to that of the chirp mass [136–138].

We show posteriors for the ratio of the component
masses Eq. (6) in the top left panel of Fig. 5. This parameter
is much harder to constrain than the chirp mass. The width
of the posteriors depends mostly on SNR and so the mass
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the inspiral, while the merger contributes little compared to
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port for more unequal mass ratios than the other events, with
lower bounds of 0.28 and 0.30 at 90% credible level.

The final mass, radiated energy, final spin, and peak lumi-

nosity of the BH remnant from a BBH coalescence are com-
puted using averages of fits to numerical relativity (NR) re-
sults7 [14, 140–144]. Posteriors for the mass and spin of the
BH remnant for BBH coalescences are shown in the right
panel of Fig. 4. Only a small fraction (0.02–0.07) of the bi-
nary’s total mass is radiated away in GWs. The amount of
radiated energy scales with its total mass. The heaviest rem-
nant BH found is GW170729, at 80.3+14.6

�10.2M� while the light-
est remnant BH is GW170608, at 17.8+3.2

�0.7M�.
GW mergers reach extraordinary values of peak luminos-

ity which is independent of the total mass. While it de-
pends on mass ratio and spins, the posteriors overlap to a
large degree for the observed BBH events. Because of its
relatively high spin GW170729 has the highest value `peak =
4.2+0.9
�1.5 ⇥ 1056 erg s�1.

C. Spins

The spin vectors of compact binaries can a priori point in
any direction. Particular directions in the spin space are easier
to constrain and we focus on these first. An averaged pro-
jection of the spins parallel to the Newtonian orbital angular
momentum of the binary can be measured best. This e↵ec-
tive aligned spin �e↵ is defined by Eq. (4). Positive (nega-

7 The fits for the final mass and spin can be di↵erent from the fits used inter-
nally in the waveform models used in the analyses.
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FIG. 5. Parameter estimation summary plots II. Posterior probability densities of the mass ratio and spin parameters of the GW events.
The shaded probability distributions have equal maximum widths, and horizontal lines indicate the medians and 90% credible intervals of the
distributions. For the two-dimensional distributions, the contours show 90% credible regions. Events are ordered by source frame chirp mass.
The colors correspond to the colors used in summary plots. For GW170817 we show results for the high-spin prior ai < 0.89. Top left panel:

The mass ratio q = m2/m1. Top right panel: The e↵ective aligned spin magnitude �e↵ . Bottom left panel: Contours of 90% credible regions for
the e↵ective aligned spin and mass ratio of the binary components for low (high) mass binaries are shown in the upper (lower) panel. Bottom

right panel: The e↵ective precession spin posterior (colored) and its e↵ective prior distribution (white) for BBH (BNS) events. The priors
have been conditioned on the �e↵ posterior distributions.

tive) values of �e↵ increase (decrease) the number of orbits
from any given separation to merger with respect to a non-
spinning binary [37, 145]. We show posterior distributions
for this quantity in the top right panel of Fig. 5. Most pos-
teriors peak around zero. The posteriors for GW170729 and
GW151226 exclude �e↵ = 0 at > 90% confidence, but see
Sec. V F. As can be seen from Table III, the 90% intervals are
0.11–0.58 for GW170729 and 0.06–0.38 for GW151226.

As shown in the bottom left panel of Fig. 5, the mass
ratio and e↵ective aligned spin parameters can be degener-
ate [116, 122, 146] which makes them di�cult to measure
individually. For lower-mass binaries most of the waveform

is in the inspiral regime, and the posterior has a shape that
curves upwards towards larger values of �e↵ and lower val-
ues of q, exhibiting a degeneracy between these parameters.
This degeneracy is broken for high-mass binaries for which
the signal is short and is dominated by the late inspiral and
merger [139]. For all observed binaries the posteriors reach
up to the equal mass boundary (q = 1). With current de-
tector sensitivity it is di�cult to measure the individual BH’s
spins [139, 147–149] and, in contrast to �e↵ , the posteriors
of an anti-symmetric mass-weighted linear combination of �1
and �2 are rather wide.

The remaining spin degrees of freedom are due to a mis-

LVC arXiv:1811.12907
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Mass Parameters Spin Parameters

Model ↵ mmax mmin �q �m µm �m �m E[a] Var[a] ⇣ �i

A [-4, 12] [30, 100] 5 0 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

B [-4, 12] [30, 100] [5, 10] [-4, 12] 0 N/A N/A N/A [0, 1] [0, 0.25] 1 [0, 10]

C [-4, 12] [30, 100] [5, 10] [-4, 12] [0, 1] [20, 50] (0, 10] [0, 10] [0, 1] [0, 0.25] [0, 1] [0, 4]

Table 2. Summary of models used in Sections 3, 4, and 5, with the prior ranges for the population parameters. The fixed
parameters are in bold. Each of these distributions is uniform over the stated range. All models in this Section assume rates
which are uniform in the comoving volume (� = 0). The lower limit on mmin is chosen to be consistent with Abbott et al.
(2018).

Figure 1. Inferred di↵erential merger rate as a function of primary mass, m1, and mass ratio, q, for three di↵erent assumptions.
For each of the three increasingly complex assumptions A, B, C described in the text we show the PPD (dashed) and median
(solid), plus 50% and 90% symmetric credible intervals (shaded regions), for the di↵erential rate. The results shown marginalize
over the spin distribution model. The fallo↵ at small masses in models B and C is driven by our choice of the prior limits on
the mmin parameter (see Table 2). All three models give consistent mass distributions within their 90% credible intervals over
a broad range of masses, consistent with their near-unity evidence ratios (Table 3); in particular, the peaks and trough seen in
Model C, while suggestive, are not identified at high credibility in the mass distribution.

mergers . 1. Thus, we are unable to place meaningful
constraints on the presence or absence of a mass gap at
low black hole mass.
Models B and C also allow the distribution of mass ra-

tios to vary according to �q. In these cases the inferred
mass-ratio distribution favors comparable-mass binaries
(i.e., distributions with most support near q ' 1), see
panel two of Figure 1. Within the context of our pa-
rameterization, we find �q = 6.7+4.8

�5.9 for Model B and
�q = 5.8+5.5

�5.8 for Model C. These values are consistent

with each other and are bounded above zero at 95% con-
fidence, thus implying that the mass ratio distribution
is nearly flat or declining with more extreme mass ra-
tios. The posterior on �q returns the prior for �q & 4.
Thus, we cannot say much about the relative likelihood
of asymmetric binaries, beyond their overall rarity.
The distribution of the parameter controlling the frac-

tion of the power law versus the Gaussian component in
Model C is �m = 0.4+0.3

�0.3, which peaks away from zero,
implying that this model prefers a contribution to the
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Credit: Alex Nitz/Max Planck Institute for Gravitational Physics/LIGO LVC PRL 119, 161101 (2017)

GW170817: A binary neutron star
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Nuclear physics with GW170817

⇤

Flanagan and Hinderer, PRD (2008)
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Nuclear physics with GW170817
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FIG. 9. Posterior distributions for component masses and tidal deformability for GW170817 for the waveform models: IMRPhenomPv2NRT,
SEOBNRv4NRT, TaylorF2, SEOBNRv4T and TEOBResumS. Top panels: 90% credible regions for the component masses for the high-
spin prior ai < 0.89 (left) and low-spin prior ai < 0.05 (right). The edge of the 90% credible regions is marked by points; the uncertainty
in the contour is smaller than the thickness shown because of the precise chirp mass determination. 1-D marginal distributions have been
renormalized to have equal maxima, and the vertical and horizontal lines give the 90% upper and lower limits on m1 and m2, respectively.
Bottom panels: Posterior distributions of the e↵ective tidal deformability parameter ⇤̃ for the high-spin (left) and low-spin (right) priors.
These PDFs have been reweighted to have a flat prior distribution. The original ⇤̃ prior is shown in yellow. 90% upper bounds are represented
by vertical lines for the high spin prior (left). For the low spin prior (right) 90% highest posterior density (HPD) credible intervals are shown
instead. Gray PDFs indicate seven representative equation of states (EOSs) using masses estimated with the IMRPhenomPv2NRT model.

for TaylorF2 394+557
�321. For SEOBNRv4T and TEOBResumS

we find 349+394
�349 and 405+545

�375, respectively. The posteriors pro-
duced by these two models agree better for the low-spin prior.
This is consistent with the very good agreement between the
models for small spins |�i|  0.15 shown in Ref. [32]. For
reference, we also show contours for a representative sub-
set of theoretical EOS models given by piecewise-polytrope
fits from [189]. These fits are evaluated using the IMRPhe-
nomPv2NRT component mass posteriors, and the sharp cut-
o↵ to the right of each EOS posterior corresponds to the equal
mass ratio boundary. As found in [90] the EOSs MS1, MS1b,
and H4 lie outside the 90% credible upper limit, and are there-

fore disfavored.
In Table III we quote conservative estimates of key final-

state parameters for GW170817 obtained from fits to NR sim-
ulations of quasi-circular binary neutron star mergers [190,
191]. We do not assume the type of final remnant and quote
quantities at either the moment of merger or after the post-
merger GW transient. Lower limits of radiated energy up to
merger and peak luminosity are given at 1% credible level.
The final mass is computed from the radiated energy includ-
ing the postmerger transient as an upper limit at 99% credible
level. For the final angular momentum we quote an upper
bound computed from the radiated energy and using the phe-
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ior at high densities would be an indication of extra degrees
of freedom, though this is not an outcome of the GW data
alone. Indeed the horizontal lines denote the 90% intervals
for the central pressure of the two stars, suggesting that
our data are not informative for pressures above that. The
bend is an outcome of two competing effects: the GW data
point toward a lower pressure, while the requirement that
the EOS supports masses above 1.97M� demands a high
pressure at large densities. The result is a precise pres-
sure estimate at around 5⇢nuc and a broadening above that,
giving the impression of a bend in the pressure. We have
verified that the bend is absent if we remove the maximum
mass constraint from our analysis.
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FIG. 2. Marginalized posterior (blue) and prior (orange) for the
pressure p as a function of the rest-mass density ⇢ of the NS
interior using the spectral EOS parametrization and imposing a
lower limit on the maximum NS mass supported by the EOS
of 1.97M�. The dark (light) blue shaded region corresponds
to the 50% (90%) posterior credible level and the orange lines
show the 90% prior credible interval. Horizontal lines denote
the 90% credible interval for the central pressure of the heav-
ier (dashed) and the lighter (dotted) binary components. Verti-
cal lines correspond to once, twice, and six times the nuclear
saturation density. Overplotted in grey are representative EOS
models [121, 122, 124], using data taken from [19]; from top to
bottom at 2⇢nuc we show H4, APR4, and WFF1.

Finally we place constraints in the 2-dimensional param-
eter space of the NS mass and areal radius for each binary
component. This posterior is shown in Fig. 3. The left
panel is obtained by first using the ⇤a(⇤s, q) relation to ob-
tain tidal deformability samples assuming a common EOS
and then using the ⇤–C relation to compute the NS radii.
The right panel is computed by integrating the TOV equa-
tion to compute the radius for each sample in the spectral
EOS parametrization after imposing a maximum mass of at
least 1.97M�. At the 90% level, the radii of the two NSs
are R1 = 10.8+2.0

�1.7 km and R2 = 10.7+2.1
�1.5 km from the

left panel and R1 = 11.9+1.4
�1.4 km and R2 = 11.9+1.4

�1.4 km

from the right panel.
The difference between the two radii estimates is mainly

due to different physical information included in each anal-
ysis. The EOS-insensitive-relations analysis (left panel)
is based on GW data alone, while the parametrized-EOS
analysis (right panel) imposes an additional observational
constraint, namely that the EOS must support NSs of at
least 1.97M�. This has a large effect on the radii priors as
shown in the 1-dimensional plots of Fig. 3, since small radii
are typically predicted by soft EOSs, which cannot support
large NS masses. In the case of EOS-insensitive relations
(left panel), the prior allows for smaller values of the radius
than in the parametrized-EOS case (right panel), something
that is reflected in the posteriors since the GW data alone
cannot rule out radii below ⇠ 10 km. Therefore the lower
radius limit in the EOS-insensitive-relations analysis is de-
termined by the GW measurement, while in the case of the
parametrized-EOS analysis it is determined by the mass of
the heaviest observed pulsar and its implications for NS
radii [65]. Additionally, we verified that the parametrized-
EOS analysis without the maximum mass constraint leads
to similar results to the EOS-insensitive-relations analysis.

To quantify the improvement from assuming that both
NSs obey the same EOS, we apply the ⇤–C relation to
tidal deformability samples calculated without assuming
the ⇤a(⇤s, q) relation (the orange posterior of Fig. 1) and
obtain R1 = 11.8+2.7

�3.3 km and R2 = 10.8+2.9
�3.0 km at the

90% level. This suggests that imposing a common EOS
for the two binary components leads to a reduction of the
90% credible interval width for the radius measurement of
almost a factor of two from 5.9 km to 3.6 km.

DISCUSSION

In this letter, we complement our analysis of the tidal
effects of GW170817 in [52] with a targeted analysis that
assumes astrophysically plausible NS spins and tidal pa-
rameters, as well as the same EOS for both NSs. This
additional prior information enables us to measure NS
radii with an uncertainty less than 2.8 km if consistency
with observed pulsar masses is enforced, and 3.6 km us-
ing GW data alone at the 90% credible level. Simultane-
ously, the pressure at twice the nuclear saturation density
is measured to be p(2⇢nuc) = 3.5+2.7

�1.7 ⇥ 1034 dyn/cm2.
Our results are consistent with X-ray binary observations
(e.g. [19, 20, 126, 127]) and suggest that NS radii are
not large. Additionally, our results can be compared to
tidal inference based on the electromagnetic emission of
GW170817 [128, 129].

Our results are comparable and consistent with studies
that use the tidal measurement from [5] to obtain bounds
on NS radii. Using our bound of ⇤1.4 < 800 (the only
tidal parameter in [5], which assumed a common EOS
for both NSs) and different EOS parametrizations, several
studies found R1.4

<⇠ 13.5 km [56, 58, 62, 64]. Refer-
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120
, and R1 = 10.8+2.0

�1.7 km and R2 = 10.7+2.1
�1.5 km

for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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5

order to recover the BF of Eq. (11), with the substitution
�� ! �M .

The second case, where the �i are treated as unrelated
parameters, is given by taking ↵ large and enforcing a
cuto↵ on the prior range. In this case, we fix M to some
value within the prior range and let ↵ ! 1, which we
accomplish by setting p(M,↵) to the appropriate delta
functions and integrating over them. Then the BF re-
duces to Eq. (19).

The framework above, where each �i are drawn from
some common distribution controlled by a set of hyper-
parameters, is the most general framework for systems
which do not interact. We have shown how each of the
two common methods for combining multiple GW events
arise out of simple limits from this framework.

E. Combining synthetic observations from multiple
events

The expressions for the BF presented in Eqs. (16)
and (20) were obtained under specific assumptions about
the parameters �i that describe the deviation from GR.
In order to study the implications of indiscriminately ap-
plying these formulas to situations and datasets that vi-
olate these assumptions, we return to our toy model of
Gaussian likelihoods and numerically compute the BFs
by either multiplying the likelihoods, Eq. (16), or by
multiplying the BFs of the individual measurements to-
gether, Eq. (20). To simulate a mock population of mea-
surements for �i we draw the mean µi of the Gaussian
likelihood from various distributions and for simplicity
set the standard deviation to �i = 1. We also assume a
flat prior on �i.

We focus on 5 example cases for the distribution of µi:

1. µi = 0+N (0,�i = 1): This corresponds to the case
that GR is correct, but the posteriors have a scatter
around the true value of µi = 0 due to the detector
noise realization. Here N (µ,�) indicates a normal
distribution of mean µ and standard deviation �.

2. µi = 1 + N (0,�i = 1): In this case GR is not
correct, but the true theory of gravity predicts the
same beyond-GR parameter for each event, µi = 1,
plus a scatter due to detector noise. This corre-
sponds to the situation discussed in Sec. II B.

3. µi 2 [�1, 1]+N (0,�i = 1): Here GR is not correct
and the true theory of gravity predicts beyond-GR
parameters that are unrelated to each other, plus
a scatter due to detector noise. This theory breaks
the assumptions of Sec. II B.

4. µi 2 [�4, 4] + N (0,�i = 1): This is the same as
3 but here we draw µi from a broader distribution
so that we clearly correspond to the situation dis-
cussed in Sec. II C.
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FIG. 1. Combined Bayes Factors as a function of the number
of events for an analysis that assumes common � parameters
between all events (top panel) and uncorrelated � parameters
for each event (bottom panel). In each panel the black lines
show the theoretically expected scaling of the BF if GR is
correct or if it is wrong. The purple dots show the BF for a
non-GR theory of gravity that obeys the assumption of each
BF calculation on �, while the pink dots show the BF for a
non-GR theory of gravity that does not obey the assumption
of each BF calculation on �. The purple dots show expo-
nentially decreasing BFs, while the pink ones lead to BFs in
favor of GR, leading to the incorrect conclusion. These re-
sults suggest that the two non-GR theories cannot be tested
simultaneously in a model-independent way.

5. µi = 0.1 + N (0,�i = 1): This is the same as 2,
but with a smaller deviation from GR as compared
to the assumed level of the noise in the detectors.
This case breaks the assumptions of Sec. II C.

We then compute the resulting BFs for each scenario
of Secs. II B and IIC numerically. The results are in
Fig. 1 whose top panel shows the BF as a function of the
number of events computed according to Eq. (16), while
the bottom panel corresponds to the case of Eq. (20). On
both panels the black lines show the expected BF scaling
for GR and non-GR, in the case of zero-noise realizations.
The green dots refer to the case where GR is the correct
theory of gravity but also accounts for the specific noise
realization in the detectors. In both cases we find that

4

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
µi

10�1

100

101

P
D

F

��2�0 �1 �2 �3 �4 �5l �6 �6l �7

�0.25

0.00

0.25

Z
-s

co
re

��2�0 �1 �2 �3 �4 �5l �6 �6l �7

1

2

3

90
%

C
I

w
id

th

��̂�2 (⇥20)

��̂0

��̂1

��̂2

��̂3

��̂4

��̂5l

��̂6

��̂6l

��̂7

FIG. 3. Population hyperparameters for the detected BBHs. We show the posteriors for µi (left) and �i (right) for the inspiral
ppE-like parameters (top) and the merger parameters (bottom). Each of these quantities controls a specific deformation away
from the GW waveform predicted by GR (see [9] for definitions). The inset on the left panels shows the Z-score (the mean
divided by the standard deviation) for each posterior (left) and the 90% credible interval (right). Dashed vertical lines on the
right panels show the 90% upper limit for each posterior. For ease of display, we show the posteriors of 20 ⇥ �'̂�2 instead of
simply �'̂�2. Lack of evidence for nonzero µi or �i means results for all beyond-GR parameters are consistent with GR.

all �p̂i parameters from [9, 20], obtained with the IMR-
PhenomPv2 waveform model [29, 30]. This study did
not perform both sets of tests on all detected BBHs, but
rather imposed certain thresholds on the SNR of the sig-
nals to determine whether to look for deviations in the
inspiral or postinspiral regime, or both. As a result, 5
BBHs where analyzed for inspiral deviations and 9 for
postinspiral ones. See [9] for details.

Figure 3 shows posterior distributions for the hyper-
parameters µi (left panels) and �i (right panels), corre-
sponding to the inspiral parameters �'̂i (top) and the
postinspiral parameters �↵̂i and ��̂i (bottom). We find
that the population of the analyzed BBHs is consistent
with GR both in terms of µi and �i for all beyond-GR
parameters. All µi posteriors are consistent with 0 at
the 0.5� level or better, while all �i posteriors peak at
0. These results are subject to the thresholds imposed
in [9] and would thus be vulnerable to the same potential
selection e↵ects. With that caveat, we find no evidence
of any deviation from GR.

CONCLUSIONS

We use a hierarchical approach to test GR with GWs
by assuming that beyond-GR parameters in each event
are drawn from a common underlying distribution. This
approach is both flexible and powerful, since it can en-
compass generic population distributions, even if the cho-
sen parametrization inaccurate. It can trivially incor-
porate future detections and can be applied to several
tests of GR, including searches for modified dispersion
relations [7, 31] or inspiral-merger-ringdown consistency
checks [16, 18]. We apply this method to the current 10
confident BBH detections [1], measuring posterior distri-
butions for the mean and standard deviation of the pop-
ulation of ppE-like parameters �p̂i [20]. We have found
both to be consistent with GR.

Parametrized tests, such as the ones studied here, are
powerful probes of beyond-GR e↵ects. Yet, it has long
been appreciated that their interpretation demands cau-
tion: correlations between the parameters suggest that a

BF =
p(d|H1)

p(d|H2)
=

p(d1|�1 = 0, H2)p(d2|�2 = 0, H2)R
d�1d�2 p(�1,�2)p(d1|�1, H2)p(d2|�2, H2)
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Quasinormal modes of black holes and black branes 39

of a/M the rotation-induced splitting of the modes is roughly proportional to m, as
physical intuition would suggest.

The weakly damped modes of Kerr black holes In the right panel of Figure 8 we show
the first eight gravitational QNM frequencies with m = 2 (solid lines) and m = −2
(dashed lines). A general feature is that almost all modes with m > 0 cluster at the
critical frequency for superradiance, 2Mω = m, as a/M → 1. This fact was first
observed by Detweiler [262], and a thorough examination of the extremal limit can be
found in Refs. [263, 264, 265]. The mode with n = 6 (marked by an arrow) shows a
peculiar deviation from the general trend, illustrating the fact that some positive-m
modes do not tend to this critical frequency in the extremal limit.
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Figure 9. Frequencies and quality factors for the fundamental modes with
l = 2, 3, 4 and different values of m. Solid lines refer to m = l, .., l (from
top to bottom), the dotted line to m = 0, and dashed lines refer to m = −1, ..,−l
(from top to bottom). Quality factors for the higher overtones are lower than the
ones we display here.

For gravitational wave detection we are mostly interested in the frequency and
quality factor of the dominant modes, which determine whether the mode lies in the
sensitive frequency band of a given detector and the number of observable cycles.
Figure 9 shows these quantities for QNMs with l < 5. Improving on previous results
[9, 266], Ref. [10] presented accurate fits for the first three overtones with l = 2, 3, 4
and all values of m, matching the numerical results to within 5% or better over a range
of a/M ∈ [0, 0.99] (see Tables VIII-X in Ref. [10] and the numerical data available
online [47]). For instance, defining b̂ ≡ 1 − a/M , the frequency ωlm = ωR and quality
factor Qlm ≡ ωR/(2ωI) of the fundamental l = m = 2 and l = 2 , m = 0 modes are

Mω22 ≃ 1.5251− 1.1568 b̂0.1292 , Q22 ≃ 0.700 + 1.4187 b̂0.4990 , (96)

Mω20 ≃ 0.4437− 0.0739 b̂0.3350 , Q20 ≃ 4.000 − 1.9550 b̂0.1420 , (97)

The highly damped modes The intermediate- and large-damping regime of the QNM
spectrum of Kerr BHs is even more puzzling than the RN spectrum. The main
technical difficulty in pushing the calculation to higher damping is that Leaver’s
approach requires the simultaneous solution of the radial and angular continued
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Here, DL is the binary’s luminosity distance, Mdet is the bi-
nary’s detector-frame (i.e., redshifted) chirp mass, and �A,e↵
is the e↵ective wavelength parameter used in the sampling,
defined as

�A,e↵ B
"
(1 + z)1�↵DL

D↵

#1/(↵�2)

�A . (4)

The parameter z is the binary’s redshift, and D↵ is a distance
parameter given by

D↵ =
(1 + z)1�↵

H0

Z z

0

(1 + z̄)↵�2
p
⌦m(1 + z̄)3 +⌦⇤

dz̄ , (5)

where H0 = 67.90 km s�1 Mpc�1 is the Hubble constant, and
⌦m = 0.3065 and ⌦⇤ = 0.6935 are the matter and dark energy
density parameters; these are the TT+lowP+lensing+ext values
from [107].15

The dephasing in Eq. (3) is obtained by treating the gravita-
tional wave as a stream of particles (gravitons), which travel
at the particle velocity vp/c = pc/E = 1 � A↵E↵�2/2 + O(A2

↵).
There are suggestions to use the particle velocity when consid-
ering doubly special relativity, though there are also sugges-
tions to use the group velocity vg in that case (see, e.g., [109]
and references therein for both arguments). However, the group
velocity is appropriate for, e.g., multi-fractal spacetime theo-
ries (see, e.g., [110]). To convert the bounds presented here to
the case where the particles travel at the group velocity, scale
the A↵ bounds for ↵ , 1 by factors of 1/(1 � ↵). The group
velocity calculation gives an unobservable constant phase shift
for ↵ = 1.

We consider the cases of positive and negative A↵ separately,
and obtain the results shown in Table IV and Fig. 5 when
applying this analysis to the GW events under consideration.
While we sample with a flat prior in log �A,e↵, our bounds are
given using priors flat in A↵ for all results except for the mass of
the graviton, where we use a prior flat in the graviton mass. We
also show the results from combining together all the signals
that satisfy our selection criterion. We are able to combine
together the results from di↵erent signals with no ambiguity,
since the known distance dependence is accounted for in the
waveforms.

Figure 6 displays the full A↵ posteriors obtained by combin-
ing all selected events (using IMRPhenomPv2 waveforms). To
obtain the full A↵ posteriors, we combine together the positive
and negative A↵ results for individual events by weighting by
their Bayesian evidences; we then combine the posteriors from
individual events. We give the analogous plots for the individ-
ual events in Sec. 4 of the Appendix. The combined positive
and negative A↵ posteriors are also used to compute the GR
quantiles given in Table IV, which give the probability to have

15 We use these values for consistency with the results presented in [14].
If we instead use the more recent results from [108], specifically the
TT,TE,EE+lowE+lensing+BAO values used for comparison in [14], then
there are very minor changes to the results presented in this section. For
instance, the upper bounds in Table IV change by at most ⇠ 0.1%.

0 1 2 3 4
↵

10�21

10�20

10�19

|A
↵
|

[p
eV

2�
↵
]

A↵ < 0

0 1 2 3 4
↵

A↵ > 0

GW150914 + GW151226 + GW170104
O1 and O2 combined results

FIG. 5. 90% credible upper bounds on the absolute value of the modi-
fied dispersion relation parameter A↵. We show results for positive
and negative values of A↵ separately. Specifically, we give the up-
dated versions of the results from combining together GW150914,
GW151226, and GW170104 (first given in [6]), as well as the re-
sults from combining together all the events meeting our significance
threshold for combined results (see Table I). Picoelectronvolts (peV)
provide a convenient scale, because 1 peV ' h ⇥ 250 Hz, where
250 Hz is roughly around the most sensitive frequencies of the LIGO
and Virgo instruments.

FIG. 6. Violin plots of the full posteriors on the modified dispersion
relation parameter A↵ calculated from the combined events, with the
90% credible interval around the median indicated.

A↵ < 0, where A↵ = 0 is the GR value. Thus, large or small
values of the GR quantile indicate that the distribution is not
peaked close to the GR value. For a GR signal, the GR quan-
tile will be distributed uniformly in [0, 1] for di↵erent noise
realizations. The GR quantiles we find are consistent with
such a uniform distribution. In particular, the (two-tailed) meta
p-value for all events and ↵ values obtained using Fisher’s
method [73] (as in Sec. V A) is 0.9995.

We find that the combined bounds overall improve on those

E2 = p2c2 +Ap↵c↵ mg  5⇥ 10�23 eV/c2
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Figure 1. Remnant disk plus dynamic ejecta masses (upper
panel) and BH formation time (lower panel) plotted against the
tidal parameter ⇤̃ (Eq. 1). For models that do not collapse during
our simulation time, we give a lower limit. The horizontal dashed
line shows a conservative lower limit for AT2017gfo, 0.05M�, ob-
tained assuming that the entire disk is unbound. The vertical
dotted line is ⇤̃ = 400.

parameter ⇤̃. Our results indicate that binaries with
⇤̃ . 450 inevitably produce BHs with small . 10�2 M�
accretion disks. These cases are incompatible with the
infrared data for AT2017gfo, even under the assumption
that all of the matter left outside of the event horizon
will be ejected.
The reason for this trend is easily understood from the

lower panel of Fig. 1. The NS dimensionless quadrupo-
lar tidal parameters depend on the negative-fifth power
of the NS compactness (GM/R c2; Eq. 2). Consequently,
small values of ⇤̃ are associated with binary systems hav-
ing compact NSs that result in rapid or prompt BH for-
mation. In these cases, the collapse happens on a shorter
timescale than the hydrodynamic processes responsible
for the formation of the disk. Consequently, only a small
amount of mass is left outside of the event horizon at the
end of the simulations.
Binaries with larger values of ⇤̃ produce more mas-

sive disks, up to ⇠0.2 M�, and longer lived remnants.
In these cases, neutrino driven winds and viscous and
magnetic processes in the disk are expected to unbind
su�cient material to explain the optical and infrared ob-
servations for AT2017gfo (Perego et al. 2014; Wu et al.
2016; Siegel & Metzger 2017).

4. DISCUSSION

On the basis of our simulations we can conservatively
conclude that values of ⇤̃ smaller than 400 are excluded.
Together with the LIGO-Virgo constraints on ⇤̃ (Abbott
et al. 2017b), this result already yields a strong constraint
on the EOS.
To illustrate this, we notice that, since the chirp mass

of the binary progenitor of GW170817 is well measured,
for any given EOS the predicted ⇤̃ reduces to a simple
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Figure 2. Tidal parameter ⇤̃ (Eq. 1) as a function of the mass
ratio q for a fixed chirp mass Mchirp = 1.188 M�. The shaded
region shows the region excluded with 90% confidence level by the
LIGO-Virgo observations (Abbott et al. 2017b), with the addi-
tional constraint of ⇤̃ � 400 derived from the simulations and the
EM observations. EOSs whose curves enter this region are disfa-
vored. EOSs are sorted for decreasing ⇤̃ at q = 1, i.e., H4 is the
sti↵est EOS in our sample, and FPS is the softest.

function of the mass ratio, that is,

⇤̃ = ⇤̃ (q,Mchirp = 1.188M�; EOS) . (3)

We consider a set of 12 EOSs: the four used in the sim-
ulations and other eight from Read et al. (2009). We
compute ⇤̃(q) for each and show the resulting curves in
Fig. 2. There, we also show the upper bound on ⇤̃ from
the GW observations as well as the newly estimated lower
bound from the EM data. On the one hand, sti↵ EOSs,
such as H4 and HB, are already disfavored on the basis
of the GW data alone. On the other hand, EOS as soft
as FPS and APR4 are also tentatively excluded on the
basis of the EM observations6. Soft EOS commonly used
in simulations, such as SFHo and SLy, lay at the lower
boundary of the allowed region, while DD2 and BHB⇤�
are on the upper boundary.
Our results show that NR simulations are key to

exploting the potential of multimessenger observations
While GW data bounds the tidal deformability of NSs
from above, the EM data and our simulations bound it
from below. The result is a competitive constraint al-
ready after the first detection of a merger event. Our
method is general, it can be applied to future obser-
vations and used to inform the priors used in the GW
data analysis. We anticipate that, with more observa-
tions and more precise simulations, the bounds on the
tidal deformability of NSs will be further improved.
The physics setting the lower bound on ⇤̃ is well un-

derstood and under control in our simulations. How-
ever, there might still be systematic errors in our results.
Large components of the NS spins parallel to the or-
bital plane are not expected, but also not constrained

6 Note that FPS is also excluded because it predicts a maximum
NS mass smaller than 2 M�.

Radice, Perego, Zappa, ApJL 852:L29 (2018)
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FIG. 3. Similar to Fig. 1, but with no spin on either BH.

down to a new non-zero value (below the resolution of
this figure) determined by the spin of the final black
hole, again via Eq. (27). In between, there is a burst
of scalar dipole radiation. This is a newly discovered
phenomenon that could not have been computed with
analytic post-Newtonian calculations. Scalar monopole
radiation, meanwhile, is consistent with zero within the
numerical errors of the simulation.

C. Energy fluxes

Having solved for the scalar field #(1), we can evalu-
ate physical quantities such as its stress-energy tensor,
Eq. (11). From T (#)

ab , we can compute the energy flux
through some 2-sphere S2

R at coordinate radius R via

Ė(#)
=

Z

S2
R

T (#)
ab nadSb . (30)

Here na is the timelike unit normal to the spatial slice,
and dSb is the proper area element of S2

R, i.e. dSb
=

N bp�dA, where N b is the spacelike unit normal to S2
R,

� is the determinant of the induced 2-metric, and dA is
the coordinate area element.

FIG. 4. Order (`/GM)0 and (`/GM)4 energy fluxes, as a
function of time, aligned at the peak of  (2,2)

4 . We plot the
order (`/GM)4 numerical scalar energy flux extracted at R =
300 GM [colored solid lines; Eq. (33)] and the corresponding
post-Newtonian approximation [dashed lines, Eqs. (35) and
(36)], for the highest resolution of each simulation. We also
plot the energy flux at order (`/GM)0, which consists solely
of the background gravitational radiation [Eq. (34)], for the
spin 0.3 simulation (dot-dashed black line); the GW flux is
the same order of magnitude for all three spin configurations.
The O(1) ratio between PN and numerics is likely due to the
PN fluxes only including l = 2, whereas numerical quantities
are computed with all modes up to l = 8.

Like the metric and scalar field, we similarly expand
T (#)
ab and Ė(#) in powers of ",

T (#)
ab =

1X

k=0

"kT (#,k)
ab , Ė(#)

=

1X

k=0

"kĖ(#,k) , (31)

where each Ė(#,k) includes the appropriate orders of both
the scalar field and metric. Since #(0)

= 0 and T (#)
ab is

quadratic in #, we have T (#,0)
ab = T (#,1)

ab = 0, and similarly
Ė(#,0)

= Ė(#,1)
= 0. The first non-vanishing order is

T (#,2)
ab , which is given by

T (#,2)
ab = ra#

(1)
rb#

(1)
�

1

2
gabrc#

(1)
r

c#(1) . (32)

Using the results of the simulations, we compute Tabna,
interpolate it onto surfaces of fixed coordinate radius
R, compute TainaN i by contracting with the normal,
and perform spectral integration with the induced area
element to obtain Ė(#,2). That is, we compute

Ė(#,2)
(R) =

Z

S2
R

T (#,2)
ai naN ip�dA . (33)

We also compute the energy flux at order (`/GM)
0,

which for vanishing #(0) consists purely of the background
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analytic post-Newtonian calculations. Scalar monopole
radiation, meanwhile, is consistent with zero within the
numerical errors of the simulation.

C. Energy fluxes

Having solved for the scalar field #(1), we can evalu-
ate physical quantities such as its stress-energy tensor,
Eq. (11). From T (#)

ab , we can compute the energy flux
through some 2-sphere S2

R at coordinate radius R via

Ė(#)
=

Z

S2
R

T (#)
ab nadSb . (30)

Here na is the timelike unit normal to the spatial slice,
and dSb is the proper area element of S2

R, i.e. dSb
=

N bp�dA, where N b is the spacelike unit normal to S2
R,

� is the determinant of the induced 2-metric, and dA is
the coordinate area element.

FIG. 4. Order (`/GM)0 and (`/GM)4 energy fluxes, as a
function of time, aligned at the peak of  (2,2)

4 . We plot the
order (`/GM)4 numerical scalar energy flux extracted at R =
300 GM [colored solid lines; Eq. (33)] and the corresponding
post-Newtonian approximation [dashed lines, Eqs. (35) and
(36)], for the highest resolution of each simulation. We also
plot the energy flux at order (`/GM)0, which consists solely
of the background gravitational radiation [Eq. (34)], for the
spin 0.3 simulation (dot-dashed black line); the GW flux is
the same order of magnitude for all three spin configurations.
The O(1) ratio between PN and numerics is likely due to the
PN fluxes only including l = 2, whereas numerical quantities
are computed with all modes up to l = 8.

Like the metric and scalar field, we similarly expand
T (#)
ab and Ė(#) in powers of ",

T (#)
ab =

1X

k=0

"kT (#,k)
ab , Ė(#)

=

1X

k=0

"kĖ(#,k) , (31)

where each Ė(#,k) includes the appropriate orders of both
the scalar field and metric. Since #(0)

= 0 and T (#)
ab is

quadratic in #, we have T (#,0)
ab = T (#,1)

ab = 0, and similarly
Ė(#,0)

= Ė(#,1)
= 0. The first non-vanishing order is

T (#,2)
ab , which is given by

T (#,2)
ab = ra#

(1)
rb#

(1)
�

1

2
gabrc#

(1)
r

c#(1) . (32)

Using the results of the simulations, we compute Tabna,
interpolate it onto surfaces of fixed coordinate radius
R, compute TainaN i by contracting with the normal,
and perform spectral integration with the induced area
element to obtain Ė(#,2). That is, we compute

Ė(#,2)
(R) =

Z

S2
R

T (#,2)
ai naN ip�dA . (33)

We also compute the energy flux at order (`/GM)
0,

which for vanishing #(0) consists purely of the background

Okounkova et al. PRD (2017)
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Figure 1. Remnant disk plus dynamic ejecta masses (upper
panel) and BH formation time (lower panel) plotted against the
tidal parameter ⇤̃ (Eq. 1). For models that do not collapse during
our simulation time, we give a lower limit. The horizontal dashed
line shows a conservative lower limit for AT2017gfo, 0.05M�, ob-
tained assuming that the entire disk is unbound. The vertical
dotted line is ⇤̃ = 400.

parameter ⇤̃. Our results indicate that binaries with
⇤̃ . 450 inevitably produce BHs with small . 10�2 M�
accretion disks. These cases are incompatible with the
infrared data for AT2017gfo, even under the assumption
that all of the matter left outside of the event horizon
will be ejected.
The reason for this trend is easily understood from the

lower panel of Fig. 1. The NS dimensionless quadrupo-
lar tidal parameters depend on the negative-fifth power
of the NS compactness (GM/R c2; Eq. 2). Consequently,
small values of ⇤̃ are associated with binary systems hav-
ing compact NSs that result in rapid or prompt BH for-
mation. In these cases, the collapse happens on a shorter
timescale than the hydrodynamic processes responsible
for the formation of the disk. Consequently, only a small
amount of mass is left outside of the event horizon at the
end of the simulations.
Binaries with larger values of ⇤̃ produce more mas-

sive disks, up to ⇠0.2 M�, and longer lived remnants.
In these cases, neutrino driven winds and viscous and
magnetic processes in the disk are expected to unbind
su�cient material to explain the optical and infrared ob-
servations for AT2017gfo (Perego et al. 2014; Wu et al.
2016; Siegel & Metzger 2017).

4. DISCUSSION

On the basis of our simulations we can conservatively
conclude that values of ⇤̃ smaller than 400 are excluded.
Together with the LIGO-Virgo constraints on ⇤̃ (Abbott
et al. 2017b), this result already yields a strong constraint
on the EOS.
To illustrate this, we notice that, since the chirp mass

of the binary progenitor of GW170817 is well measured,
for any given EOS the predicted ⇤̃ reduces to a simple
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Figure 2. Tidal parameter ⇤̃ (Eq. 1) as a function of the mass
ratio q for a fixed chirp mass Mchirp = 1.188 M�. The shaded
region shows the region excluded with 90% confidence level by the
LIGO-Virgo observations (Abbott et al. 2017b), with the addi-
tional constraint of ⇤̃ � 400 derived from the simulations and the
EM observations. EOSs whose curves enter this region are disfa-
vored. EOSs are sorted for decreasing ⇤̃ at q = 1, i.e., H4 is the
sti↵est EOS in our sample, and FPS is the softest.

function of the mass ratio, that is,

⇤̃ = ⇤̃ (q,Mchirp = 1.188M�; EOS) . (3)

We consider a set of 12 EOSs: the four used in the sim-
ulations and other eight from Read et al. (2009). We
compute ⇤̃(q) for each and show the resulting curves in
Fig. 2. There, we also show the upper bound on ⇤̃ from
the GW observations as well as the newly estimated lower
bound from the EM data. On the one hand, sti↵ EOSs,
such as H4 and HB, are already disfavored on the basis
of the GW data alone. On the other hand, EOS as soft
as FPS and APR4 are also tentatively excluded on the
basis of the EM observations6. Soft EOS commonly used
in simulations, such as SFHo and SLy, lay at the lower
boundary of the allowed region, while DD2 and BHB⇤�
are on the upper boundary.
Our results show that NR simulations are key to

exploting the potential of multimessenger observations
While GW data bounds the tidal deformability of NSs
from above, the EM data and our simulations bound it
from below. The result is a competitive constraint al-
ready after the first detection of a merger event. Our
method is general, it can be applied to future obser-
vations and used to inform the priors used in the GW
data analysis. We anticipate that, with more observa-
tions and more precise simulations, the bounds on the
tidal deformability of NSs will be further improved.
The physics setting the lower bound on ⇤̃ is well un-

derstood and under control in our simulations. How-
ever, there might still be systematic errors in our results.
Large components of the NS spins parallel to the or-
bital plane are not expected, but also not constrained

6 Note that FPS is also excluded because it predicts a maximum
NS mass smaller than 2 M�.

Radice, Perego, Zappa, ApJL 852:L29 (2018)
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FIG. 3. Similar to Fig. 1, but with no spin on either BH.

down to a new non-zero value (below the resolution of
this figure) determined by the spin of the final black
hole, again via Eq. (27). In between, there is a burst
of scalar dipole radiation. This is a newly discovered
phenomenon that could not have been computed with
analytic post-Newtonian calculations. Scalar monopole
radiation, meanwhile, is consistent with zero within the
numerical errors of the simulation.

C. Energy fluxes

Having solved for the scalar field #(1), we can evalu-
ate physical quantities such as its stress-energy tensor,
Eq. (11). From T (#)

ab , we can compute the energy flux
through some 2-sphere S2

R at coordinate radius R via

Ė(#)
=

Z

S2
R

T (#)
ab nadSb . (30)

Here na is the timelike unit normal to the spatial slice,
and dSb is the proper area element of S2

R, i.e. dSb
=

N bp�dA, where N b is the spacelike unit normal to S2
R,

� is the determinant of the induced 2-metric, and dA is
the coordinate area element.

FIG. 4. Order (`/GM)0 and (`/GM)4 energy fluxes, as a
function of time, aligned at the peak of  (2,2)

4 . We plot the
order (`/GM)4 numerical scalar energy flux extracted at R =
300 GM [colored solid lines; Eq. (33)] and the corresponding
post-Newtonian approximation [dashed lines, Eqs. (35) and
(36)], for the highest resolution of each simulation. We also
plot the energy flux at order (`/GM)0, which consists solely
of the background gravitational radiation [Eq. (34)], for the
spin 0.3 simulation (dot-dashed black line); the GW flux is
the same order of magnitude for all three spin configurations.
The O(1) ratio between PN and numerics is likely due to the
PN fluxes only including l = 2, whereas numerical quantities
are computed with all modes up to l = 8.

Like the metric and scalar field, we similarly expand
T (#)
ab and Ė(#) in powers of ",

T (#)
ab =

1X

k=0

"kT (#,k)
ab , Ė(#)

=

1X

k=0

"kĖ(#,k) , (31)

where each Ė(#,k) includes the appropriate orders of both
the scalar field and metric. Since #(0)

= 0 and T (#)
ab is

quadratic in #, we have T (#,0)
ab = T (#,1)

ab = 0, and similarly
Ė(#,0)

= Ė(#,1)
= 0. The first non-vanishing order is

T (#,2)
ab , which is given by

T (#,2)
ab = ra#

(1)
rb#

(1)
�

1

2
gabrc#

(1)
r

c#(1) . (32)

Using the results of the simulations, we compute Tabna,
interpolate it onto surfaces of fixed coordinate radius
R, compute TainaN i by contracting with the normal,
and perform spectral integration with the induced area
element to obtain Ė(#,2). That is, we compute

Ė(#,2)
(R) =

Z

S2
R

T (#,2)
ai naN ip�dA . (33)

We also compute the energy flux at order (`/GM)
0,

which for vanishing #(0) consists purely of the background
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FIG. 3. Similar to Fig. 1, but with no spin on either BH.

down to a new non-zero value (below the resolution of
this figure) determined by the spin of the final black
hole, again via Eq. (27). In between, there is a burst
of scalar dipole radiation. This is a newly discovered
phenomenon that could not have been computed with
analytic post-Newtonian calculations. Scalar monopole
radiation, meanwhile, is consistent with zero within the
numerical errors of the simulation.

C. Energy fluxes

Having solved for the scalar field #(1), we can evalu-
ate physical quantities such as its stress-energy tensor,
Eq. (11). From T (#)

ab , we can compute the energy flux
through some 2-sphere S2

R at coordinate radius R via

Ė(#)
=

Z

S2
R

T (#)
ab nadSb . (30)

Here na is the timelike unit normal to the spatial slice,
and dSb is the proper area element of S2

R, i.e. dSb
=

N bp�dA, where N b is the spacelike unit normal to S2
R,

� is the determinant of the induced 2-metric, and dA is
the coordinate area element.

FIG. 4. Order (`/GM)0 and (`/GM)4 energy fluxes, as a
function of time, aligned at the peak of  (2,2)

4 . We plot the
order (`/GM)4 numerical scalar energy flux extracted at R =
300 GM [colored solid lines; Eq. (33)] and the corresponding
post-Newtonian approximation [dashed lines, Eqs. (35) and
(36)], for the highest resolution of each simulation. We also
plot the energy flux at order (`/GM)0, which consists solely
of the background gravitational radiation [Eq. (34)], for the
spin 0.3 simulation (dot-dashed black line); the GW flux is
the same order of magnitude for all three spin configurations.
The O(1) ratio between PN and numerics is likely due to the
PN fluxes only including l = 2, whereas numerical quantities
are computed with all modes up to l = 8.

Like the metric and scalar field, we similarly expand
T (#)
ab and Ė(#) in powers of ",

T (#)
ab =

1X

k=0

"kT (#,k)
ab , Ė(#)

=

1X

k=0

"kĖ(#,k) , (31)

where each Ė(#,k) includes the appropriate orders of both
the scalar field and metric. Since #(0)

= 0 and T (#)
ab is

quadratic in #, we have T (#,0)
ab = T (#,1)

ab = 0, and similarly
Ė(#,0)

= Ė(#,1)
= 0. The first non-vanishing order is

T (#,2)
ab , which is given by

T (#,2)
ab = ra#

(1)
rb#

(1)
�

1

2
gabrc#

(1)
r

c#(1) . (32)

Using the results of the simulations, we compute Tabna,
interpolate it onto surfaces of fixed coordinate radius
R, compute TainaN i by contracting with the normal,
and perform spectral integration with the induced area
element to obtain Ė(#,2). That is, we compute

Ė(#,2)
(R) =

Z

S2
R

T (#,2)
ai naN ip�dA . (33)

We also compute the energy flux at order (`/GM)
0,

which for vanishing #(0) consists purely of the background

Okounkova et al. PRD (2017)
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Figure 9: Ringdown waveform for a BH (dashed black curve) compared to a ClePhO
(solid red curve) with a reflective surface at r0 = 2M(1 + ✏) with ✏ = 10�11. We con-
sidered l = 2 axial gravitational perturbations and a Gaussian wavepacket  (r, 0) = 0,
 ̇(r, 0) = e

�(z�zm)2/�2

(with zm = 9M and � = 6M) as initial condition. Note that
each subsequent echo has a smaller frequency content and that the damping of subsequent
echoes is much larger than the late-time QNM prediction (e�!I t with !IM ⇠ 4 ⇥ 10�10

for these parameters). Data available online [295].

hand,  � satisfies the correct near-horizon boundary condition in the case of a BH. Define
reflection and transmission coe�cients,

RBH =
Bin

Bout
, TBH =

1

Bout
. (41)

Given the form of the ODE, the Wronskian W ⌘  � 
0
+ �  

0
� + is a constant (here

0
⌘ d/dz), which can be evaluated at infinity to yield W = 2i!Ain. The general solution

to our problem can be written as [313]

 =  +

Z
z
S �
W

dz +  �

Z
z
S +

W
dz +A1 � +A2 + , (42)

where A1, A2 constants. If we impose the boundary conditions appropriate for BHs, we
find

 BH =  +

Z
z

�1

S �
W

dz +  �

Z 1

z

S +

W
dz . (43)

This is thus the response of a BH spacetime to some source. Notice that close to the
horizon the first term drops and  BH(r ⇠ r+) ⇠ e

�i!z
R1
z

S +

W
dz. For detectors located

37
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Figure 1. Remnant disk plus dynamic ejecta masses (upper
panel) and BH formation time (lower panel) plotted against the
tidal parameter ⇤̃ (Eq. 1). For models that do not collapse during
our simulation time, we give a lower limit. The horizontal dashed
line shows a conservative lower limit for AT2017gfo, 0.05M�, ob-
tained assuming that the entire disk is unbound. The vertical
dotted line is ⇤̃ = 400.

parameter ⇤̃. Our results indicate that binaries with
⇤̃ . 450 inevitably produce BHs with small . 10�2 M�
accretion disks. These cases are incompatible with the
infrared data for AT2017gfo, even under the assumption
that all of the matter left outside of the event horizon
will be ejected.
The reason for this trend is easily understood from the

lower panel of Fig. 1. The NS dimensionless quadrupo-
lar tidal parameters depend on the negative-fifth power
of the NS compactness (GM/R c2; Eq. 2). Consequently,
small values of ⇤̃ are associated with binary systems hav-
ing compact NSs that result in rapid or prompt BH for-
mation. In these cases, the collapse happens on a shorter
timescale than the hydrodynamic processes responsible
for the formation of the disk. Consequently, only a small
amount of mass is left outside of the event horizon at the
end of the simulations.
Binaries with larger values of ⇤̃ produce more mas-

sive disks, up to ⇠0.2 M�, and longer lived remnants.
In these cases, neutrino driven winds and viscous and
magnetic processes in the disk are expected to unbind
su�cient material to explain the optical and infrared ob-
servations for AT2017gfo (Perego et al. 2014; Wu et al.
2016; Siegel & Metzger 2017).

4. DISCUSSION

On the basis of our simulations we can conservatively
conclude that values of ⇤̃ smaller than 400 are excluded.
Together with the LIGO-Virgo constraints on ⇤̃ (Abbott
et al. 2017b), this result already yields a strong constraint
on the EOS.
To illustrate this, we notice that, since the chirp mass

of the binary progenitor of GW170817 is well measured,
for any given EOS the predicted ⇤̃ reduces to a simple
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Figure 2. Tidal parameter ⇤̃ (Eq. 1) as a function of the mass
ratio q for a fixed chirp mass Mchirp = 1.188 M�. The shaded
region shows the region excluded with 90% confidence level by the
LIGO-Virgo observations (Abbott et al. 2017b), with the addi-
tional constraint of ⇤̃ � 400 derived from the simulations and the
EM observations. EOSs whose curves enter this region are disfa-
vored. EOSs are sorted for decreasing ⇤̃ at q = 1, i.e., H4 is the
sti↵est EOS in our sample, and FPS is the softest.

function of the mass ratio, that is,

⇤̃ = ⇤̃ (q,Mchirp = 1.188M�; EOS) . (3)

We consider a set of 12 EOSs: the four used in the sim-
ulations and other eight from Read et al. (2009). We
compute ⇤̃(q) for each and show the resulting curves in
Fig. 2. There, we also show the upper bound on ⇤̃ from
the GW observations as well as the newly estimated lower
bound from the EM data. On the one hand, sti↵ EOSs,
such as H4 and HB, are already disfavored on the basis
of the GW data alone. On the other hand, EOS as soft
as FPS and APR4 are also tentatively excluded on the
basis of the EM observations6. Soft EOS commonly used
in simulations, such as SFHo and SLy, lay at the lower
boundary of the allowed region, while DD2 and BHB⇤�
are on the upper boundary.
Our results show that NR simulations are key to

exploting the potential of multimessenger observations
While GW data bounds the tidal deformability of NSs
from above, the EM data and our simulations bound it
from below. The result is a competitive constraint al-
ready after the first detection of a merger event. Our
method is general, it can be applied to future obser-
vations and used to inform the priors used in the GW
data analysis. We anticipate that, with more observa-
tions and more precise simulations, the bounds on the
tidal deformability of NSs will be further improved.
The physics setting the lower bound on ⇤̃ is well un-

derstood and under control in our simulations. How-
ever, there might still be systematic errors in our results.
Large components of the NS spins parallel to the or-
bital plane are not expected, but also not constrained

6 Note that FPS is also excluded because it predicts a maximum
NS mass smaller than 2 M�.

Radice, Perego, Zappa, ApJL 852:L29 (2018)
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FIG. 3. Similar to Fig. 1, but with no spin on either BH.

down to a new non-zero value (below the resolution of
this figure) determined by the spin of the final black
hole, again via Eq. (27). In between, there is a burst
of scalar dipole radiation. This is a newly discovered
phenomenon that could not have been computed with
analytic post-Newtonian calculations. Scalar monopole
radiation, meanwhile, is consistent with zero within the
numerical errors of the simulation.

C. Energy fluxes

Having solved for the scalar field #(1), we can evalu-
ate physical quantities such as its stress-energy tensor,
Eq. (11). From T (#)

ab , we can compute the energy flux
through some 2-sphere S2

R at coordinate radius R via

Ė(#)
=

Z

S2
R

T (#)
ab nadSb . (30)

Here na is the timelike unit normal to the spatial slice,
and dSb is the proper area element of S2

R, i.e. dSb
=

N bp�dA, where N b is the spacelike unit normal to S2
R,

� is the determinant of the induced 2-metric, and dA is
the coordinate area element.

FIG. 4. Order (`/GM)0 and (`/GM)4 energy fluxes, as a
function of time, aligned at the peak of  (2,2)

4 . We plot the
order (`/GM)4 numerical scalar energy flux extracted at R =
300 GM [colored solid lines; Eq. (33)] and the corresponding
post-Newtonian approximation [dashed lines, Eqs. (35) and
(36)], for the highest resolution of each simulation. We also
plot the energy flux at order (`/GM)0, which consists solely
of the background gravitational radiation [Eq. (34)], for the
spin 0.3 simulation (dot-dashed black line); the GW flux is
the same order of magnitude for all three spin configurations.
The O(1) ratio between PN and numerics is likely due to the
PN fluxes only including l = 2, whereas numerical quantities
are computed with all modes up to l = 8.

Like the metric and scalar field, we similarly expand
T (#)
ab and Ė(#) in powers of ",

T (#)
ab =

1X

k=0

"kT (#,k)
ab , Ė(#)

=

1X

k=0

"kĖ(#,k) , (31)

where each Ė(#,k) includes the appropriate orders of both
the scalar field and metric. Since #(0)

= 0 and T (#)
ab is

quadratic in #, we have T (#,0)
ab = T (#,1)

ab = 0, and similarly
Ė(#,0)

= Ė(#,1)
= 0. The first non-vanishing order is

T (#,2)
ab , which is given by

T (#,2)
ab = ra#

(1)
rb#

(1)
�

1

2
gabrc#

(1)
r

c#(1) . (32)

Using the results of the simulations, we compute Tabna,
interpolate it onto surfaces of fixed coordinate radius
R, compute TainaN i by contracting with the normal,
and perform spectral integration with the induced area
element to obtain Ė(#,2). That is, we compute

Ė(#,2)
(R) =

Z

S2
R

T (#,2)
ai naN ip�dA . (33)

We also compute the energy flux at order (`/GM)
0,

which for vanishing #(0) consists purely of the background
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FIG. 3. Similar to Fig. 1, but with no spin on either BH.

down to a new non-zero value (below the resolution of
this figure) determined by the spin of the final black
hole, again via Eq. (27). In between, there is a burst
of scalar dipole radiation. This is a newly discovered
phenomenon that could not have been computed with
analytic post-Newtonian calculations. Scalar monopole
radiation, meanwhile, is consistent with zero within the
numerical errors of the simulation.

C. Energy fluxes

Having solved for the scalar field #(1), we can evalu-
ate physical quantities such as its stress-energy tensor,
Eq. (11). From T (#)

ab , we can compute the energy flux
through some 2-sphere S2

R at coordinate radius R via

Ė(#)
=

Z

S2
R

T (#)
ab nadSb . (30)

Here na is the timelike unit normal to the spatial slice,
and dSb is the proper area element of S2

R, i.e. dSb
=

N bp�dA, where N b is the spacelike unit normal to S2
R,

� is the determinant of the induced 2-metric, and dA is
the coordinate area element.

FIG. 4. Order (`/GM)0 and (`/GM)4 energy fluxes, as a
function of time, aligned at the peak of  (2,2)

4 . We plot the
order (`/GM)4 numerical scalar energy flux extracted at R =
300 GM [colored solid lines; Eq. (33)] and the corresponding
post-Newtonian approximation [dashed lines, Eqs. (35) and
(36)], for the highest resolution of each simulation. We also
plot the energy flux at order (`/GM)0, which consists solely
of the background gravitational radiation [Eq. (34)], for the
spin 0.3 simulation (dot-dashed black line); the GW flux is
the same order of magnitude for all three spin configurations.
The O(1) ratio between PN and numerics is likely due to the
PN fluxes only including l = 2, whereas numerical quantities
are computed with all modes up to l = 8.

Like the metric and scalar field, we similarly expand
T (#)
ab and Ė(#) in powers of ",

T (#)
ab =

1X

k=0

"kT (#,k)
ab , Ė(#)

=

1X

k=0

"kĖ(#,k) , (31)

where each Ė(#,k) includes the appropriate orders of both
the scalar field and metric. Since #(0)

= 0 and T (#)
ab is

quadratic in #, we have T (#,0)
ab = T (#,1)

ab = 0, and similarly
Ė(#,0)

= Ė(#,1)
= 0. The first non-vanishing order is

T (#,2)
ab , which is given by

T (#,2)
ab = ra#

(1)
rb#

(1)
�

1

2
gabrc#

(1)
r

c#(1) . (32)

Using the results of the simulations, we compute Tabna,
interpolate it onto surfaces of fixed coordinate radius
R, compute TainaN i by contracting with the normal,
and perform spectral integration with the induced area
element to obtain Ė(#,2). That is, we compute

Ė(#,2)
(R) =

Z

S2
R

T (#,2)
ai naN ip�dA . (33)

We also compute the energy flux at order (`/GM)
0,

which for vanishing #(0) consists purely of the background

Okounkova et al. PRD (2017)
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FIG. 2. Expected distribution of intrinsic (top) and measured (bottom) spins and masses of merging BHs in the absence
(left) and the presence (right) of an axion of mass 6 ⇥ 10�13 eV, normalized to 1000 events detected at aLIGO. We assume
�M/M ⇠ 10% measurement error in the mass and �a⇤ ⇠ 0.25 error in the spin [30, 31]. We have assumed that all BBHs formed
at a distance such that they take 1010 years to merge. The theoretical curves shown are boundaries of the regions where SR
had at most 1010 years to spin down the BHs, and the e↵ect of the companion BH does not significantly a↵ect the SR rate.

annihilations at distance d is [11]

hann =

s
4GN�annN2

max

2!ad2

⇡ 6⇥ 10�23
⇣ ↵

0.3

⌘7 ⇣ a⇤
0.9

⌘✓ MBH

60M�

◆✓
1Mpc

d

◆
, (4)

and lasts for

⌧ann ⇠ (�annNmax)
�1

⇡ 0.1 yr

✓
0.3

↵

◆15 ✓0.9

a⇤

◆✓
MBH

60M�

◆
.

(5)
Correlating these continuous wave emission properties

with the spin and mass of the new BH will be a cross-
check on SR predictions.

The reach of aLIGO to an optimal annihilation sig-
nal can be as large as 500Mpc for an axion of mass
10�13 eV. The reach of aLIGO at design sensitivity for
a typical event is close to 30Mpc. In particular, the final
BH of GW150914 with spin of ⇠ 0.7 would have had to
be within 10 Mpc in order for axion annihilations to be
observable.

In Fig. 4, we estimate the number of BBH merger prod-
ucts emitting observable monochromatic GWs per year,
as a function of the axion mass. The expected number
of events is very sensitive to the spin and mass of the
final BH; a linearly-increasing BH spin distribution in-
creases the expected event rates by a factor of ⇠ 2 over
a flat spin distribution. We estimate the spin of the final
BH with [36], assuming equal, aligned initial spins and
equal masses. If SR spun down the initial BHs before
the merger, the final BH will generally not spin quickly
enough for SR to produce an observable signal; for exam-
ple, we estimate 10�3events/yr. at µa = 2 ⇥ 10�13 eV.
Only merging BHs for which SR was inhibited can give
rise to a signal observable at aLIGO with an apprecia-
ble rate, and Fig. 4 assumes this is the case for an O(1)
fraction of events. There is therefore complementarity
between the statistical and direct searches — either SR
spins down enough of these to give a statistical signal, or
an appreciable fraction of post-merger BHs are spinning
fast enough to give direct signals (assuming enough BHs
are born with high spin).

Fig. 4 also shows our expectations for BH-neutron star

Arvanitaki et al. PRD (2017)
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Figure 9: Ringdown waveform for a BH (dashed black curve) compared to a ClePhO
(solid red curve) with a reflective surface at r0 = 2M(1 + ✏) with ✏ = 10�11. We con-
sidered l = 2 axial gravitational perturbations and a Gaussian wavepacket  (r, 0) = 0,
 ̇(r, 0) = e

�(z�zm)2/�2

(with zm = 9M and � = 6M) as initial condition. Note that
each subsequent echo has a smaller frequency content and that the damping of subsequent
echoes is much larger than the late-time QNM prediction (e�!I t with !IM ⇠ 4 ⇥ 10�10

for these parameters). Data available online [295].

hand,  � satisfies the correct near-horizon boundary condition in the case of a BH. Define
reflection and transmission coe�cients,

RBH =
Bin

Bout
, TBH =

1

Bout
. (41)

Given the form of the ODE, the Wronskian W ⌘  � 
0
+ �  

0
� + is a constant (here

0
⌘ d/dz), which can be evaluated at infinity to yield W = 2i!Ain. The general solution

to our problem can be written as [313]

 =  +

Z
z
S �
W

dz +  �

Z
z
S +

W
dz +A1 � +A2 + , (42)

where A1, A2 constants. If we impose the boundary conditions appropriate for BHs, we
find

 BH =  +

Z
z

�1

S �
W

dz +  �

Z 1

z

S +

W
dz . (43)

This is thus the response of a BH spacetime to some source. Notice that close to the
horizon the first term drops and  BH(r ⇠ r+) ⇠ e

�i!z
R1
z

S +

W
dz. For detectors located

37
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must have low natal spin in order to obtain a distribu-
tion of �e↵ that satisfies gravitational-wave observations
(Belczynski et al. 2017; Wysocki et al. 2018).

To estimate the rate and distribution of false alarms
that arise only from the region consistent with this se-
lected population of binary black hole mergers, we must
determine which templates are sensitive to these sources.
It is necessary to analyze a simulated set of signals since
the template associated with a particular event is not
guaranteed to share the true source parameters. We
find that the region of the template bank defined by
M > 8.5 M�, m1,2 > 2.7 M�, and �e↵ < 0.9 is e↵ective
at recovering this population of sources. This region is
shown in Fig. 1 in red.

To estimate the true rate T , we use the two significant
events observed during O1, GW150914 and GW151226.
We do not use any of the O2 events because the full
data is not yet available for analysis, making it di�cult
to obtain a consistent rate estimate. The total analysis
time in O1 was ⇠ 48 days, giving T ⇡ 15yr�1. Given the
uncertainty in this estimate based on only two events,
we take the rate of observations as a Poisson process,
and choose the lower 95% bound on T . This yields a
T ⇡ 2.7yr�1. For the calculation of the TDR we use
this value for all events, independent of their ranking
statistic. This means we likely underestimate the TDR
for events quieter than GW151226 and GW150914, but
this is a conservative bias.

To estimate the probability that a given event is as-
trophysical in origin Pastro, we model the distribution of
signals and noise as a function of ⇢̃c. It is reasonable to
approximate the signal probability distribution PS(⇢̃c)
as / ⇢̃�4

c
(Schutz 2011; Chen & Holz 2014). We nor-

malize the signal number density ⇤SPS(⇢̃c) so that the
number of signals with ⇢̃c greater than or equal to some
threshold ⇢̃†

c
is ⇡ 2.7yr�1. We make the conservative

choice to place ⇢̃†
c

at the value of the next largest ⇢̃c
value after GW150914 and GW151226.

To approximate the noise number density ⇤NPN (⇢̃c),
we make a histogram of the ⇢̃c values of false alarms
arising from our selected BBH region. We use only the
false alarms which are uncorrelated with possible candi-
date events to ensure an unbiased estimate of the mean
false alarm rate (Capano et al. 2017). We fit an expo-
nential decay to this histogram from 8 < ⇢̃c < 9.2. For
⇢̃c much less than 8, ⇤NPN is not well modeled by an
exponential due to the e↵ects of applying a threshold
to single-detector triggers. We note, however, there is
only a 50% chance that an event is astrophysical at ⇢̃c
⇠ 8.6, and this chance quickly becomes negligible with
decreasing ⇢̃c. The result of this procedure is shown in
Fig. 2. We caution that Pastro for candidates with ⇢̃c

> 9.2 will be sensitive to the form of the model chosen
since it is not constrained by empirically measured false
alarms.

Figure 2. The distribution of assumed signals and noise as a
function of the ranking statistic ⇢̃c for the analysis containing
LVT151012. Blue shows the normalized histogram of empiri-
cally measured false alarms that are within our selected BBH
region of the template bank. Red is the exponential decay
model that has been fitted to this set of false alarms. Or-
ange shows the signal model based on our conservative rate
of detections. The value of ⇢̃c for LVT151012 is shown as a
dotted green vertical line. The ratio of signal to noise at this
value strongly favors the signal model.

4. RESULTS

The results presented here are generated using the
data from the first observing run of Advanced LIGO
which ran from September 12, 2015 to January 19, 2016.
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Figure 3. Candidate events with a ranking statistic ⇢̃c > 7.5
from the full search for compact binary mergers in O1 data.
The colorbar is capped at 9. The three BBH mergers are
clearly visible in the plots, while the remaining events are
largely distributed according to the density of the template
bank.
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FIG. 2. Posterior probability densities for ⇤1,2 with the common EOS constraint using Uniform (left), Double Neutron Stars (middle),
and Galactic Neutron Stars (right) component mass priors. The 50% and 90% credible region contours are shown as solid curves.
Overlaid are contours of ⇤̃ (in magenta) and q (in gray).

assume a uniform prior on each star’s mass, with m1,2 ⇠
U [1, 2]M�. We then assume a Gaussian prior on the com-
ponent masses m1,2 ⇠ N(µ = 1.33,� = 0.09)M�,
which is a fit to masses of neutron stars observed in dou-
ble neutron star systems [11]. The third prior assumes
that the component masses are drawn from a fit to the ob-
served mass distributions of recycled and slow pulsars in
the Galaxy with m1 ⇠ N(µ = 1.54,� = 0.23)M�
and m2 ⇠ N(µ = 1.49,� = 0.19)M� [11]. We im-
pose the constraint m1 � m2 which leads to ⇤2 � ⇤1.
For all our analyses, the prior on the component spins is
�1,2 ⇠ U [�0.05, 0.05], consistent with the expected spins
of field binaries when they enter the LIGO-Virgo sensitive
band [22].

Results—The full posterior probability densities for the
parameters p(~✓|~d(t), H) for each of our MCMC runs are
shown in the supplemental materials and are available for
download at Ref. [23]. Fig. 2 shows the posterior proba-
bility densities for ⇤1 and ⇤2 with 90% and 50% credible
region contours. Overlaid are q contours and ⇤̃ contours
obtained from Eq. (1), ⇤ = a�

�6, and R1 ' R2 ' R̂ as

⇤1(⇤̃, q) =
13

16
⇤̃

q
2(1 + q)4

12q2 � 11q + 12
, ⇤2(⇤̃, q) = q

�6⇤1

(9)
Due to our constraint ⇤2 � ⇤1, our credible contours are
confined to the region where q  1. One can easily demon-
strate that ⇤2 � ⇤1 is valid unless (c2/G)dR/dm > 1,
which is impossible for realistic equations of state. For
the entire set of piecewise polytropes satisfying mmax >

2M� we considered, (c2/G)dR/dm never exceeded 0.26.
Even if a first order phase transition appeared in stars with
masses between m2 and m1, it would be necessarily true
that dR/dm < 0 across the transition. Due to the q de-
pendence of ⇤1, ⇤2, the credible region enclosed by the
contours broadens from the double neutron star (most re-
stricted), to the pulsar, to the uniform mass (least restricted)

priors. However, the upper bound of the credible region is
robust.

Using Eq. 6, we map our M and ⇤̃ posteriors to R̂ '
R1.4 posteriors, allowing us to estimate the common radius
of the neutron stars for GW170817 for each mass prior.
Fig. 3 shows the posterior probability distribution for the
binary tidal deformation ⇤̃ and the common radius R̂ of the
neutron stars in the binary. We find ⇤̃ = 310+679

�234 for the
uniform component mass prior, ⇤̃ = 354+691

�245 for the prior
informed by double neutron star binaries in the Galaxy, and
⇤̃ = 334+669

�241 for the prior informed by all Galactic neu-
tron star masses (errors represent 90% credible intervals).
Our measurement of ⇤̃ appears to be robust to the choice
of component mass prior, within the (relatively large) sta-
tistical errors on its measurement. Our results suggest a
radius R̂ = 11.3+2.4

�2.4 ± 0.2 km (90% credible interval, sta-
tistical and systematic errors) for the uniform mass prior,
R̂ = 11.6+2.3

�2.1±0.2 km for double neutron star mass prior,
and R̂ = 11.5+2.3

�2.2 ± 0.2 km for the prior based on all
neutron star masses.

We repeat our analysis for each mass prior without the
common EOS constraint and calculate the Bayes factor—
the ratio of the evidences p(~d(t)|H)—between the com-
mon EOS constrained and unconstrained analyses. We find
Bayes factors B of 525, 230, and 285 for the three mass
priors, respectively, indicating that the data strongly favors
the common EOS constraint in all cases. The Bayes factors
comparing the evidence from the three mass priors are of
order unity, so we cannot claim any preference between
the mass priors. For the uniform mass prior, we com-
puted the Bayes factor that compares a model with a prior
⇤s ⇠ U [0, 5000] to a model with a prior ⇤s ⇠ U [0, 100].
We find logB ⇠ 1, suggesting that the data favors a model
that includes measurement of tidal deformability ⇤̃ & 100.
However, the evidences were calculated using thermody-
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FIG. 4: Source-frame total mass and e↵ective spin for the BBH events found in Hanford–Livingston coincidence, over O1 and
O2. We recovered all the previously reported events with high confidence, pastro ⇡ 1, except for GW170608 and GW170818,
see §III. We found seven additional events ranging from marginal triggers to confident detections: one in O1 [17] and six in
O2 (this work). The dots and error bars show median and 90% confidence intervals, respectively. The spin �e↵ and the mass
can be correlated (not shown). The full posteriors can be found in Appendix A. The prior used was uniform in m1, m2, �e↵ ,
and luminosity volume.

TABLE III: Sub-threshold candidates with astrophysical probability above 10% in all of the BBH banks. The rate
distributions used to compute pastro are shown in Fig. 3, the maximum-likelihood rates in banks BBH 3 and BBH 4 are
Rmax = 8/O2 and 5/O2, respectively.

Bank GPS timea ⇢2H ⇢2L FAR�1(O2)b W (event)

R(event|N )
(O2) pastro

BBH (4,1) 1172487817.477 48.6 19.1 0.82 0.147 0.45
BBH (3,0) 1170914187.455 20.4 41.4 0.43 0.044 0.28
BBH (3,1) 1172449151.468 29.5 32.4 0.31 0.025 0.18
BBH (4,0) 1174138338.385 37.1 28.4 0.62 0.034 0.17
BBH (3,0) 1171863216.108 46.5 21.6 0.27 0.016 0.125
BBH (3,1) 1187176593.222 20.3 42.0 0.2 0.014 0.12
BBH (3,0) 1182674889.044 34.1 28.7 0.23 0.016 0.12
BBH (3,1) 1171410777.200 40.8 21.0 0.18 0.014 0.11

a The times given are the ‘linear-free’ times of the best fit templates in our bank; with this time as the origin, the phase of the template
is orthogonal to shifts in time, given the fiducial PSD.

b The FARs given are computed within each bank; our BBH analysis has 5 chirp-mass banks. The inverse FAR is given in terms of “O2”
to reflect the volumetric weighting of events. Under the approximation of constant sensitivity of the detectors during the observing
run, the unit “O2” corresponds to ⇡ 118 days.

triggers, and the di↵ering detector sensitivities; secondly,
we estimate the FAR and the pastro for a particular event
using the background in its chirp-mass bank, and sub-
bank, respectively. We include this figure only to easily
visualize the sensitive volume. The solid and dashed lines
show the approximate detection thresholds for di↵erent
analyses (with the above caveat on the validity of inco-
herent thresholds). The detection thresholds shown for
the LVC catalog are approximate and conservative, they

err on the side of reporting a better sensitivity for the
standard pipeline. At the single-detector level, we set the
threshold by the non-detection of GW170121 (the PyCBC
pipeline has an explicit cut on single-detector SNR = 5.5
[11]). We set the minimum network SNR2 = ⇢2

H
+⇢2

L
> 90

by scaling the reported FAR of GW170729 to 1/O2, and
rounding down.

It is clear from Fig. 5 that our pipeline has substan-
tially lower background in the relevant region: for exam-

Venumadhav et al. arXiv: 1904.07214
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O3: Era of open alerts

• O3 started April 1st 2019 
• 13 alerts (+2 retracted) 
• 9 likely BBH 
• 1 likely BNS 
• 1 maybe NSBH 
• 2 likely terrestrial 

(noise)

 26gracedb.ligo.org
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Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 5
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Fig. 1 Regions of aLIGO (top left), AdV (top right) and KAGRA (bottom) target strain sensitivities as a
function of frequency. The binary neutron star (BNS) range, the average distance to which these signals
could be detected, is given in megaparsec. Current notions of the progression of sensitivity are given for
early, mid and late commissioning phases, as well as the design sensitivity target and the BNS-optimized
sensitivity. While both dates and sensitivity curves are subject to change, the overall progression represents
our best current estimates.

There are currently two operational aLIGO detectors (Aasi et al 2015a). The
original plan called for three identical 4-km interferometers, two at Hanford (H1 and
H2) and one at Livingston (L1). In 2011, the LIGO Lab and IndIGO consortium
in India proposed installing one of the aLIGO Hanford detectors (H2) at a new
observatory in India (LIGO-India; Iyer et al 2011). In early 2015, LIGO Laboratory
placed the H2 interferometer in long-term storage for use in India. The Government
of India granted in-principle approval to LIGO-India in February 2016.

The first observations with aLIGO have been made. O1 formally began 18 Septem-
ber 2015 and ended 12 January 2016; however, data from the surrounding engineering
periods were of sufficient quality to be included in the analysis, and hence the first
observations span 12 September 2015 to 19 January 2016. The run involved the H1 and
L1 detectors; the detectors were not at full design sensitivity (Abbott et al 2016g). We
aimed for a BNS range of 40 – 80 Mpc for both instruments (see Fig. 1), and achieved
a 60 – 80 Mpc range. Subsequent observing runs have increasing duration and sen-
sitivity. O2 began 30 November 2016, transitioning from the preceding engineering

LVKC Living Rev Relativity 21:3 (2018)

Introduction
The past three years have witnessed the birth of observational gravitational-wave astronomy,

starting with the first detection of a binary black hole merger on September 14 2015 [1], followed
by discoveries of nine more in the first and second LIGO/Virgo Observing runs [2], and the spec-
tacular multi-messenger observation of a merger of neutron stars on August 17, 2017 [3, 4].

These detections were enabled by a nearly three decade long effort to build Advanced LIGO
[5] comprising two laser interferometric gravitational-wave detectors with suspended mirrors, laser
beams traveling in vacuum through 4 km perpendicular arms in each detector, to detect sub-nuclear
distance scale changes in distance. The LIGO Scientific Collaboration (LSC) works closely with
the Virgo and KAGRA collaborations operating gravitational-wave detectors in Europe and Japan
to ensure coordinated observations by the global network. In this white paper, we describe plans
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Figure 1: Planned sensitivity evolution and observing runs
of ground-based detectors. Numbers in Mpc indicate aver-
age reach to binary neutron star mergers.

Figure 2: A map of the global ground-based gravitational-
wave detector network.

for gravitational-wave observing campaigns and expected science goals in the coming decade. As
shown in Fig. 1, the Advanced LIGO detectors took data between September 2015 and January
2016 in their first Observing run (O1), and then again with improved sensitivity in O2, between
November 2016 and August 2017. The Virgo detector [6] joined O2 on August 1st 2017, providing
greatly improved sky localization of the detected events. The improved localization and rapid alerts
led to the detection of an electromagnetic counterpart to the binary neutron star merger [3, 4]. This
counterpart, spanning all bands of the electromagnetic spectrum, allowed the first direct association
between a binary neutron star merger and a short gamma-ray burst, and the first unambiguous
identification of a kilonova.

In the next few years, the Advanced LIGO and Virgo detectors will continue to observe and
analyze data together, and are expected to reach the sensitivity to which they were designed [7].
KAGRA [8] is expected to join in the gravitational wave network in 2019. The GEO600 [9]
detector will provide coverage for exceptional events during times when no other detectors will
be operating, and will otherwise concentrate on testing technologies for future detectors [10]. The
greatest scientific return is possible when all operating GW detectors combine their data.

Funding from the US, UK and Australia has been secured for the “A+” detector upgrade [11],
implementing further sensitivity improvements beyond the current Advanced LIGO design. To-
ward the middle of the next decade, a new observatory in India [12] will host an Advanced LIGO
detector to further enhance the network sensitivity. This decade will see an improvement of a fac-
tor of several in astrophysical distance reach, as well as a significant increase in observing time,

1
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Introduction
The past three years have witnessed the birth of observational gravitational-wave astronomy,

starting with the first detection of a binary black hole merger on September 14 2015 [1], followed
by discoveries of nine more in the first and second LIGO/Virgo Observing runs [2], and the spec-
tacular multi-messenger observation of a merger of neutron stars on August 17, 2017 [3, 4].

These detections were enabled by a nearly three decade long effort to build Advanced LIGO
[5] comprising two laser interferometric gravitational-wave detectors with suspended mirrors, laser
beams traveling in vacuum through 4 km perpendicular arms in each detector, to detect sub-nuclear
distance scale changes in distance. The LIGO Scientific Collaboration (LSC) works closely with
the Virgo and KAGRA collaborations operating gravitational-wave detectors in Europe and Japan
to ensure coordinated observations by the global network. In this white paper, we describe plans
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Figure 1: Planned sensitivity evolution and observing runs
of ground-based detectors. Numbers in Mpc indicate aver-
age reach to binary neutron star mergers.

Figure 2: A map of the global ground-based gravitational-
wave detector network.

for gravitational-wave observing campaigns and expected science goals in the coming decade. As
shown in Fig. 1, the Advanced LIGO detectors took data between September 2015 and January
2016 in their first Observing run (O1), and then again with improved sensitivity in O2, between
November 2016 and August 2017. The Virgo detector [6] joined O2 on August 1st 2017, providing
greatly improved sky localization of the detected events. The improved localization and rapid alerts
led to the detection of an electromagnetic counterpart to the binary neutron star merger [3, 4]. This
counterpart, spanning all bands of the electromagnetic spectrum, allowed the first direct association
between a binary neutron star merger and a short gamma-ray burst, and the first unambiguous
identification of a kilonova.

In the next few years, the Advanced LIGO and Virgo detectors will continue to observe and
analyze data together, and are expected to reach the sensitivity to which they were designed [7].
KAGRA [8] is expected to join in the gravitational wave network in 2019. The GEO600 [9]
detector will provide coverage for exceptional events during times when no other detectors will
be operating, and will otherwise concentrate on testing technologies for future detectors [10]. The
greatest scientific return is possible when all operating GW detectors combine their data.

Funding from the US, UK and Australia has been secured for the “A+” detector upgrade [11],
implementing further sensitivity improvements beyond the current Advanced LIGO design. To-
ward the middle of the next decade, a new observatory in India [12] will host an Advanced LIGO
detector to further enhance the network sensitivity. This decade will see an improvement of a fac-
tor of several in astrophysical distance reach, as well as a significant increase in observing time,
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FIG. 3. Sensitivity curves for O1, combined O1+O2, and de-
sign sensitivity. A power law stochastic background which
lies tangent to one of these curves is detectable with 2� sig-
nificance. We have used the Advanced LIGO design sensitiv-
ity given in [94], which incorporates improved measurements
of coating thermal noise. Design sensitivity assumes that
the LIGO noise curve is determined by fundamental noise
sources only. The purple line is the median total stochas-
tic background, combining BBH and BNS, using the model
described in [58] with updated mass distributions and rates
from [54, 89], and the gray box is the Poisson error region.
The dotted gray line is the sum of the upper limit for the
BBH+BNS backgrounds with the upper limit on the NSBH
background.

Virgo at design sensitivity for 2 years, with 50% network
duty cycle. By design sensitivity, we refer to a noise
curve which is determined by fundamental noise sources.
We use the Advanced LIGO design sensitivity projection
given in [94], which incorporates improved measurements
of coating thermal noise relative to the one assumed in
[57]. This updated curve introduces additional broad-
band noise at low frequencies relative to previous esti-
mates. As a result, the updated design-sensitivity PI
curve is less sensitive than the one shown in [57].

Implications for cosmic string models — Cosmic
strings [95, 96] are linear topological defects which are
expected to be generically produced within the context
of Grand Unified Theories [97]. The dynamics of a cos-
mic string network is driven by the formation of loops
and the emission of gravitational waves [98, 99]. One
may therefore use the stochastic background in order to
constrain the parameters of a cosmic string network.

We will focus on Nambu-Goto strings [100, 101], for
which the string thickness is zero and the intercommu-
tation probability equals unity. Gravitational waves will
allow us to constrain the string tension Gµ/c

2, where
µ denotes the mass per unit length. This dimension-
less parameter is the single quantity that characterizes a
Nambu-Goto string network.

We will consider two analytic models of cosmic string
loop distributions [102, 103]. The former [102] gives the

distribution of string loops of given size at fixed time,
under the assumption that the momentum dependence
of the loop production function is weak. The latter [103]
is based on a di↵erent numerical simulation [104], and
gives the distribution of non-self intersecting loops at a
given time [105].

The corresponding limits found by combining O1 and
O2 data are Gµ/c

2  1.1 ⇥ 10�6 for the model of [102]
and Gµ/c

2  2.1 ⇥ 10�14 for the model of [103]. The
Advanced LIGO constraints are stronger for the model
of [103] because the predicted spectrum is larger at 100
Hz for that model. This can be compared with the pulsar
timing limits, Gµ/c

2  1.6 ⇥ 10�11 and Gµ/c
2  6.2 ⇥

10�12, respectively [106].
Test of General Relativity— Alternative theories of

gravity generically predict the presence of vector or scalar
gravitational-wave polarizations in addition to the stan-
dard tensor polarizations allowed in general relativity.
Detection of the stochastic background would allow for
direct measurement of its polarization content, enabling
new tests of general relativity [60, 61].

When allowing for the presence of alternative
gravitational-wave polarizations, the expectation value
of the cross-correlation statistic becomes

hĈ(f)i =
X

A

�A(f)⌦A
GW(f) =

X

A

�A(f)⌦A
ref

✓
f

fref

◆↵A

,

(9)
where �A = �A(f)/�T (f), and A labels the polarization,
A = {T, V, S}. The functions �T (f), �V (f), and �S(f)
are the overlap reduction functions for tensor, vector, and
scalar polarizations [60]. Because these overlap reduction
functions are distinct, the spectral shape of Ĉ(f) enables
us to infer the polarization content of the stochastic back-
ground. While we use the notation ⌦A

GW(f) in analogy
with the GR case, in a general modification of gravity,
the quantities ⌦T

GW(f), ⌦V
GW(f), and ⌦S

GW(f) are best
understood as a measurement of the two-point correla-
tion statistics of di↵erent components of the stochastic
background rather than energy densities [107].

Following Refs. [60, 61], we compute two Bayesian
odds: odds Os

n for the presence of a stochastic signal
of any polarization(s) versus Gaussian noise, and odds
Ongr

gr between a hypothesis allowing for vector and scalar
modes and a hypothesis restricting to standard tensor
polarizations. Using the combined O1 and O2 measure-
ments, we find log Os

n = �0.64 and log Ongr
gr = �0.45,

consistent with Gaussian noise. Given the non-detection
of any generic stochastic background, we use Eq. (9) to
place improved upper limits on the tensor, vector, and
scalar background amplitudes, after marginalizing over
all three spectral indices, using the priors described in
the Technical Supplement. These limits are shown in
Table III, again for both choices of amplitude prior.
Estimate of correlated magnetic noise— Coherent

noise between gravitational-wave interferometers may be

LVC arXiv:1903.02886
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FIG. 5. FrequencyHough peakmaps, without Doppler correction, around the outlier at ⇠440.4 Hz, for Hanford (left) and
Livingston (right) data. The presence of a transient line is clearly visible in Hanford. The x-axis indicates time in Modified
Julian Date (MJD).

FIG. 6. Comparison of O1 and O2 95% upper limits on the
strain amplitude for the FrequencyHough pipeline. The O2
search covered the range between 20 Hz and 1000 Hz, while
the O1 search arrived up to 475 Hz. They have been obtained
adding simulated signals to the real data, covering the same
parameter space as in the actual search.

B. SkyHough

SkyHough has analyzed frequencies from 50 to 1500
Hz and spin-down values from �10�8 to 10�9 Hz/s as
shown in Fig. 2. The four di↵erent coherent times that
have been used are shown in Table III. This analysis uses
the C02 cleaned dataset [48], and splits the data from H1
and L1 in two datasets, divided by time as shown in Table
V, where the start and stop times for each dataset are in-

Dataset 1
H1 1167545839/1174691692
L1 1167546403/1174688389

Dataset 2
H1 1180982628/1187731792
L1 1179816663/1187731695

TABLE V. Start/stop times in GPS units of each dataset used
by the SkyHough pipeline. The observation time parameter
used for the spin-down resolution given by equation (16) is
Tobs = 7915032 s, the maximum span of these datasets.

dicated. The main search generates a toplist per dataset
per 0.1 Hz band of 10000 candidates with a maximum
of 1000 per sky-patch. The number of sky-patches de-
pends on the frequency: to minimize the computational
cost of the search, we try to minimize the number of sky-
patches for a limited amount of RAM. From 50 to 850
Hz, there are 28 sky-patches; from 850 to 1000 Hz, 31
sky-patches; from 1000 to 1150 Hz, 38 sky-patches; from
1150 to 1250 Hz, 45 sky-patches; from 1300 to 1500 Hz,
28 sky-patches. After applying the post-processing stage
previously described (with distance thresholds of dco = 3
and dcl =

p
14), we are left with 4548 0.1 Hz bands (from

a total of 14500) having coincidental pairs.
We apply the population veto, used in many past

searches, which demands that each dataset contributes
to each cluster with at least two di↵erent templates. Af-
ter applying this veto, only 1539 outliers remain.
The next step is to apply the F-statistic follow-up

method described in Section IVB3 to these 1539 out-
liers. The thresholds obtained are 1.47 and 3.66 for the
first and second comparison respectively, as shown in Fig
7. Only 17 outliers are above the threshold at 3.66, as
shown in Fig. 8. All of the outliers which are above
the final threshold correspond to one of the hardware in-

LVC arXiv:1903.01901
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onds of coincident data per analyzable segment. The
final amount of data analyzed by cWB was 113.9 days.

The cWB analysis is performed by dividing the run
into reduced periods of consecutive time epochs (called
“chunks”). Each chunk is composed of about 5 days of
livetime, resulting in 21 chunks in total. The background
distribution of triggers for each individual chunk is cal-
culated by time-shifting the data of one detector with
respect to the other detector by an amount that breaks
any correlation between detectors for a real signal. Each
chunk was time shifted to give about 500 years of back-
ground data, which allows the search to reach the sta-
tistical significance of 1/100 years while allowing for a
trial factor of 2 for each of the low and high frequency
bands. Performing the analyses in chunks takes into ac-
count fluctuating noise levels of the detectors over the
duration of the observing run.

The significance of each trigger found in the real coin-
cident data is then calculated by comparing the coherent
network signal-to-noise ratio ⌘c [20] with the background
distribution of the chunk to which it belongs.

The search results for the cWB low and high frequency
bands are shown in Fig. 1. In the low frequency search
band, cWB found six of the known BBH events with
inverse false alarm rates (iFARs) ranging from 290 years
for GW170814 to 0.07 years for GW170729. The loudest
trigger in the high-frequency search band has an iFAR of
7 years, and it is related to some disturbances appearing
around 1600 Hz. To search for new events, we remove all
previously known GW signals. In this case, this means
removing the six BBH signals identified by the search.
The remaining events, shown as dashed curves in Fig. 1,
are all consistent with expected noise events.

2. Omicron-LIB

Omicron-LIB (oLIB) is a hierarchical search algorithm.
oLIB first analyzes the data streams of individual de-
tectors, referred to as an incoherent analysis. It then
follows up stretches of data that are potentially corre-
lated across the detector network, referred to as a coher-
ent analysis. The incoherent analysis (“Omicron”) [37]
flags stretches of coincident excess power. The coherent
follow-up (“LIB”) [38] models GW signals and noise tran-
sients with a single sine-Gaussian, and then produces two
di↵erent Bayes factors. Each of these Bayes factors is ex-
pressed as the natural logarithm of the evidence ratio of
two hypotheses: (1) a GW signal versus Gaussian noise
(BSN) and (2) a coherent GW signal versus incoherent
noise transients (BCI). The joint likelihood ratio of these
two Bayes factors, ⇤, is used as a ranking statistic to
assign a significance to each event.

For this analysis, oLIB analyzes two frequency bands:
a low-frequency search band covering 32 - 1024 Hz, and
a high-frequency search band covering 1024 - 2048 Hz.
Similarly to how the analysis was done in O1, low-
frequency oLIB event candidates are divided by the qual-
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FIG. 1. Cumulative number of events versus inverse false
alarm rate (iFAR) found by the cWB search using all O2
data (circle points) and the cWB search where times around
all compact binary coalescence sources (see table I from [3])
have been dropped out (triangular points). The solid line
shows the expected background, given the analysis time. The
shaded regions show the 1, 2, and 3 � Poisson uncertainty
regions. Top: Search results from the cWB low-frequency
(32-1024 Hz) band, with results grouped considering all the
bins, applying a trials factor equal to 2. Bottom: Search
results from the cWB high-frequency (1024-4096 Hz) band.
No triggers associated with known BBH signals were found in
this search.

ity factor of the signal into high-Q and low-Q search bins
(see [20]). These bins are defined by slightly di↵erent cuts
than in O1, with the exact choices being made after the
background data is analyzed and prior to the analysis of
real coincident data. The low-Q bin contains only events
whose median quality factor Q̃ lies within the range of
0.2 - 1.2 and whose median frequency f0 lies within the
range of 32 - 1024 Hz. The high-Q bin contains only
events whose Q̃ lies within the range 2 - 108 and whose
f0 lies within the range of 120 - 1024 Hz. The Q range of
1.2 - 2 is excluded from the analysis a priori as that re-
gion of parameter space is known to be populated by the
blip glitches. The high-frequency search band contains
only events whose Q̃ lies within the range of 2 - 108 and
whose f0 lies within the range of 1124 - 2048 Hz. The
lower frequency cut o↵ here is set to 1124 Hz in order
to reject a high number of glitches in the 1024-1124 Hz
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Event m1/M� m2/M� M/M� �e↵ Mf/M� af Erad/(M�c
2) `peak/(erg s�1) dL/Mpc z �⌦/deg2

GW150914 35.6+4.8
�3.0 30.6+3.0

�4.4 28.6+1.6
�1.5 �0.01+0.12

�0.13 63.1+3.3
�3.0 0.69+0.05

�0.04 3.1+0.4
�0.4 3.6+0.4

�0.4 ⇥ 1056 430+150
�170 0.09+0.03

�0.03 179

GW151012 23.3+14.0
�5.5 13.6+4.1

�4.8 15.2+2.0
�1.1 0.04+0.28

�0.19 35.7+9.9
�3.8 0.67+0.13

�0.11 1.5+0.5
�0.5 3.2+0.8

�1.7 ⇥ 1056 1060+540
�480 0.21+0.09

�0.09 1555

GW151226 13.7+8.8
�3.2 7.7+2.2

�2.6 8.9+0.3
�0.3 0.18+0.20

�0.12 20.5+6.4
�1.5 0.74+0.07

�0.05 1.0+0.1
�0.2 3.4+0.7

�1.7 ⇥ 1056 440+180
�190 0.09+0.04

�0.04 1033

GW170104 31.0+7.2
�5.6 20.1+4.9

�4.5 21.5+2.1
�1.7 �0.04+0.17

�0.20 49.1+5.2
�3.9 0.66+0.08

�0.10 2.2+0.5
�0.5 3.3+0.6

�0.9 ⇥ 1056 960+430
�410 0.19+0.07

�0.08 924

GW170608 10.9+5.3
�1.7 7.6+1.3

�2.1 7.9+0.2
�0.2 0.03+0.19

�0.07 17.8+3.2
�0.7 0.69+0.04

�0.04 0.9+0.0
�0.1 3.5+0.4

�1.3 ⇥ 1056 320+120
�110 0.07+0.02

�0.02 396

GW170729 50.6+16.6
�10.2 34.3+9.1

�10.1 35.7+6.5
�4.7 0.36+0.21

�0.25 80.3+14.6
�10.2 0.81+0.07

�0.13 4.8+1.7
�1.7 4.2+0.9

�1.5 ⇥ 1056 2750+1350
�1320 0.48+0.19

�0.20 1033

GW170809 35.2+8.3
�6.0 23.8+5.2

�5.1 25.0+2.1
�1.6 0.07+0.16

�0.16 56.4+5.2
�3.7 0.70+0.08

�0.09 2.7+0.6
�0.6 3.5+0.6

�0.9 ⇥ 1056 990+320
�380 0.20+0.05

�0.07 340

GW170814 30.7+5.7
�3.0 25.3+2.9

�4.1 24.2+1.4
�1.1 0.07+0.12

�0.11 53.4+3.2
�2.4 0.72+0.07

�0.05 2.7+0.4
�0.3 3.7+0.4

�0.5 ⇥ 1056 580+160
�210 0.12+0.03

�0.04 87

GW170817 1.46+0.12
�0.10 1.27+0.09

�0.09 1.186+0.001
�0.001 0.00+0.02

�0.01  2.8  0.89 � 0.04 � 0.1 ⇥ 1056 40+10
�10 0.01+0.00

�0.00 16

GW170818 35.5+7.5
�4.7 26.8+4.3

�5.2 26.7+2.1
�1.7 �0.09+0.18

�0.21 59.8+4.8
�3.8 0.67+0.07

�0.08 2.7+0.5
�0.5 3.4+0.5

�0.7 ⇥ 1056 1020+430
�360 0.20+0.07

�0.07 39

GW170823 39.6+10.0
�6.6 29.4+6.3

�7.1 29.3+4.2
�3.2 0.08+0.20

�0.22 65.6+9.4
�6.6 0.71+0.08

�0.10 3.3+0.9
�0.8 3.6+0.6

�0.9 ⇥ 1056 1850+840
�840 0.34+0.13

�0.14 1651

TABLE III. Selected source parameters of the eleven confident detections. We report median values with 90% credible intervals that include
statistical errors, and systematic errors from averaging the results of two waveform models for BBHs. For GW170817 credible intervals
and statistical errors are shown for IMRPhenomPv2NRT with low spin prior, while the sky area was computed from TaylorF2 samples. The
redshift for NGC 4993 from [87] and its associated uncertainties were used to calculate source frame masses for GW170817. For BBH events
the redshift was calculated from the luminosity distance and assumed cosmology as discussed in Appendix B. The columns show source frame
component masses mi and chirp massM, dimensionless e↵ective aligned spin �e↵ , final source frame mass Mf , final spin af , radiated energy
Erad, peak luminosity lpeak, luminosity distance dL, redshift z and sky localization �⌦. The sky localization is the area of the 90% credible
region. For GW170817 we give conservative bounds on parameters of the final remnant discussed in Sec. V E.

angular momentum ~L and its spin vectors precess [113, 114]
around the total angular momentum ~J = ~L + ~S 1 + ~S 2.

We describe the dominant spin e↵ects by introducing ef-
fective parameters. The e↵ective aligned spin is defined as a
simple mass-weighted linear combination of the spins [22, 23,
115] projected onto the Newtonian angular momentum L̂N ,
which is normal to the orbital plane (L̂ = L̂N for aligned-spin
binaries)

�e↵ =
(m1~�1 + m2~�2) · L̂N

M
, (4)

where M = m1 + m2 is the total mass of the binary, and m1 is
defined to be the mass of the larger component of the binary,
such that m1 � m2. Di↵erent parameterizations of spin e↵ects
are possible and can be motivated from their appearance in
the GW phase or dynamics [116–118]. �e↵ is approximately
conserved throughout the inspiral [115]. To assess whether a
binary is precessing we use a single e↵ective precession spin
parameter �p [119] (see Appendix C).

During the inspiral the phase evolution depends at leading
order on the chirp mass [33, 120, 121],

M =
(m1m2)3/5

M1/5 , (5)

which is also the best measured parameter for low mass sys-
tems dominated by the inspiral [60, 95, 116, 122]. The mass
ratio

q =
m2

m1
 1 (6)

and e↵ective aligned spin �e↵ appear in the phasing at higher
orders [95, 115, 117].

For precessing binaries the orbital angular momentum vec-
tor ~L is not a stable direction, and it is preferable to describe
the source inclination by the angle ✓JN between the total an-
gular momentum ~J (which typically is approximately constant
throughout the inspiral) and the line of sight vector ~N instead
of the orbital inclination angle ◆ between ~L and ~N [113, 123].
We quote frequency-dependent quantities such as spin vec-
tors and derived quantities as �p at a GW reference frequency
fref = 20Hz.

Binary neutron stars have additional degrees of freedom re-
lated to their response to a tidal field. The dominant quadrupo-
lar (` = 2) tidal deformation is described by the dimensionless
tidal deformability ⇤ = (2/3)k2

h
(c2/G)(R/m)

i5
of each neu-

tron star (NS), where k2 is the dimensionless ` = 2 Love num-
ber and R is the NS radius. The tidal deformabilities depend
on the NS mass m and the equation of state (EOS). The domi-
nant tidal contribution to the GW phase evolution is encapsu-
lated in an e↵ective tidal deformability parameter [124, 125]

⇤̃ =
16
13

(m1 + 12m2)m4
1⇤1 + (m2 + 12m1)m4

2⇤2

M5 . (7)

B. Masses

In the left panel of Fig. 4 we show the inferred component
masses of the binaries in the source frame as contours in the
m1-m2 plane. Because of the mass prior, we consider only sys-
tems with m1 � m2 and exclude the shaded region. The com-
ponent masses of the detected BH binaries cover a wide range
from ⇠ 5M� to ⇠ 70M� and lie within the range expected for

LVC arXiv:1811.12907



Kilonova

 36

Figure 1 Photometry of SSS17a compared to fitted kilonova models. A: UV to NIR photom-
etry of SSS17a from 10.9 hours after the BNS merger to +18.5 days (11). Overplotted are our
best-fitting kilonova model in each band. B: Residuals (in magnitudes) between each photom-
etry measurement and our best-fitting model. C: The integrated luminosity of our best-fitting
kilonova model compared with the total integrated luminosity of SSS17a (11). We also show
the luminosity of the individual blue and red components of our kilonova model. D: The de-
rived temperature of our kilonova model compared with the temperature derived by fitting a
blackbody SED to each epoch (11).

14

Drout et al, Science (2017) Kilpatrick et al, Science (2017)
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FIG. 1. Mismatches as a function of time for the eight mod-
els, each including up to N QNM overtones. The mismatch
associated with each model at a given t0 corresponds to the
mismatch computed using Eq. (2), between the model and the
NR waveform for t � t0, where t0 specifies the lower limit used
in Eq. (3). Each additional overtone decreases the minimum
achievable mismatch, with the minimum consistently shifting
to earlier times.

roughly 15M after the peak of h. This di↵erence is signif-
icantly smaller at the peak. The mixing is small because
higher (`,m) harmonics are subdominant for this wave-
form, but in a more general case, these higher harmonics
may play a more important role.

IV. RESULTS

A. QNM overtone fits

The linear superposition of the fundamental QNM and
N overtones is an excellent description of the waveform
around and before the peak strain. To demonstrate this,
we begin by fixing the remnant properties to the final
values provided by the NR simulation. With the mass Mf

and dimensionless spin �f fixed, the set of frequencies
!22n(Mf ,�f ) is fully specified by perturbation theory.
The only remaining free parameters in Eq. (1) are the
complex coe�cients C22n and the model start time t0.
For N included overtones, and a given choice of t0, we
determine the (N+1) complex C22n’s using a least-squares
fit, thus obtaining a model waveform given by Eq. (1). We
construct such a model waveform for t � t0 at many start
times beginning at t0 = tpeak � 25M and extending to
times t0 = tpeak+60M , where tpeak is the peak amplitude
of the complex strain. For each start time t0, we compute
the mismatch M between our model waveform, hN

22, and

FIG. 2. Comparison between the plus polarization of the
` = m = 2 mode of the NR waveform and the N = 7 linear
QNM model. The QNM model begins at t0 = tpeak. The
upper panel shows both waveforms, and the lower panel shows
the residual for t � tpeak.

the NR waveform, hNR
22 , through

M = 1 � hhNR
22 , hN

22ip
hhNR

22 , hNR
22 ihhN

22, h
N
22i

. (2)

In the above, the inner product between two complex
waveforms, say x(t) and y(t), is defined by

hx(t), y(t)i =
Z T

t0

x(t)y(t) dt , (3)

where the bar denotes the complex conjugate, the lower
limit of the integral is the start time parameter t0 in Eq. 1,
and the upper limit of the integral T is chosen to be a
time before the NR waveform has decayed to numerical
noise. For the aforementioned NR simulation, we set
T = tpeak + 90M .

The result of this procedure produces mismatches as a
function of t0 for each set of overtones; these are presented
in Fig. 1. The figure shows that N = 7 overtones provides
the minimum mismatch and at the earliest of times, as
compared to the other overtone models. The waveform
corresponding to the N = 7 overtone model and t0 =
tpeak is visualized in Fig. 2, where the model waveform is
compared to the NR waveform along with the fit residual.
At face value, Fig. 1 provides us with a guide for de-

termining the times where a linear ringdown model with
N QNM overtones is applicable. However, relying on the
mismatch alone can be deceiving. The n = 7 overtone
decays away very quickly, yet Fig. 1 shows that retaining
this overtone still produces small mismatches at times
beyond when this mode should no longer be numerically
resolvable. This is due to overfitting to numerical noise
after the higher overtones in each model have su�ciently

2

a dimensionless spin magnitude of 0.63 ± 0.16, with 68%
credibility. This is the best constraint on the remnant
mass and spin obtained in this work. This measurement
agrees with the one obtained from the fundamental mode
alone beginning 3ms after the waveform peak amplitude
(Figures 1 and 3) [34]. It also agrees with the mass and
spin inferred from the full waveform using fits to numerical
relativity. The fractional di↵erence between the best-
measured combination of mass and spin1 at the peak with
one overtone and the same combination solely with the
fundamental 3ms after the peak is (0 ± 10)%. This is
evidence at the ⇠10% level that GW150914 did result in
a Kerr black hole as predicted by general relativity, and
that the postmerger signal is in agreement with the no-
hair theorem. Similarly, the fractional di↵erence between
the best-measured combination of mass and spin at the
peak with one overtone and the same combination using
the full waveform is (7 ± 7)%.

Method. Each quasinormal mode has a frequency !`mn

and a damping time ⌧`mn, where n is the ‘overtone’ index
and (`,m) are indices of spin-weighted angular harmon-
ics that describe the angular dependence of the mode.
We focus on the fundamental and overtones of the dom-
inant ` = m = 2 spin-weighted spherical harmonic of
the strain.2 For ease of notation, we generally drop the
` and m indices, retaining only the overtone index n.
The ` = m = 2 mode of the parameterized ringdown
strain (h = h+ � ih⇥) can be written as a sum of damped
sinusoids [1–4],

hN
22(t) =

NX

n=0

An exp [�i (!nt+ �n) � t/⌧n] , (1)

for times t greater than some start time t0, where �t =
t � t0. The overtone index n orders the di↵erent modes
by decreasing damping time ⌧n, so that n = 0 denotes
the longest-lived mode. N is the index of the highest
overtone included in the model, which in this work will
be N  2. Importantly, higher n does not imply a higher
frequency !n; rather, the opposite is generally true. All
frequencies and damping times are implicit functions of
the remnant mass and spin magnitude (Mf , �f ), and
can be computed from perturbation theory [39–41]. The
amplitudes An and phases �n encode the degree to which

1 That is, the measurement of the linear combination of Mf and
�f corresponding to the principal component of the posterior
distribution with the smallest associated eigenvalue.

2 The spin-weighted spheroidal harmonics form the natural basis
that arises in perturbation theory [35–37]. These functions are
equivalent to the spin-weighted spherical harmonics in the limit
of zero spin. For �f > 0, the spin-weighted spheroidal harmonics
can be written as superpositions of the spin-weighted spherical
harmonics of the same m, but di↵erent ` [37, 38]. The e↵ect of
this mixing on the dominant ` = m = 2 spin-weighted spherical
mode is negligible for a GW150914-like system [31].
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IMRIMR

FIG. 1. Remnant parameters inferred with di↵erent number
of overtones, using data starting at peak strain amplitude.
Contours represent 90%-credible regions on the remnant mass
(Mf ) and dimensionless spin magnitude (�f ), obtained from
the Bayesian analysis of GW150914. The inference model is
that of Eq. (1), with di↵erent number of overtones N : 0 (solid
blue), 1 (solid yellow), 2 (dashed purple). In all cases, the
analysis uses data starting at peak strain (�t0 = t0�tpeak = 0).
Amplitudes and phases are marginalized over. The black
contour is the 90%-credible region obtained from the full IMR
waveform, as described in the text. The intersection of the
dotted lines marks the peak of this distribution (Mf = 68.5M�,
�f = 0.69). The top and right panels show 1D posteriors for
Mf and �f respectively. The linear quasinormal mode models
with N > 0 provide measurements of the mass and spin
consistent with the full IMR waveform, in agreement with
general relativity.

each overtone is excited as the remnant is formed and
cannot be computed within perturbation theory, so we
treat them as free parameters in our fit.

We use the model in Eq. (1) to carry out a Bayesian
analysis of LIGO Hanford and LIGO Livingston data
for GW150914 [15, 21, 42]. For any given start time
t0, we produce a posterior probability density over the
space of remnant mass and spin magnitude, as well as
the amplitudes and phases of the included overtones. We
parameterize start times via �t0 = t0 � tpeak, where
tpeak = 1126259462.423 GPS refers to the inferred signal
peak at the LIGO Hanford detector [22, 43]. We define
the likelihood in the time domain in order to explicitly
exclude all data before t0. We place uniform priors on
(Mf , �f , An, �n), with a restriction to orbit-aligned spins
(�f � 0). All overtones we consider share the same
` = m = 2 angular dependence, allowing us to simplify
the handling of antenna patterns and other subtleties.

Isi et al. arXiv:1905.00869
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FIG. 2. Left: A dipolar (l = 1,m = 0) scalar wavepacket scattered o↵ a Schwarzschild BH and o↵ di↵erent ECOs with
` = 10�6M (r0 = 2.000001M). The right panel shows the late-time behavior of the waveform. The result for a wormhole, a
gravastar, and a simple empty shell of matter are qualitatively similar and display a series of “echoes” which are modulated
in amplitude and distorted in frequency. For this compactness, the delay time in Eq. (6) reads �t ⇡ 110M for wormholes,
�t ⇡ 82M for gravastars, and �t ⇡ 55M for empty shells, respectively.
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FIG. 3. Left panel: The waveform for the radial infall of a particle with specific energy E = 1.5 into a wormhole with
` = 10�6M , compared to the BH case. The BH ringdown, caused by oscillations of the outer PS as the particle crosses through,
are also present in the wormhole waveform. A part of this pulse travels inwards and is absorbed by the event horizon (for BHs)
or then bounces o↵ the inner (centrifugal or PS) barrier for ECOs, giving rise to echoes of the initial pulse. This is a low-pass
cavity which cleans the pulse of high-frequency components. At late times, only a lower frequency, long-lived signal is present,
well described by the QNMs of the ECO. Right panel: the same for a scattering trajectory, with pericenter rmin = 4.3M , o↵
a wormhole with ` = 10�6M . The main pulse is generated now through the bremsstrahlung radiation emitted as the particle
approaches the pericenter. The remaining main features are as before. We show only the real part of the waveform, the
imaginary part displays the same qualitative behavior.

express these results in a rotated frame [32, 33], and we
checked that the waveforms agree up to numerical errors

with our previous study [12] 2.

2 Note however the following typo in the original publication: the

Cardoso et al. arXiv:1608.08637



Echoes from exotic compact 
objects

 39

For a recent review see Cardoso and Pani arXiv:1904.05363 

Exotic Compact Object

Black Hole

0 200 400 600 800 1000
-0.02

-0.01

0.00

0.01

0.02

0 100 200 300 400
-0.02

-0.01

0.00

0.01

0.02

Mark, AZ, Du, Chen arXiv:1706.06155 



Detector sensitivity O2

 40LVC arXiv:1811.12907



Detector sensitivity O2

 40LVC arXiv:1811.12907



Detector sensitivity O3

 41gw-openscience.org/detector_status/

https://www.gw-openscience.org/detector_status/

