

ALICE – Future Plans

Andrea Dainese (INFN, Padova) on behalf of the ALICE Collaboration

HI Community Town Meeting, CERN, 24 October 2018

Outline

- ALICE LS2 upgrade: strategy and status
- Physics in Run-3 and Run-4
- LS3: a new inner tracker and other ideas
- A possible concept for physics in Run-5

ALICE LS2 upgrade: driving physics goals (2012)

- Heavy-quark interactions in QCD medium
 - → Heavy-flavour dynamics and hadronisation at low p_T
- Quarkonium melting and regeneration in QGP
 - → Charmonium down to zero p_T
- QGP radiation and chiral symmetry restoration at $\mu_B=0$
 - → Thermal di-leptons, photons, vector mesons
- Production of light nuclei in QGP
 - → High-precision measurement of light nuclei and hyper-nuclei

Vertexing Low p_T Hadron/e/µ ID Low S/B

ALICE

Upgrade of the

Upgrade strategy

- Increase tracking granularity, reduce material thickness
- Speed-up main ALICE PID detectors

Vertexing Low p_T Hadron/e/μ ID Low S/B

- No dedicated triggers possible
 - → increase readout rate, reduce data size, write all Pb-Pb at 50 kHz

Run 3-4: increase of MB sample **x100** wrt Run 2 10/nb ~ 100 billion Pb-Pb events + 3/nb dedicated run at low B field (dielectrons)

ALICE in 2021

- New Inner Tracking System (ITS)
- New Forward Muon Tracker (MFT)
- New GEM Readout Chambers for TPC
- New Online-Offline system (O²)
- New trigger detector (FIT)
- Upgraded readout for TOF, TRD, MUON, ZDC, EMCal, PHOS

ALTCE.

New all-pixel trackers: ITS2 and MFT

 Low resistivity, high efficiency, low thickness, low power consumption

	Current ITS	New ITS2	MFT
N Layers	6	7	5
Inner radius	3.9 cm	2.3 cm	1
Layer thickness	~1.1% X ₀	0.3-1.0% X ₀	0.8% X ₀
Spatial resolution	12x100 μm² 35x20 μm² 20x830 μm²	~5x5 μm²	~5x5 μm²
20			

ITS2 tracking precision x3 better in rφ plane, <20 μm above 1 GeV/c

MFT: <100 μm above 1 GeV/c

TPC with GEM readout for Pb-Pb at 50 kHz

- Current MWPC: readout rate limited by ion backflow
- New readout chambers (GEM): continuous readout of Pb-Pb at interaction rate of 50 kHz
 - preserve p_T and dE/dx resolution
- 5 interactions on average during TPC drift time (90 μ s)
- Calibration and track-to-event assignment in O² system

 $\Delta V = 270 \text{ V}$ $\Delta V = 800 \text{ V}$ $\Delta V = 230 \text{ V}$ $\Delta V = 288 \text{ V} \quad \Delta V = 20 \text{ V}$

pad plane

Electron microscope photograph of a GEM foil

CERN-LHCC-2013-020

O² Online-Offline System

- O² will integrate the present DAQ, HLT and Offline systems
- A large computing farm will process the data online, calibrate the TPC, reject detector noise, and build events
- Data reduction factor >30 in Pb-Pb, without event rejection
 - 3.4 TB/s \rightarrow 0.1 TB/s to tape

Raw data to online farm in continuous mode

HI run 3.4 TByte/s

Data reduction by zero (cluster) suppression. No event discarded

500 GByte/s

Data reduction after online tracking Only reconstructed data to storage

100 GByte/s

Data Storage - 1 year of compressed data

Tier0, Tier 1 and **Analysis Facilities** Asynchronous event reconstruction with final calibration

CERN-LHCC-2015-006

All this now coming together, and much more

Outline

- ALICE LS2 upgrade: strategy and status
- Physics in Run-3 and Run-4
- LS3: a new inner tracker and other ideas
- A possible concept for physics in Run-5

Physics of high-density QCD at LHC after LS2

- Key priorities of the whole programme
 - 1. Macroscopic long-wavelength QGP properties with unprecedented precision
 - 2. Microscopic parton dynamics underlying QGP properties
 - 3. Parton densities in broad kinematic range and search for saturation
 - 4. Collectivity across colliding systems, hot medium in small systems?
- ALICE will provide unique insight on all four priorities
 - Only some examples given in the following
 - See also previous talk on WG5 HI

1. Macroscopic long-wavelength QGP properties

Temperature → thermal radiation from real and virtual photons

Di-electrons (less material, better tracking, low-B run)

Real photons (less material, ITS with material calibration)

1. Macroscopic long-wavelength QGP properties

- Temperature → thermal radiation from real and virtual photons
- Transport coefficients → heavy-quark diffusion coefficients

Open heavy-flavour R_{AA} and v_2 down to $p_T=0 \rightarrow Precise determination of <math>2\pi TD_s$ vs. T

Bayesian analysis of D meson pseudo-data, S. Bass et al.

B meson R_{AA} and v_2

1. Macroscopic long-wavelength QGP properties

- Temperature → thermal radiation from real and virtual photons
- Transport coefficients → heavy-quark diffusion coefficients
- Primordial E-M fields → charge-dependent v₁ for light and heavy flavour

 Δv_1^{odd} for charged particles and D mesons \rightarrow role of E and M fields and their time evolution

HI Town Meeting, 24.10.18 ALICE Future Plans

QGP substructure, quasi-particles? \rightarrow large-angle scattering with low- p_T h-jet

ALICE Future Plans 15

• QGP substructure, quasi-particles? \rightarrow large-angle scattering with low- p_T h-jet \rightarrow explore Lund diagram with jet substructure selections

H. Andrews et al., arXiv:1808.03689

M. Verweij, HP2018

Large samples in Run-3+4 enable high-statistics coverage of substructure phase space

- QGP substructure, quasi-particles? → h-jet, jet substructure, Lund diagram
- Charm quark in-medium potential and regeneration \rightarrow low- p_T charmonia

 $\psi(2S)$ / J/ ψ sensitive to detailed dynamics of melting and regeneration, and to temperature Precise v_2 and v_3 measurements will address the puzzle current data-model comparisons

- QGP substructure, quasi-particles? → h-jet, jet substructure, Lund diagram
- Charm quark in-medium potential and regeneration \rightarrow low- p_T charmonia
- Heavy flavour recombination → heavy-flavour hadrochemistry and baryons

 D_s / D , Λ_c / D and Λ_b / B down to low- $p_T \rightarrow$ recombination vs radial flow, also crucial for diffusion coefficient

Different recombination scenarios

HI Town Meeting, 24.10.18

ALICE Future Plans

- QGP substructure, quasi-particles? → h-jet, jet substructure, Lund diagram
- Charm quark in-medium potential and regeneration \rightarrow low- p_T charmonia
- Heavy flavour recombination → heavy-flavour hadrochemistry and baryons
- Formation of large/fragile particles → light and hyper-nuclei A=3, 4

Coalescence parameters vs. centrality (system radius) discriminate among production scenarios

3. Initial-stage partonic state, search for saturation

• Small-x studies → Quarkonium production in Pb-Pb UPCs

Broad coverage $10^{-5} < x < 10^{-2}$, directly sensitive to gluon nPDF/PDF $R_{Pb}(x)$

→ FoCal proposal to use cleanest probe, i.e. direct photons (will be discussed later in the talk)

- High-precision multiplicity-dep. studies + cover Pb-Pb-like multiplicities also with pp collisions
- → New extended programmes in small collision systems
 - pp 14 TeV: 200 pb⁻¹ with HM trigger in Run-3 → 15x<N_{ch}> ~60% Pb-Pb centrality
 - + central diffractive events: x14 wrt Run-2 statistics
 - p-Pb 8.8 TeV: 0.5 pb⁻¹ in Run-3 → increase x20 wrt Run-2 statistics
 - A second p-Pb run after LS3, depending on FoCal study schedule
 - Support option for a short O-O campaign in Run-3 (onset of medium effects)

Search for energy loss → hadron-jet recoil in pp and p-Pb vs Event Activity (EA)

Robust in small systems, no "centrality" determ. (N_{coll}) \rightarrow Run-3: sensitive to ΔE > 200 MeV in pp, 70 in p-Pb \sim 100-times smaller than shift measured in Pb-Pb

- Search for energy loss → hadron-jet recoil in pp and p-Pb
- Search for thermal radiation → real and virtual photons

With 500 nb⁻¹, 10% stat. unc. on thermal spectrum slope, even with ~1/3 of predicted thermal signal (R. Rapp)

- Search for energy loss → hadron-jet recoil in pp and p-Pb
- Search for thermal radiation → real and virtual photons
- Mass-dependence of collectivity → Heavy quark and quarkonium flow in p-Pb

Outline

- ALICE LS2 upgrade: strategy and status
- Physics in Run-3 and Run-4
- LS3: a new inner tracker and other ideas
- A possible concept for physics in Run-5

A new ultra-light inner barrel in LS3?

- Driving requirements of ITS upgrade
 - Reduce material budget
 - Move closer to beam-line
- can be pushed further using technologies that are quickly becoming mature
 - Silicon stitching allows fabrication of sensors of ~ 10x10 cm²
 - Thinning to ~30 μm allows curved (cyl.) sensors

New Public Note with Expression of Interest: ALICE-PUBLIC-2018-013

A new ultra-light inner barrel in LS3: concept

- 3 truly cylindrical layers made of ~7x14 cm² sensors thinned to 20-40 μm
- Readout circuitry (power consumption) at periphery, outside acceptance
- No water cooling, minimal support structure in acceptance
- Total material at R < 4 cm: \sim 1.3% \rightarrow \sim 0.3%

A new ultra-light inner barrel in LS3: design

- Towards a conceptual design, including support and services
- Full integration with ITS outer barrels, MFT, FIT

A new ultra-light inner barrel in LS3: tracking

FMCT: semi-analytical, includes QED hits, but no energy loss fluctuations
Full MC: simplified ITS3 geometry, full MC simulation (GEANT3), Cellular Automaton ITS Tracker

ITS3 vs. ITS2: resolution improved by factor 2 at all p_T's; tracking efficiency at low p_T (50-60 MeV/c) improved by factor 2

ALTCE

A new ultra-light inner barrel in LS3: physics

- Charm baryons (smallest cτ):
 - ✓ Vertexing precision

	S/B	Signif.
ITS3 / ITS2	10	4

- Low-mass dielectrons:
 - Vertexing (better charm rejection)
 - ✓ Lower material thickness (less conversions)
 - ✓ Higher low-p_T efficiency (better conversion rejection)

In preparation: small-x physics with FoCal

- R&D for a high-granularity Forward Calorimeter at $3 < \eta < 5$
 - Possible installation during or after LS3
- Main goal: direct photons in p-Pb (x~10⁻⁵)
 - Lower x than for open charm at same η
 - No final-state effects

EM probes - kinematic coverage

Note: LHCb DY possible similar coverage as FoCal

In preparation: small-x physics with FoCal

- R&D for a high-granularity Forward Calorimeter at η~3-5
 - Possible installation during or after LS3
- FoCal-E: hybrid design (2 types of sensors)
 - Si-pads (≈ 1 cm²): energy measurement
 - CMOS pixels (≈ 30x30 µm²): two-shower separation

Impact on gluon nuclear PDF

ALTCE.

Under discussion: Fixed target in ALICE?

- Programme proposed within AFTER@LHC initiative
 - talk later today and arXiv:1807.00603
 - already started in LHCb with SMOG
- How in ALICE?
 - Extract beam halo with bent crystal (UA9)
 - Collide on solid target(s) inside beam pipe
- Integration / interferences to be studied

- Two main directions, for studies at mid-y with muons and at backward-y with ID-hadrons
 - 1. AA at $\sqrt{s_{NN}}$ =72 GeV: flow at bkwd-y sensitive to $\eta/s(T)$; QGP with large μ_B at bkwd-y?
 - 2. pA+AA: open charm and quarkonia at mid-y sensitive to PDFs and nPDFs at x > 0.1

Outline

- ALICE LS2 upgrade: strategy and status
- Physics in Run-3 and Run-4
- LS3: a new inner tracker and other ideas
- A possible concept for physics in Run-5

Next major step forward: thin, precise, and fast

Extend ITS3 concept of ultra light and granular tracker to a very fast detector that can gain up to 2 orders of magnitude in statistics by exploiting higher luminosity with lighter ions

- Conceptual guidelines:
 - Very high rate capability (e.g. Ar-Ar projection ~ 10 MHz)
 - Low material to push down the p_T coverage and the vertexing precision
 - Hadron and electron identification
 - Extended rapidity acceptance (ideally $|\eta| < 4$)

Run-5: main physics goals

- Thermal radiation (dileptons and photons)
 - Dilepton multi-differential analysis vs. $M_{\rm ee}$ and $p_{\rm T,ee}$
 - Higher flow harmonics
 - Photon femtoscopy
 - Electrical conductivity, sensitive to the strength of the coupling among constituents

- Multi-heavy-flavour: Ω_{cc} , Ω_{ccc} , B_c, XYZ states
- $-\chi_{c1.2}$
- Ultimate precision on B mesons at low p_T

- Spectrum down to ~50 MeV
- π^+/π^0 ratio
- Other topics under study
 - A = 5, 6 light nuclei and hyper-nuclei
 - Fluctuations of conserved charges
 - Femtoscopy

Characterize T, size and shape of thermal source vs. time

Detailed study of HQ recombination b-quark diffusion coefficient

Coherent production? Bose-Einstein condensate? Disoriented chiral condensate?

Run-5: A possible detector concept

- All-pixel tracking and PID detector
- Pre-shower layers with
 W+pixels for ID high-p electrons
- Timing layers σ~25 ps for t.o.f.
 ID of hadrons and low-p electrons
- Insertable converter layer for photon detection
- Innermost layers inside the beam pipe

Conclusions

- LS2 upgrade well under way, major enterprise for the next 3 years
- Run-3/4 programme: several unique contributions to key priorities of the field, in particular QGP characterization at various length scales and understanding of physics underlying system-size dependence
- Lively discussion and preparation of next steps
 - New programmes? (small-x?, fixed target?)
 - Ultimate performance and precision → ultra-thin, high-speed

EXTRA SLIDES

ALICE

Short O-O run: onset of medium effects?

- Xe-Xe results raised interest in a possible O-O run in Run-3
 - Search for energy loss in small system with AA geometry but same N_{ch}, N_{part}, N_{coll} as p-Pb
 - 20% R_{AA} suppression in central O-O (N_{coll}~35) expected on the basis of Xe-Xe
 - Moreover: strangeness/pion, initial vs final state effects in flow
- ALICE supports proposal of a 1-2 days run (few 100/μb) to address these questions

C.Loizides,

HL-LHC June WS

Stitching allows the fabrication of wafer scale sensors

1D stitched sensor (z direction)

2D stitched sensor – wafer-scale

By instantiating multiple times the same circuits in the second dimension (ϕ) one can realize the sensors for the different layers. For example

- L0 = 14 cm x 6.0 cm
- $L1 = 14 \text{ cm } \times 7.5 \text{ cm}$
- $L2 = 14 \text{ cm } \times 9.0 \text{ cm}$

Particle Rates

Expected maximum particle density in the layers of the ITS Inner Barrel

	Particle density (cm ⁻²)					
	LS2	2 Upgrade	LS3 Upgrade			
Layer	Hadronic ^a	QED electrons ^b	Hadronic ^a	QED electrons ^b		
0	43	7	73	12		
1	25	3	43	8		
2	17	2	29	6		

^a maximum particle density in central Pb-Pb collisions (including secondaries produced in material) for B = 0.2T

Particle density at L0 increases by ≈ 70%

Sensor occupancy (fraction of pixel with a particle hit) $\approx 10^{-3}$ \Rightarrow no issues for the tracking

Particle flux (for 50 kHz Pb-Pb) < 4 MHz / cm²

⇒ well within the detector readout capabilities

Radiation load increases by $\approx 70\%$

⇒ still well below the safety values

^b for an integration time of $10\mu s$, an $L_{int} = 50$ kHz and B = 0.2T

Tracking Performance

Tracking efficiency and momentum resolution

Efficiency increases factor 1.2 – 2, for pT < 100MeV

Standalone p_T resolution improvement ≈ 2

ITS standalone efficiency likely overestimated, due to lack of fluctuations

Physics Performance Studies – Λ_c

 $\Lambda_c \rightarrow pK^-\pi^+$ in central Pb-Pb collisions at $Vs_{NN} = 5.5 \text{ TeV}$ (Lint = 10 nb⁻¹)

ITS 3 improvement: factor 4 (significance) and factor 10 (S/B)

Physics Performance Studies – Thermal Dielectrons

Temperature Extraction

T extracted from an exponential fit to the invariant mass excess spectrum in $1.2 < \text{Mee} < 2.5 \text{ Gev/c}^2$

Comparison ITS2 (LS2) and ITS2 (LS3 Upgrade)

ITS3 upgrade reduces

- Statistical uncertainty by a factor 1.3
- The systematic uncertainty from the subtraction of the combinatorial background by a factor 1.5
- The systematic uncertainty from the subtraction of the light-hadron and charm decay backgrounds by a factor of 2

T (QGP)	Stat. error	Syst. (BG)	Syst. (Charm)
ITS3 / ITS2	Factor 1.3	Factor 1.5	Factor 2

A new HI dedicated experiment beyond LS4?

Design guidelines

- Increase rate capabilities (factor 20 to 50 wrt to RUN4): <L_{NN}> ~ up to 10³⁴ cm⁻²s⁻¹
- Improve vertexing
 - Ultra-thin wafer-scale sensors with truly cylindrical shape, inside beampipe
 - spatial resolution ~ 1-3μm
 - material thickness < 0.05% X₀ /layer
- Improve tracking precision and efficiency
 - About 10 layers with a radial coverage of 1m
 - Spatial resolution of about 5μm up to 1m
 - whole tracker could be less than 6% X₀ in thickness (at mid-rapidity)
- Extended rapidity coverage (ideally up to 8 rapidity units)

Focus on relatively low p_T phenomena, $0.01 < p_T < 10 \text{ GeV}/c$

Magnetic fields of < 0.5Twould be sufficient but 1T (or higher) is to be considered

A new experiment based on a "all-silicon" detector

Tracker: ~10 tracking barrel layers (blue, yellow and green) based on CMOS sensors

Hadron ID: TOF with outer silicon layers (orange)

Electron ID: pre-shower (outermost blue layer)

Extended rapidity coverage: up to 8 rapidity units

+ FoCal?

Preliminary studies

Magnetic Field

• B = 0.5 or 1 T

Spatial resolution

- Innermost 3 layers: σ~ 1μm
- Outer layers: σ~5μm

Time Measurement

Outermost layer integrates high precision time measurement $(\sigma_t < 30ps)$

Particle Identification

Electron and hadron PID using dE/dx, TOF and pre-shower

- dE/dx in silicon (middle layers): PID at very low p_T (20 200 MeV)
- Time of Flight: $\sigma_{TOF} \approx 20\text{-}30\text{ps}$, track length ~1m \Rightarrow good e/ π separation < 500 MeV
- Pre-shower (2-3 X₀) based on high-granularity (CMOS pixels) digital calorimetry
 - great potential to identify electrons down to few hundred MeV by detailed imaging (particle counting, geometry) of the initial shower

Hadron ID with silicon TOF detector

Time resolution of a fully depleted CMOS pixel sensors a la "ALPIDE"

Modified process CERN/Tower

R&D for the ALICE upgrade: developed in collaboration with Tower a process modification that allows full depletion of the high resistivity silicon layer

- Reduces charge collection time (<1ns)
- Enhances radiation hardness (~10¹⁵ n / cm²)

First order approximation
$$\sigma_t = c \frac{t_r}{SNR}$$

 t_r : amplifier rise time c = 0.4 - 0.6

In ultra-thin O(10 μ m) fully depleted CMOS sensors (e.g. INVESTIGATOR or ALPIDE with CERN/TJ modified process) with 10V reverse bias

- Charge (e) collection time T ≈ 170ps
- Standard deviation of signal centroid time $\Delta_T \approx 15 ps$
- noise ≈ few electrons
- Signal on seed pixel ≈ 1000 electrons

•
$$\sigma_{TDC} \approx 15 ps$$

•
$$T_0 \approx 10 ps$$

Single layer

$$\sigma_t < 27 ps$$

Electron ID

Time Of Flight

TOF PID – track length 3.5m

3 system time resolutions

60ps, 80ps, 100ps

Ideal track length and p measurement

Good e/π separation < 600 MeV/c

Range of electrons in W

Absorption of electrons in W

 $X_0 = 0.35 \, \text{cm}$

 $\rho = 19.3 \text{ g/cm}^3$

Range of e in W > $4.5X_0$ for E> 500MeV

Range (cm) 0.33 0.79 1.02 1.26 1.58 1.81 Range (X) 0.92 2.27 2.90 3.60 4.52 5.18	Energy (MeV)	10	50	100	200	500	1000
Range (X_0) , 0.92 2.27 2.90 3.60 4.52 5.18	Range (cm)	0.33	0.79	1.02	1.26	1.58	1.81
Range of glections in conner	Range (X ₀)	0.92	2.27	2.90	3.60	4.52	5.18