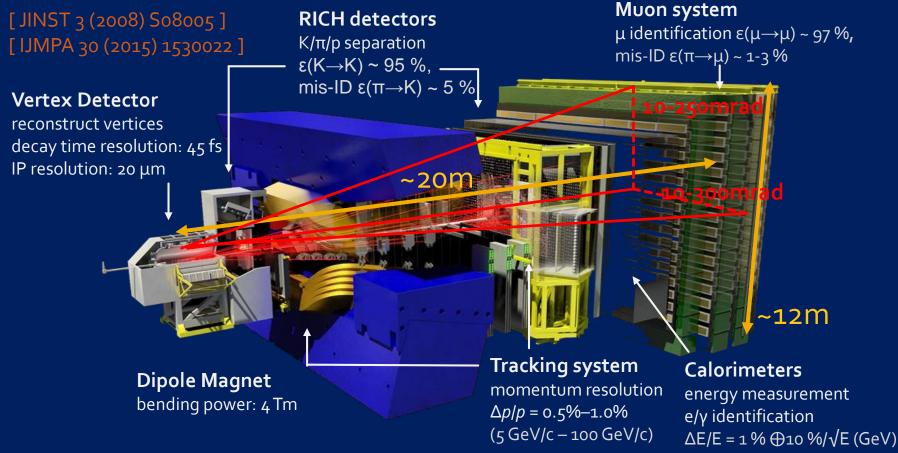
Town Meeting Relativistic Heavy Ion Physics

LHCb Future Plans

October 24, 2018

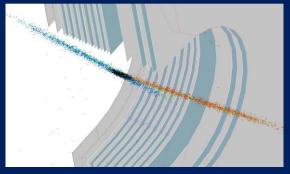
Burkhard Schmidt (CERN) on behalf of the LHCb collaboration

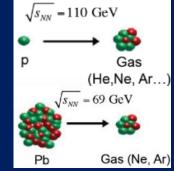
Outline


Introduction to the LHCb Detector and its SMOG system

- Kinematic reach and data samples
- Some recent results in Heavy Ion physics
- LHCb detector upgrade I and SMOG upgrade (LS2)
 - \succ Short overview of the upgrade for Runs 3 and 4
 - > Possibilities with the upgraded detector in Heavy Ion physics
- Further LHCb detector upgrade plans (upgrade II, LS4)
 - > Possibilities in Heavy Ion physics with the upgrade II
- Summary and Conclusions

LHCb Detector

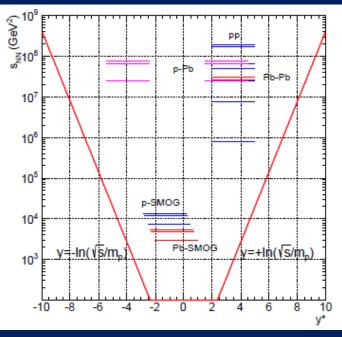

- Single arm spectrometer in the forward direction
 - designed for heavy flavour physics, but capable to address many other topics ...
 - fully instrumented in 2 < y < 5 with unique forward kinematics
 - Flexible trigger down to very low p_T



Fixed Target Physics with LHCb

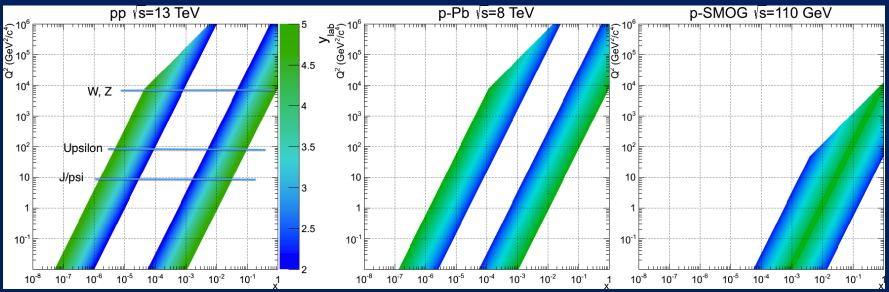
SMOG: System for Measuring Overlap with Gas

- Unique Fixed Target configuration at the LHC
- Inject noble gas (He, Ne, Ar) at ~2 x 10⁻⁷ mbar into the LHC vacuum around the interaction region.
- The gas spreads in the beam pipe around LHCb: collision vertices over ~1m (usable range)


- Originally used to determine the luminosity, but since 2015 also to collect physics data.
- Allows to measure p-gas and Pb-gas interactions at between 69 110 GeV at central to backward rapidity (in nucleon-nucleon centre-of-mass system)

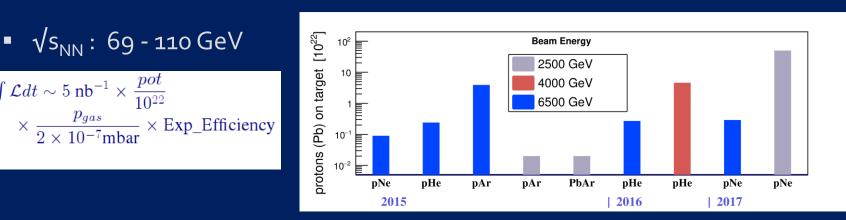
Bridging the gap between the SPS (20 GeV) and RHIC (200 GeV) energy scales

Burkhard Schmidt


Town Meeting Relativistic Heavy Ion Collisions

kinematic acceptance

HCP Kinematic reach of LHCb


- Measurements at different \sqrt{s} and in different setups allows to investigate:
 - > The nucleon structure of free (*pp*) versus bound nucleons (*p*A) inside the nucleus
 - PDFs can be probed via quarkonia, electroweak bosons, Drell-Yan measurements
 - Access to very small x (colliding beam mode) and large x (fixed target mode)

- Dynamics of hadronization process
 - Measurement of total cross sections, energy flow measurement, particle multiplicities
- Complementary probes of QCD
 - Ultra-peripheral collisions: exclusive ρ° production, exclusive photo-production of J/ψ...

Data Samples acquired so far

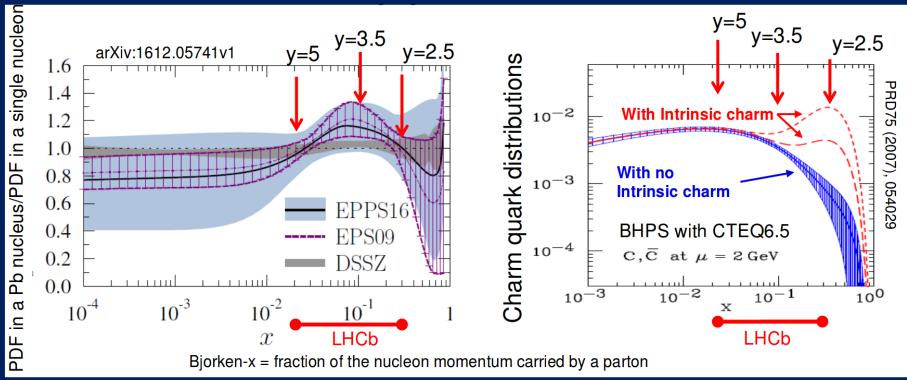
- Colliding beam mode (*p*Pb and PbPb):
 - 1.1 nb⁻¹ *p*Pb, 0.5 nb⁻¹ Pb*p* at $\sqrt{s_{NN}} = 5.02$ TeV (2013)
 - 13.6 nb⁻¹ pPb, 20.8 nb⁻¹ Pbp at $\sqrt{s_{NN}}$ = 8.16 TeV (2016)
 - 10 μb⁻¹ PbPb at √s_{NN} = 5.02 TeV (2015) and 0.4 μb⁻¹ XeXe (2017) -> aim at factor 10-20 more luminosity for the 2018 PbPb run
- Fixed Target mode (SMOG):

Burkhard Schmidt

 $\int \mathcal{L} dt \sim 5 \ \mathrm{nb}^{-1} imes rac{pot}{10^{22}}$

Some recent LHCb results

- Charm production in fixed-target configuration
 - LHCb-PAPER-2018-023, arXiv:1810.07907
- Antiproton production in fixed-target configuration
 - LHCb-PAPER-2018-031, arXiv:1808.06127
- Heavy flavour production in pPb collisions:
 - D^o at 5.02TeV: LHCb-PAPER-2017-015, JHEP (2017) 090
 - Λ_c⁺ at 5.02TeV: LHCb-PAPER-2018-021, arXiv:1809.01404
 - *J*/ψ at 8.16TeV: LHCb-PAPER-2017-014, PLB774 (2017) 159
 - B⁺, B^o, Λ_b^o at 8.16TeV: LHCb-CONF-2018-004
 - *Y(nS)* at 8.16TeV: LHCb-PAPER-2018-035, arXiv:1810.07655
- Exclusive photonuclear J/ψ production in UPC of PbPb at 5TeV
 - LHCb-CONF-2018-003


Charm Production in pA collisions

Motivation to perform fixed-target heavy ion physics at LHC:

Access to nPDF in **anti-shadowing region**

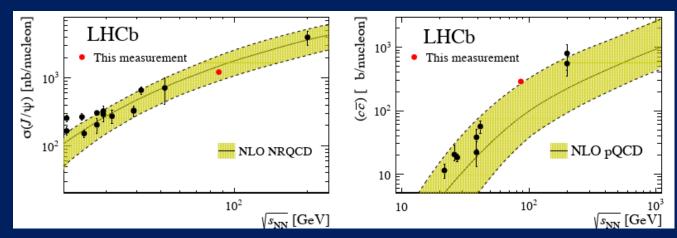
Access to intrinsic charm content

in the nucleon

Measurement of hidden and open charm production (J/ψ, D^o...) down to low p_T
 Large rapidity coverage (~3 rapidity units) at large x_{Bi}

Heb Charm production in *p*A collisions

- J/ψ and D° inclusive cross section in pHe collisions $\sqrt{s_{NN}} = 86.6$ GeV:
 - Cross section measured in $J/\psi \rightarrow \mu^+\mu^-$ and $D^\circ \rightarrow K^-\pi^+$ decays

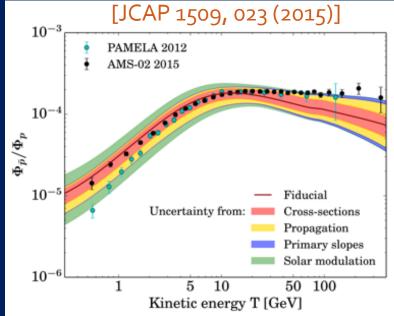

 $\sigma_{J/\psi}^{86.6 \text{ GeV}} = 1225.6 \pm 62.0(stat.) \pm 81.6(syst.) \text{ nb/nucleon}$

 $\sigma_{D^0}^{86.6 \text{ GeV}} = 156.0 \pm 4.6(stat.) \pm 12.3(syst.) \ \mu\text{b/nucleon}$

LHCb-PAPER-2018-023 arXiv:1810.07907

• Scaling the D^o cross-section with the global fragmentation ratio f($c \rightarrow D^o$) = 0.542±0.024, the $c\bar{c}$ production cross section can be obtained:

 $\sigma_{c\bar{c}}^{86.6 \text{ GeV}} = 287.8 \pm 8.5(stat.) \pm 25.7(syst.) \ \mu\text{b/nucleon}$


> LHCb results in good agreement with NLO NRQCD fit (J/ψ , left) and NLO pQCD predictions ($c\overline{c}$, right) and other measurements

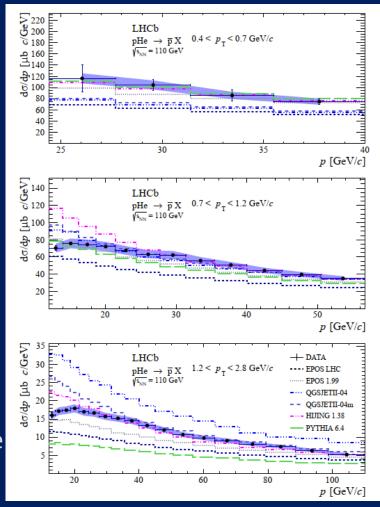
Burkhard Schmidt

Town Meeting Relativistic Heavy Ion Collisions

LHCb Measurements of light flavor hadrons

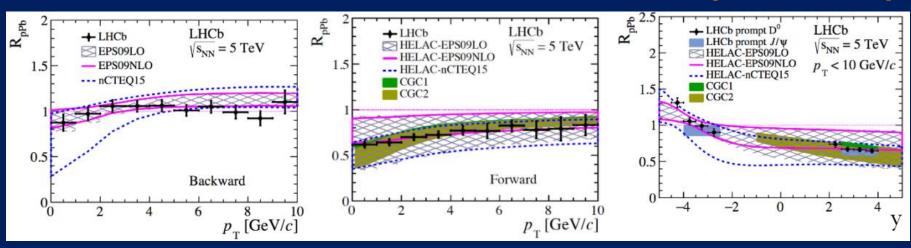
- Antiproton/proton ratio known with great precision in cosmic rays
 - AMS 2 result: [PRL 117, 091103 (2016)]
 - PAMELA result [JETP Letters 96 (2013) 621]
- Hint for a possible excess of the \overline{p}/p ratio at high energies with less energy dependence than expected
- The prediction for p/p ratio from spallation of primary cosmic rays on interstellar medium (H and He) is limited by uncertainties on p-production cross-sections, particularly for p-He
- Predictions from soft QCD models vary within a factor 2

The energy scale of LHCb in fixed target mode is well suited to measure the p-He cross-section


Burkhard Schmidt

p - production cross-section

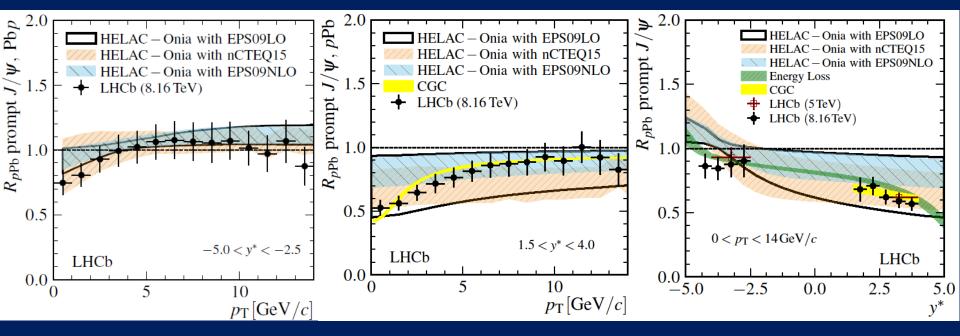
- Data collected in 2016 in pHe collisions at $\sqrt{s_{NN}} = 110 \text{ GeV}$
- Measurement compared with EPOS LHC, EPOS 1.99, QGSJET-II, QGSJETII-04m, Hijing, PYTHIA 6.4. ICRC '17: difference summary by T. Pierog
- Uncertainties smaller than model spread
- EPOS LHC tuned on LHC collider data underestimates *p*-production
- Unique and precise: decisive contribution to shrink background uncertainties in dark matter searches in space


[LHCb-PAPER-2018-031, arXiv: 1808.06127]

Prompt D° modification factor

- D° cross-section and modification factor in pPb at $\sqrt{s} = 5.02$ TeV
- > D° fully reconstructed through $D^{\circ} \rightarrow K^{-} \pi^{+}$ decays

[JHEP 2017 090]


- R_{pPb} suppressed in forward region (~30%), no suppression in backward region, hint of small excess at large at backward rapidity (y*<-4)
- Measurements consistent with predictions using nPDFs or CGC framework [EPJC 77 (2017) 1, Comp. Phys. Com. 198 (2016) 238, Comp. Phys. Com. 184 (2013) 2562]
- At forward rapidity measurement also consistent with CGC models [Phys. Rev. D91 (2015) 114005, arXiv:1706.06728]

Burkhard Schmidt

Town Meeting Relativistic Heavy Ion Collisions

$\frac{HCb}{HCb}$ Prompt J/ψ modification factor

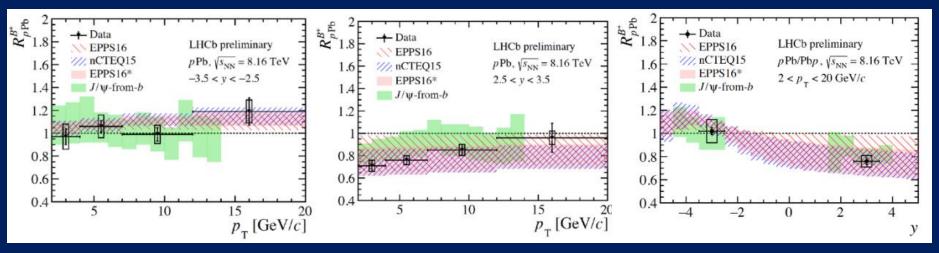
[PLB774 (2017) 159]

 \succ In fwd region: up to 50% suppression at low $p_{
m T}$, converging to unity at high $p_{
m T}$

- > In bwd region: R_{pPb} closer to unity, intriguing low values at low p_T
- Overall agreement with models good, but some have large uncertainties
- Results are compatible with LHCb results at 5 TeV [JHEP 02 (2014) 072]

> Result on $\Psi(2S)$ modification factor is coming soon

Burkhard Schmidt


b – hadron production in **p**Pb

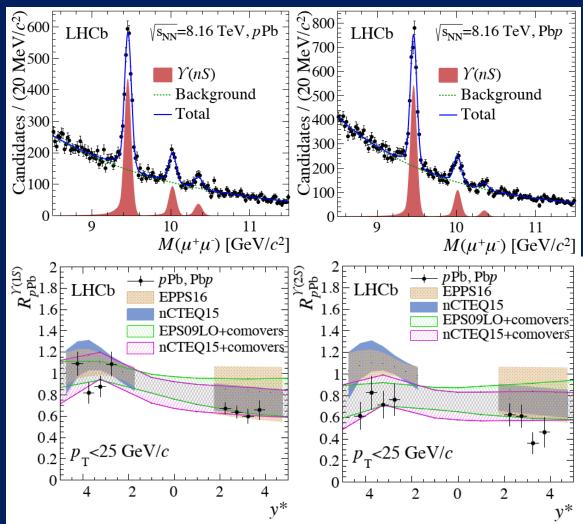
Exclusive decay modes:

 $B^+ \rightarrow J/\psi K^+, B^+ \rightarrow D^o \pi^+, B^o \rightarrow D^- \pi^+, \Lambda_b^o \rightarrow \Lambda_c^+ \pi^-$

B⁺ nuclear modification factors:

LHCb-CONF-2018-004

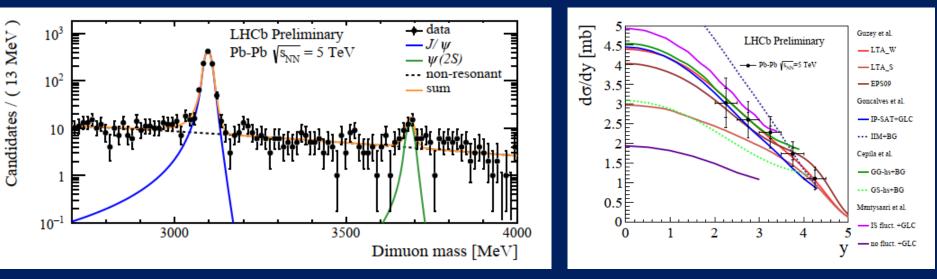
- Pattern consistent with R_{pA} of D^o mesons
- Significant suppression ($\approx 25\%$) in fwd rapidity, suppression decreases at large p_T
- Consistent with unity at backward rapidity
- Measurements in good agreement with J/ψ-from-b decay data and calculations using nPDF sets [JHEP 04 (2009) 065, EPJ C77 (2017) 1, CPC. 198 (2016) 238]


Y(nS) production in pPb [arXiv: 181.07655]

\succ Y(nS) suppression observed in PbPb and pPb/Pbp by CMS and ALICE at low-p_T

- LHCb observed clear Y(3S) signal in both forward and backward rapidity
- Y(1S) fwd suppressed by ~30%
 Y(1S) bwd compatible with 1 within nPDF uncertainties
- Y(2S) additional suppression confirmed

➢ Models:


- EPPS16: Eur. Phys. J. C (2017) 77 163
- EPS09: JHEP 04 (2009) 065
- nCTEQ15: Phys.Rev.D93 (2016) 085037
- Comovers: Phys. Lett. B749 (2015) 98

$\frac{HCb}{HCp}$ J/ ψ photo-production in UPC

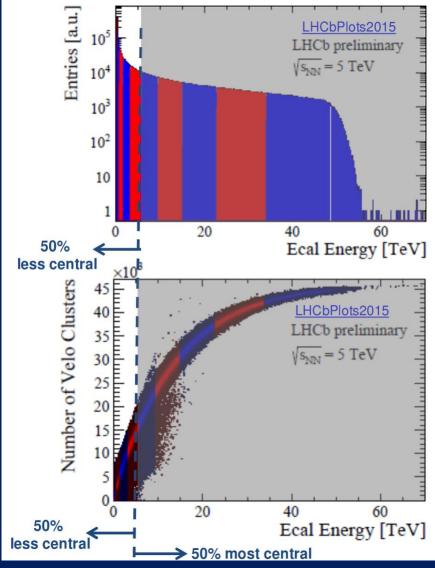
- Interaction between the electromagnetic field of the ions \rightarrow Coherent J/ψ photo-production, sensitive to nPDF, ...
- Cross section for coherent J/ψ production:

 $\sigma = 5.3 \pm 0.2 \; (stat) \pm 0.5 \; (syst) \pm 0.7 \; (lumi) \; mb$

- Phenomenological models: PRC 97 024901 (2018), PRD 96 094027 (2017), PRC 93 055206 (2016), PLB 772 (2017) 832
- > Measurement of $\psi(2S)$ / J/ ψ ratio planned with 2018 PbPb data

Burkhard Schmidt

Town Meeting Relativistic Heavy Ion Collisions

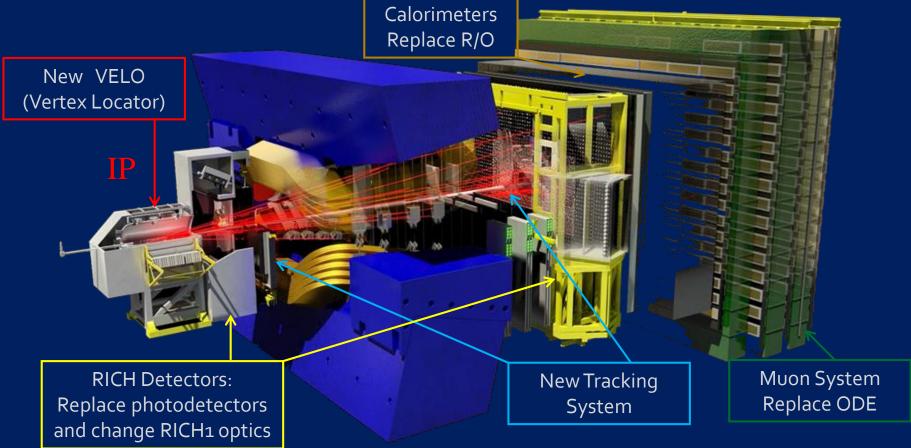

LHCb-CONF-2018-003

Centrality of PbPb collisions

- LHCb centrality reach
 - Measured by the calorimeter
 - > Detector limitation:

Saturation in the Vertex Locator and the Tracking System for the most central PbPb collisions

- Current LHCb tracking algorithm efficient to up to 50% of centrality
- Present limit for studies of nuclear PbPb interactions



LHCb Detector Upgrade I

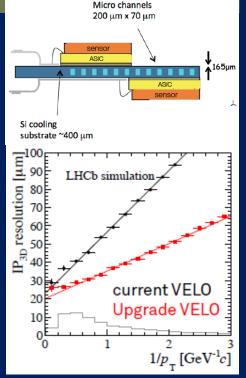
- Better utilise LHC capabilities: collect > 50 fb⁻¹ of pp data
- upgrade ALL sub-systems to 40 MHz FE-electronics; fully software trigger
- adapt sub-systems to increased occupancies due to 5 x higher luminosity

 \rightarrow Go from 4 x 10³²/cm²/s to 2 x 10³³/cm²/s

[CERN-LHCC-2012-007]

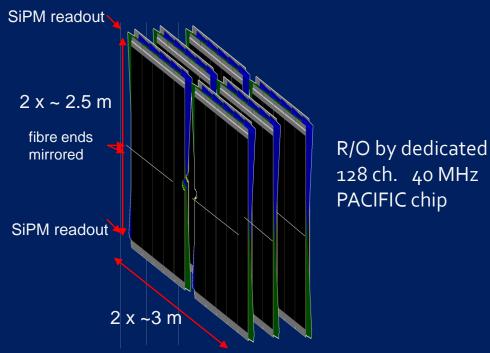
LHCb **VELO upgrade**

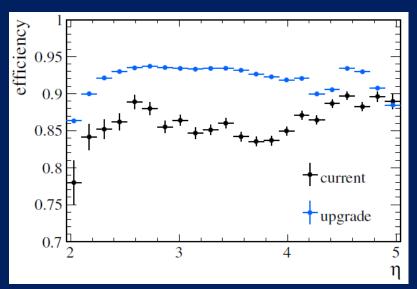
Upgrade challenge:


- withstand increased radiation
- handle high data volume
- improve current performance
 - lower materiel budget
 - enlarge acceptance

Technical choices :

- 55x55 μm² pixel sensors with micro channel CO₂ cooling
- 40 MHz VELOPIX
- replace RF-foil between detector and beam vacuum
 - reduce thickness from 300 μ m \rightarrow \leq 250 μ m
- move closer to the beam
 - reduce inner aperture from 5.5 mm \rightarrow 3.5 mm
- better IP resolution due to reduced material budget
 - Figure: 3D IP resolution at $L = 2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$


[CERN-LHCC-2013-021]



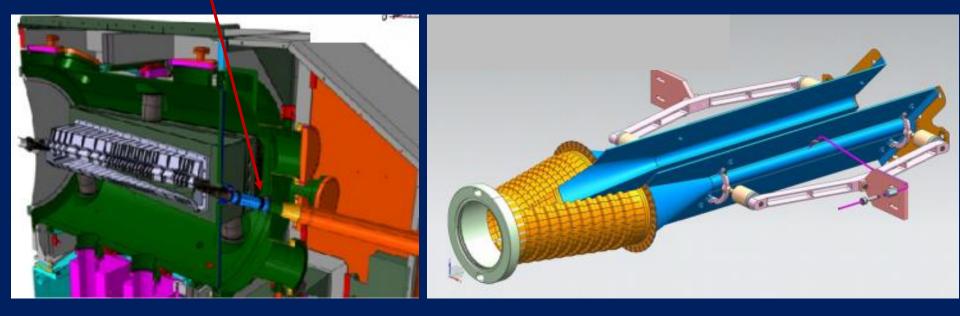
Heb T-stations upgrade: Fibre Tracker

- 3 stations of X-U-V-X (±5° stereo angle) scintillating fibre planes
- every plane made of 5 layers of Ø=250 μm fibres, 2.5 m long
- x-position resolution of 50 75 μm;

Efficiency for $B_s \rightarrow \Phi \Phi$ events: (under upgrade conditions)

→ improved tracking performance at upgrade luminosity with Fibre Tracker

- **Benefits of SciFi concept:**
- a single technology with uniform material budget
- SiPM + infrastructure outside acceptance
- fast pattern recognition for HLT


[CERN-LHCC-2014-001]

Upgrade of the SMOG system

Current LHCb fixed-target setup is planned to be upgraded for Run 3

Insert a storage cell, placed upstream of the VELO during LS2

- > Injection of noble gases but also H_2 , D_2 as references
- 10–100 times larger instantaneous luminosity per unit length
- > Other upgrades (crystal target, polarised target, wire target) under discussion

Fixed Target scenario for Run 3

Planned data-sets for Run 3:

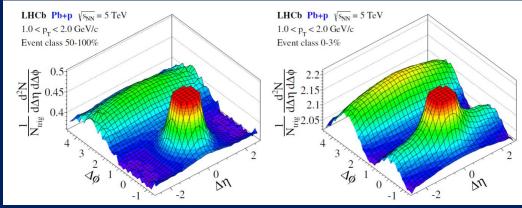
- Extended gas choice : pH₂, pD₂, pO₂ at 115 GeV
- Large dataset of pAr foreseen at 115 GeV : ~ 10/pb
- PbAr at 72 GeV ~ 5/nb ; pAr at 72 GeV ~ 1/pb

Physics reach:

	Current SMOG result pHe@86 GeV	SMOG largest sample pNe@68 GeV	SMOG2 example pAr@115 GeV
Int. Lumi.	7.6/nb	~ 100 /nb	~ 10 /pb
syst. error on J/ψ x-sec.	7%	6 - 7%	3 - 4 %
J/ψ yield	400	15k	3.5M
D^0 yield	2000	100k	35M
Λ_c yield	20	1k	350k
ψ' yield	negl.	150	35k
$\Upsilon(1S)$ yield	negl.	10	3k
DY $\mu^+\mu^-$ yield	negl.	10	3k
(5 < M < 9 GeV)	-		

Comments:

- The above list is far from being exhaustive;
- extrapolations are crude estimates, just to provide figures of merit;
- smaller systematic uncertainties with SMOG2 are expected from the reduction of the dominant uncertainty on the luminosity (6%) for SMOG data .
 Burkhard Schmidt Town Meeting Relativistic Heavy Ion Collisions


More possibilities with SMOG

UPC physics :

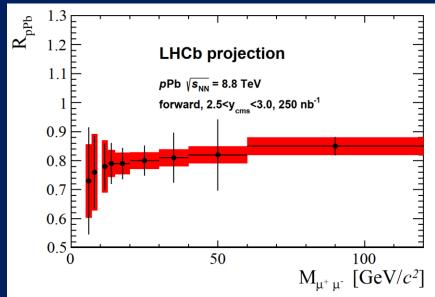
- Measure cross-section for photo-produced J/ψ in Fix-Target mode
- ~ 300 pb⁻¹ in pAr can complement studies ongoing by LHCb in collision mode (pp, pPb, PbPb) [JHEP 1509 (2015) 087; arXiv:1709.09044, arXiv:1802.04713]

Potential to study elliptic flow over 3 units of pseudorapidity with full instrumentation at unique energy scale

Di-hadron correlation studies already demonstrated by LHCb in pPb

- no studies in Fix Target mode performed yet
- yields with SMOG2 could allow flow studies with charmed particles

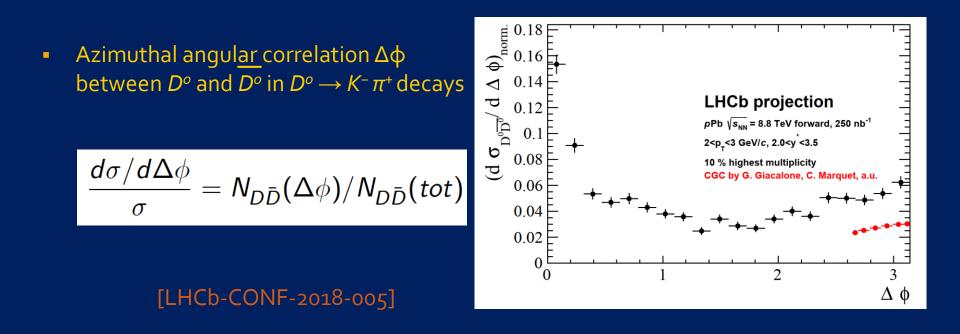
Possibilities with more *p*Pb data


- LHCb looks forward to *p*Pb collisions in Run 3 and Run 4 at $\sqrt{s_{NN}} = 8.8 \text{ TeV}$ with integrated luminosities of 250 nb⁻¹ in each beam configuration.
- Precise measurements at low-Q² and low-x_{Bi}:

crucial to constrain the nPDFs in the low-x regime.

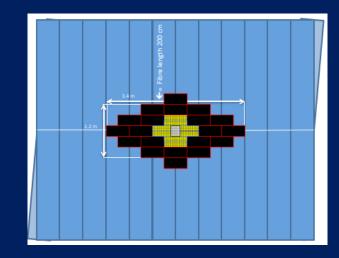
Drell-Yan measurement in pPb

- Clean indirect probe of the gluon nPDF at small x_{Bi}
- Reference measurement to clarify the dominant source of nuclear modification observed for heavy-flavour production
- For the Drell-Yan measurement, the precision of the VELO and the forward acceptance allow to control the background from semi-leptonic heavy-flavour decays.


[LHCb-CONF-2018-005]

Hick Possibilities with more pPb data

D^o*D*^o correlation measurement


- disentangle the contributions from different production mechanisms through the angular distribution
- angular correlation is sensitive to intrinsic transverse momentum, which may be related to the saturation scale.
- crucial piece of information for charm and beauty thermalisation within the QGP

Further LHCb upgrades (lb &II)

- To fully exploit the flavour physics potential of the HL-LHC, LHCb proposes an upgrade II in LS4. Target Luminosity: > 300 fb⁻¹ (pp) at 1-2 x 10³⁴ /cm²/s [CERN-LHCC-2017-003]
- The upgrade II detector will have improved granularity and resolutions
- This offers the opportunity of a general purpose Heavy Ion experiment suited also for the most central PbPb collisions at forward rapidity.
- The main limitation will come from the SciFi Tracker, which would need to be upgraded: add Si-trackers (with two different granularities)

Detector	Maximum occupancy in most central
	PbPb at $\sqrt{s_{NN}} = 5$ TeV
VELO (Upgrade I)	4 %
VELO upgrade (Upgrade II)	1 %
SciFi (Upgrade II)	25%

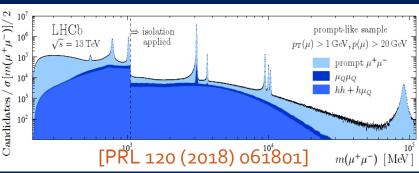
Smaller upgrades are planned already for LS3 :

Improve tracking acceptance for low momentum particles

- Install tracking stations on the dipole magnet internal sides
 - e.g. D^{*+} \rightarrow D π_s^+ , 40% extra slow pions

Town Meeting Relativistic Heavy Ion Collisions

LHCD Heavy ion physics possibilities beyond LS4


- At upgrade II luminosities, the number of tracks in *pp* collisions will be close to that observed in central Pb-Pb collisions (dedicated studies are needed).
- Quarkonium and open heavy flavour:
 - $\psi(2S)$ yield at low p_T remain statistically limited after Run 3+4, with low signal over noise ratio
 - P -wave states like χ_c states are challenging and particularly interesting to study colour charges
 - > Main limitation for LHCb: integrated luminosity
- Low-mass di-leptons and photons
 - ρ° meson sensitive to chiral symmetry restoration in the QGP
 - thermal radiation in the intermediate mass region
 - LHCb Upgrade II has the potential to measure precisely di-lepton production in the di-muon channel at the LHC.
 - VELO detector allows for suppression of heavy flavour background

• Drell-Yan, *cc* and *bb* in *p*A or AA collisions in view of nuclear PDFs and saturation

 Precise low mass Drell-Yan (below masses of 10 GeV/c²) or low-p_T below 10 GeV/c² photon measurements are world-leading unique opportunities

Burkhard Schmidt

Town Meeting Relativistic Heavy Ion Collisions

[CERN-LHCC-2017-027]

Summary and Conclusions

- The LHCb detector has unique capabilities for heavy flavour measurements at LHC in collider and fixed-target modes
- The ongoing and proposed future upgrades of the detector will enhance the centrality reach of the LHCb experiment:
 - Upgrade 1: potentially up to 20-30% centrality (to be studied carefully)
 - Upgrade 2: intention to reach full centrality in PbPb (design phase is ongoing)
- The LHCb Upgrade II offers the opportunity of a general purpose heavy-ion experiment suited from pA up to most central AA collisions at forward rapidity.
- The SMOG2 proposal opens great possibilities for a substantial increase of data size and choice of gas species with respect to the current SMOG program already for Run3.
- Other upgrades for Fixed Target physics are under discussion: crystal target, polarised gas target, wire target