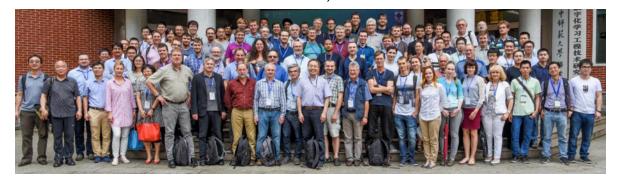


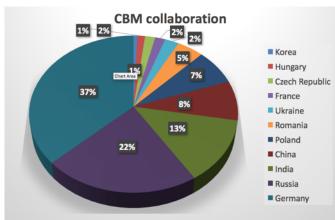
Town meeting: Relativistic Heavy Ion Physics

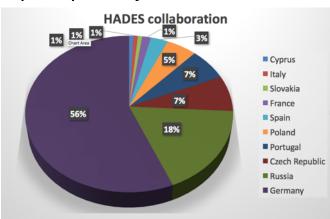
FAIR: CBM


Tetyana Galatyuk

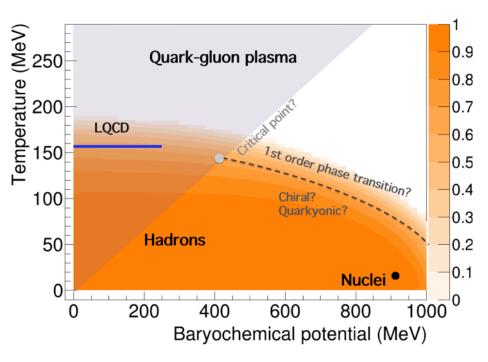
GSI and Technische Universität Darmstadt

for the HADES and CBM Collaborations


CBM Collaboration: 464 scientists, 11 countries


HADES Collaboration: 135 scientists, 9 countries

Spokesperson Norbert Herrmann



Spokesperson Joachim Stroth

What is the QCD phase structure?

P. Steinbrecher (HotQCD), arXiv:1807.05607 Condensate: B.J. Schaefer and J. Wambach Vanishing μ_B, high T (lattice QCD)

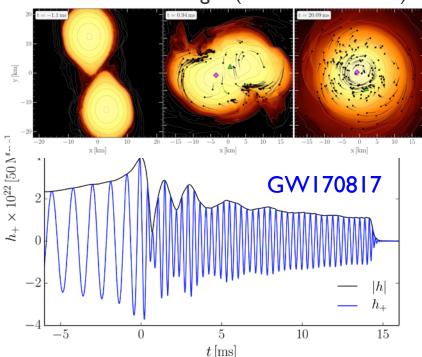
 Crossover, universality
 no CP indicated by lattice QCD at μ_B < 400 MeV, T > 140 MeV

 Large μ_B moderate T (IQCD inspired models)

 Thermal equilibrium?

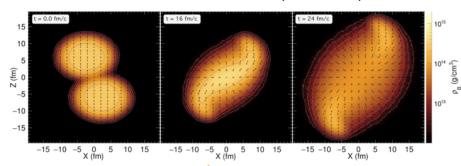
Ist order transition?

QCD critical point?


 $2 < \sqrt{s_{NN}} < 8 \text{ GeV}$ Large discovery potential!

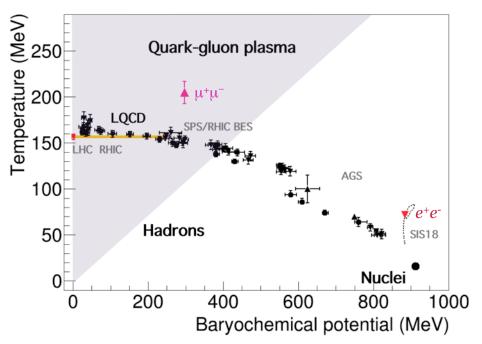
Melting of the condensate?

Laboratory studies of the matter properties (EoS) in compact stellar objects



M. Hanauske, Journal of Phys.: Conf. Series 878 (2017) 012031 L. Rezzolla et al., arXiv:1807.03684 [astro-ph.HE]

Au+Au I.25A GeV (UrQMD)



- □ T<70 MeV, ρ <3 ρ_0 for both (note the different isospin)
- □ SIS100:T<150 MeV, ρ <8 ρ_0 → super dense core of neutron stars

Strong connections between the fields

Searching for landmarks of the QCD matter phase diagram

Experimental approach:

- ☐ Probe with highest precision different regions of the QCD matter phase diagram
- Systematic measurements (E_{beam}, A)
 → extract numbers that might be related to the QCD phase diagram
 - ☐ Chemical freeze-out (analysis in framework of SHM)
 - ☐ Fireball temperature (dilepton invariant mass)

A. Andronic et al., Nature 561 (2018) no.7723 F. Becattini et al., PLB 764 (2017) 241

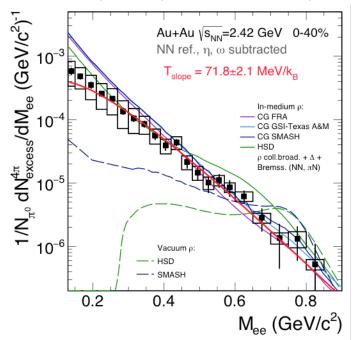
J. Cleymans et al., PRC 73 (2006) 034905; STAR Collab, PRC 96 (2017) 044904 HADES Collab., EPIA 52 (2016) 178; FOPI Collab, PRC 76 (2007) 052203

▲ H. J. Specht et al. (NA60 Collab.), AIP Conf. Proc. (2010) 1322

▼ HADES preliminary, Quark Matter 2018

Core Physics Motivation

- ☐ The QCD Equation-of-State
 - → Collective behavior (flow anisotropies)
 - → Multi-strange baryons
 - → Hyperon-N, Hyperon-Hyperon interactions
- Search for exotic phases and Ist order phase transition
 - → E-b-e observables (higher moments)
 - → Dilepton production ("caloric curve")
- Is there a Critical point?
 - → Net-baryon number fluctuations
 - → Dilepton production (low-mass dilepton excess yield)
- Path to restoration of chiral symmetry
 - → High-precision dilepton invariant mass distributions at low- and intermediate masses
- Strange matter
 - → (Double-) lambda hypernuclei
 - → Meta-stable objects (e.g. strange di-baryons)
- ☐ Charm production (and propagation) at threshold
 - \rightarrow pp, pA


CBM Collab., EPJA 53 (2017) 60

Strong interest internationally

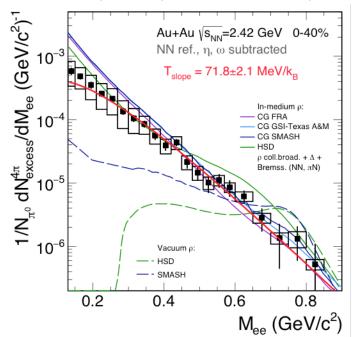
- → RHIC BES, NA61 SPS, MPD NICA (BM@N)
- → NA60+ SPS, CEE HIAF, HI injector J-PARC

Electromagnetic radiation

Excess yield fully corrected for acceptance

HADES Collab., submitted
CG FRA Endres et al.: PRC 92 (2015) 014911
CG GSI-Texas A&MTG et al.: Eur.Phys.J.A52 (2016) no.5, 131
CG SMASH: J. Staudenmaier et al., arXiv:1711.10297v1
HSD: Phys. Rev. C 87, 064907 (2013)

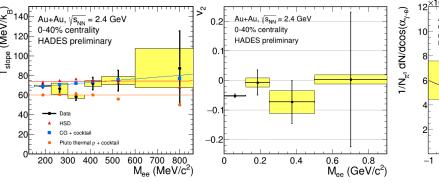
 \square Strong broadening of the in-medium ρ



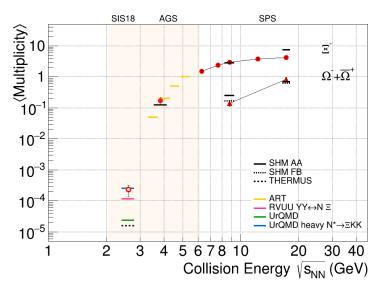
- Supports baryon-driven medium effects at UrHIC
- \Box ρ-baryon coupling mechanism in accordance with strict VMD, verified by HADES in π -+p
- Thermal origin of low-mass excess, $\langle T \rangle = 72 \pm 2 \text{ MeV}$

Electromagnetic radiation

Excess yield fully corrected for acceptance

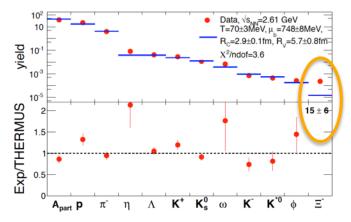


HADES Collab., submitted CG FRA Endres et al.: PRC 92 (2015) 014911 CG GSI-Texas A&MTG et al.: Eur.Phys.J.A52 (2016) no.5, 131 CG SMASH: J. Staudenmaier et al., arXiv:1711.10297v1 HSD: Phys. Rev. C 87, 064907 (2013) \square Strong broadening of the in-medium ρ



- Supports baryon-driven medium effects at UrHIC
- \Box ρ-baryon coupling mechanism in accordance with strict VMD, verified by HADES in π -+p
 - Thermal origin of low-mass excess, <T $> = 72 \pm 2 \text{ MeV}$

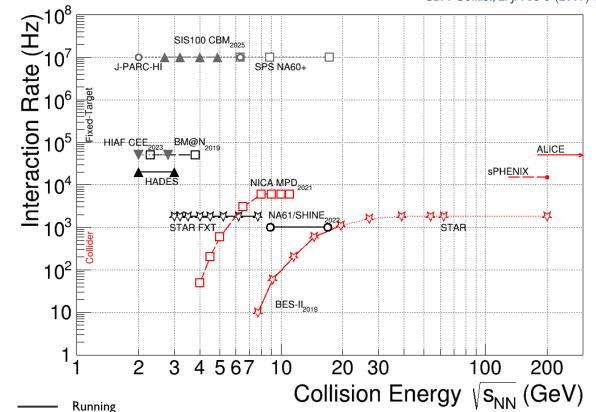
Multi-strange baryons



HADES Coll., PRL 103 (2009) 132301

Multi-differential analysis (spectra, flow) needed to increase the discrimination power with respect to models

- $\sqrt{s_{NN}}$ < 6 GeV baryon rich matter, data are missing for less abundant particles $(\Xi, \Omega)!$
- Unexpectedly large Ξ⁻ yield at sub-threshold energies (HADES ArKCl, pNb)
 - □ Not in equilibrium?
 - Role of YY interaction, high mass baryonic resonances?



HADES Collab. Eur. Phys. J. A52 (2016) 178

Explore QCD phase structure through energy scan

CBM Collab., EPJA 53 3 (2017) 60

- CBM's unique feature high statistics measurement of rare probes
- ☐ HADES marks lowest point of the excitation functions

– – Conceptual design

FAIR is a multi-purpose (strong interaction) facility

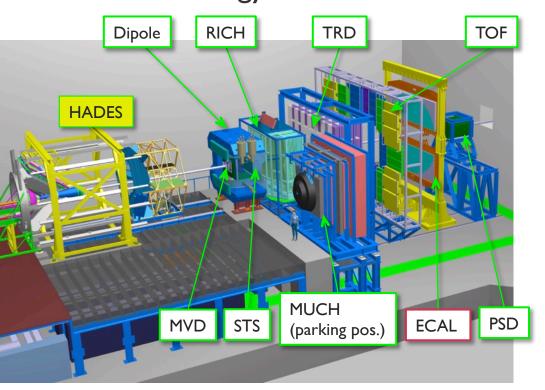
- ☐ SIS18 tunnel upgrade finished
- Excavation of SIS100 tunnel progresses rapidly
- Serial production of major components for SIS100 started
- ☐ CBM cave readiness 2022
- ☐ SIS100 commissioning with beam 2025

SIS100 Dipole

RF Cavity System

Cryo catcher

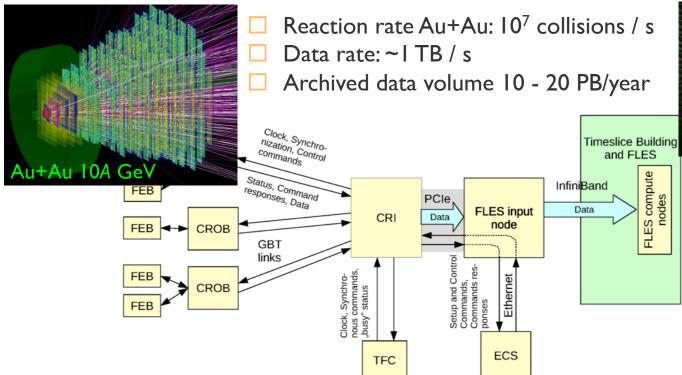
Dipole, quadrupole units


Cryo bypas line

Bunch compressor

The CBM strategy

~20 years progress in technology since AGS


- Fixed target experiments
 - → obtain highest luminosities
- Versatile detector systems
 - → optimal setup for given observable
- Tracking based entirely on silicon
 - → fast and precise track reconstruction
- ☐ Free-streaming FEE
 - → nearly dead-time free data taking
- On-line event selection
 - → high-selective data reduction

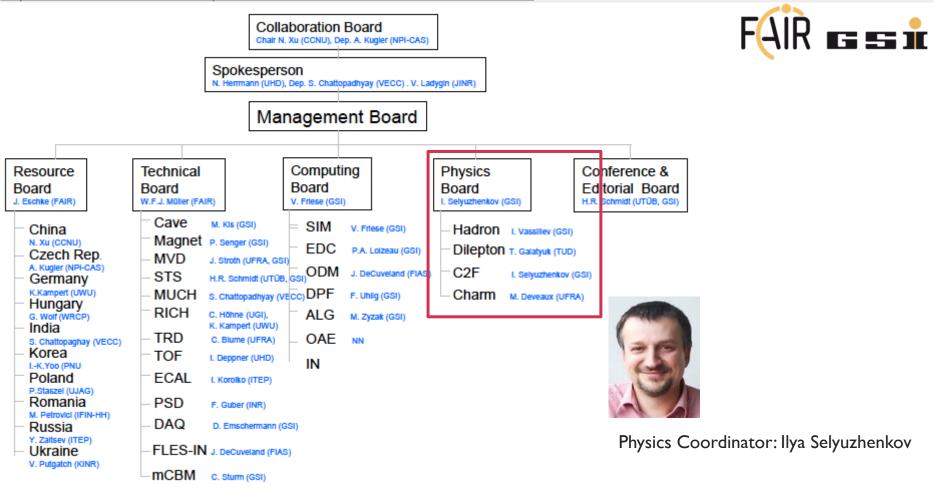
Day-Isetup: $R_{int} = 0.5 \text{ MHz} (0.1 \text{ MHz with MVD})$

Phase-I setup: Day-I+ECAL+Compute Performance \rightarrow R_{int} = 10 MHz

Day-I funding ~90% secured

CBM data processing system

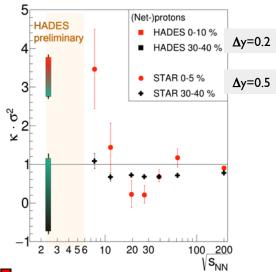
FAIR GEST



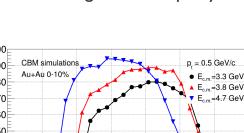
- Radiation tolerant detectors and front-end electronics
- Software based event selection, 4D tracking

ALFA - a common framework for ALICE and FAIR experiments

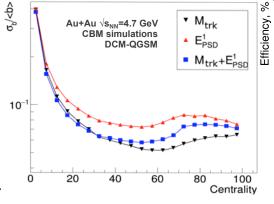
The Anticipated Physics Performance (selected cases)



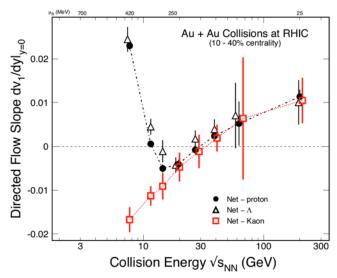
Critical fluctuations


- Probe the structure of strongly interacting matter
 - □ Need detailed systematic study of experimental and instrumental effects
 - O E-b-e changes of efficiency
 - O Corrections for volume fluctuations

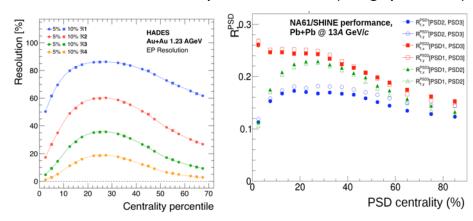
V. Skokov et al., PRC 88 (2013) 034911 PBM, A. Rustamov, J. Stachel, NPA 960 (2017) 114 Bzdak et al., Phys.Rev. C94 (2016) 064907 M. Kitasawa, PRC 93 (2016)

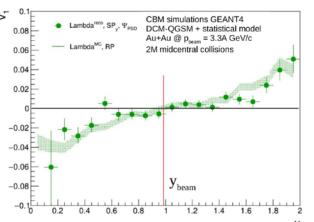

- Unfolding + vol. flucs. corr.
- E-b-e eff corr. of factorial moments + vol. flucs. cor

Centrality detector independent in acceptance from main detector – avoid autocorrelations


coverage at mid-rapidity

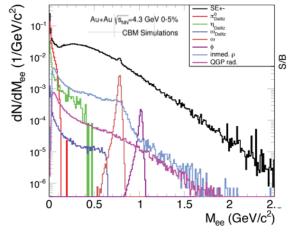
Sufficient proton

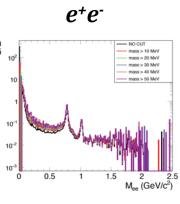

Anisotropic flow

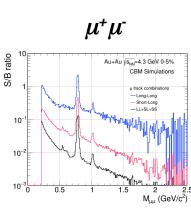

- Probe the EoS of matter
- Exploiting many synergies between CBM, MPD, HADES, NA61, ALICE
 - ☐ Similar type detector, same techniques, analysis of real data

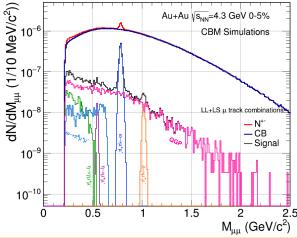
STAR Collab., PRL120 (2018) 062301

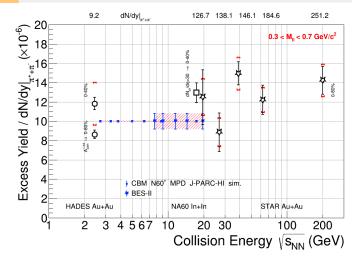
Precise *n* order event plane resolution (using spectators)

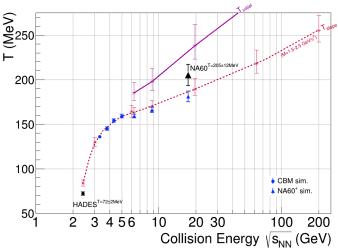

Directed flow of Λ (full scale MC simulations)

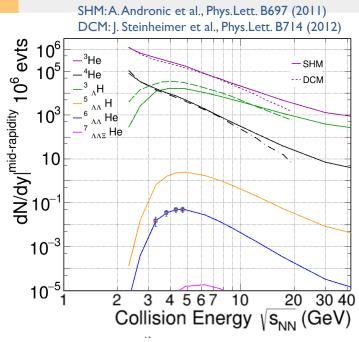

"Input" model v_1 is recovered using "data-driven" method


Thermal dileptons


- Phase transition (and CP)
 - ☐ Measurement of excitation function of low-mass excess yield
 - ☐ Measurement of "caloric curve" with an accuracy of T at MeV level
- Chiral symmetry restoration
 - \square Isolation of dilepton spectrum from ρ -a, chiral mixing
 - O Negligible correlated charm contribution
 - O Significant reduction of \mathcal{D} rell- \mathcal{Y} an (pA measurements!)
 - O Decrease of QGP


Hohler and Rapp, Phys.Lett. B731 (2014) Jung, Tripolt, et al., Phys.Rev. D95, 036020 (2017)




Thermal dileptons excitation functions

- \square M_{||}<1 GeV/ c^2
 - \square ρ dominates, 'melts' close to T_{c}
 - Yield in low-mass window tracks fireball lifetime
- Search for "extra radiation" around phase transition (& critical point?)

NA60: Chiral 2010, AIP Conf. Proc. (2010) 1322 STAR: PLB 750 (2015), arXiv:1612.05484 [nucl-ex] HADES: S. Harabasz OM2018

- \square M_{||}>1 GeV/ c^2
 - ☐ Measures true T (no blue shift) of emitting source from fit of acceptance corrected thermal spectra with $M^{3/2}exp(-M/T_s)$
- → Plateau around onset of deconfinement?

R. Rapp, H. van Hees, PLB 753 (2016) 586 TG et al.: EPJA 52 (2016) 131

 $m_{inv} {5 \atop ^5} He p\pi^{-} [GeV/c^2]$

Nuclei and hyper-nuclei production

- ☐ How do nuclei and hyper-nuclei form?
 - ☐ Compact multi-quark states at the phase boundary?
 - ☐ Coalescence?
- What are their properties?
- Do YY bound states exist?
- How do YN, YY interact?

ALICE Collab., Phys. Lett. B 754 (2016) 360 STAR Collab., arXiv:1710.00436 [nucl-ex] HAL CD Coll., arXiv:1709.00654 [hep-lat]

Duty F

0.5

0.5

0.5

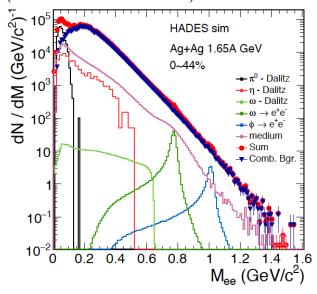
Yield

1.4x109

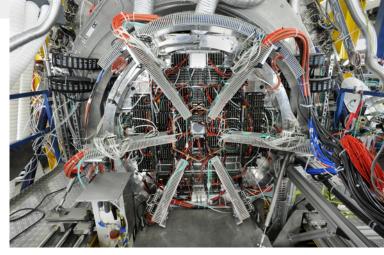
 7×10^{7}

600

Precision measurement of spectra, life-time and flow pattern


$-\frac{6}{\Delta\Delta}$ He $\sigma = 2.6 \text{ MeV/c}^2$					<u> </u>		
S/B = 0.41, $\varepsilon_{4\pi}$ = 1.2% Here 5 Here 7		Mult	BR	$\sqrt{s_{NN}}$	Run time	ε %	R_{int}
50 AATTE ATTE POUR PROPERTY OF THE POUR PROPERTY OF THE POUR POUR POUR POUR POUR POUR POUR POUR	${}^3{}_{\Lambda}H$	3.8×10 ⁻²	0.25	4.7 GeV	l wks	19	10 MHz
	${}^4_\Lambda {\sf He}$	2×10 ⁻³	0.32	4.7 GeV	l wks	15	10 MHz
	$^{6}_{\Lambda\Lambda} He$	6×10 ⁻⁸	0.01	4.7 GeV	10 wks	1.3	10 MHz
5.95 6 6.05							

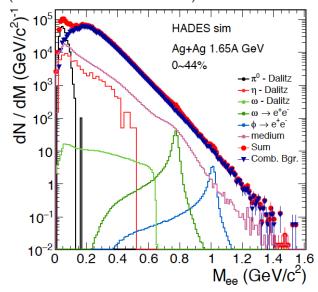
Near future: CBM at FAIR Phase-0


HADES at SIS18/GSI

Expected e⁺e⁻ invariant mass spectra (full scale MC simulation)

4.5×10⁹ events 10 kHz trigger rate 4 weeks beam on target

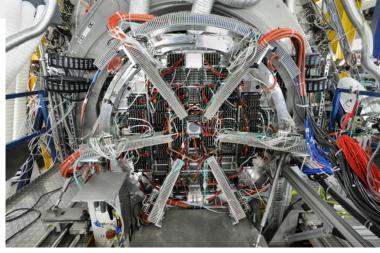
CBM groups:
Univ. Wuppertal
Univ. Giessen
GSI Darmstadt
Univ. Frankfurt
TU Darmstadt



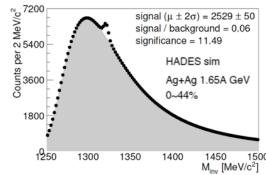
This is already ½ of the CBM RICH photon detector

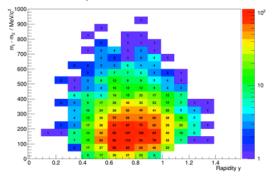
 Access for the first time at this collision energies intermediate mass range

HADES at SIS18/GSI


Expected e⁺e⁻ invariant mass spectra (full scale MC simulation)

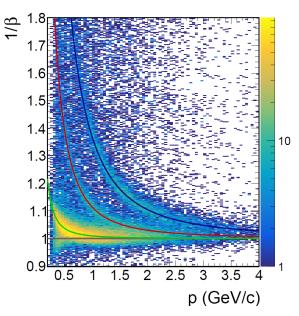
- Access for the first time at this collision energies intermediate mass range
- Identify the mechanism responsible for the unexpectedly large Ξ⁻ yield

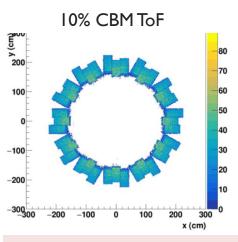

4.5×10⁹ events 10 kHz trigger rate 4 weeks beam on target


CBM groups:
Univ. Wuppertal
Univ. Giessen
GSI Darmstadt
Univ. Frankfurt
TU Darmstadt

This is already ½ of the CBM RICH photon detector

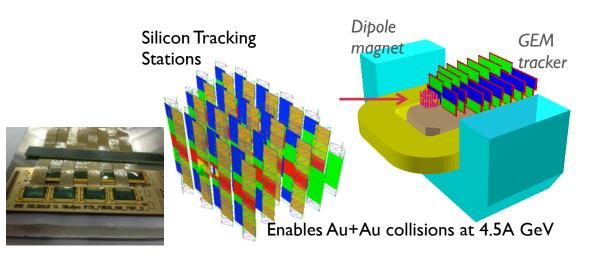
~2500 Ξ - \rightarrow Multi-differential analysis feasible





STAR at RHIC/BNL

Matched tracks Run 18 CBM eTof – STAR TPC



eToF wheel installation 2018 Physics Run 2019 - 2020 Transfer of modules to FAIR 2022 - 2023

CBM groups:

Univ. Heidelberg, TU Darmstadt, GSI Darmstadt, Univ. Frankfurt, Tsinghua Univ. Beijing, USTC Hefei, CCNU Wuhan

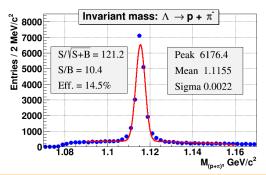
BM@N at Nuclotron/JINR

CBM groups:

GSI Darmstadt, Univ. Tübingen, JINR Dubna

2018 Installation of PSD detector (MoU signed)

2019 Au beams from Nuclotron


2020 Installation of 4 Si Tracking Stations (MoU signed)

Synergy with NA61/SHINE

- PSD detector
- Flow analysis

PSD module

mFLES racks @ Green IT Cube

mCBM at SIS18/GSI

mSTS GSI

Demonstrator for full CBMdata taking and analysis chain under full load (Au-Au, 10⁷ interactions/s)

mPSD Moscow

mTOF Heidelberg

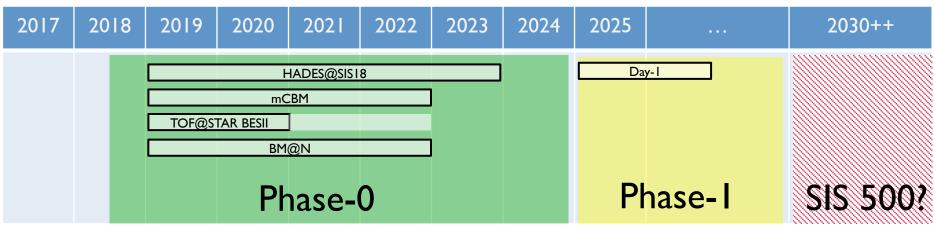
mMUCH VECC

mRICH Giessen, Wuppertal

- Free streaming data transport to a computer farm
- Online reconstruction and event selection
- Offline data analysis

Requested beam time was fully granted by G-PAC

mMVD₂₀₂₀ Frankfurt



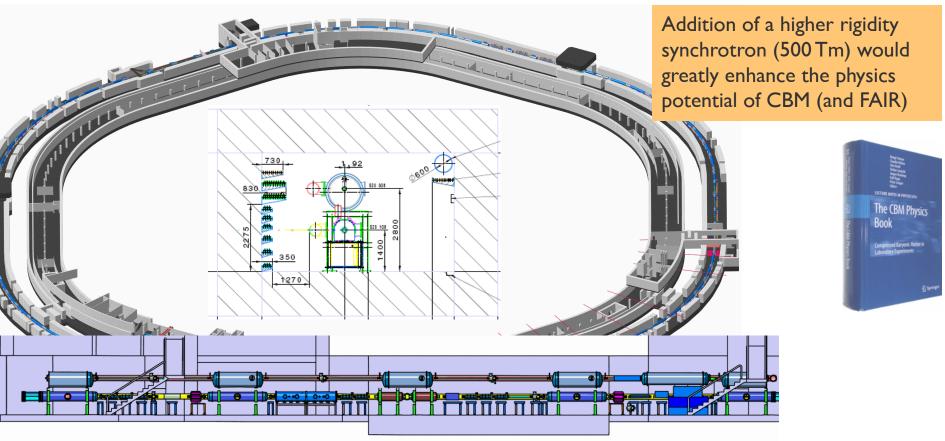
Towards FAIR Phase-I

Time line

HADES upgrade 2019-2020:

DAQ upgrade - 200 kHz interaction rate (p+p, p+A)

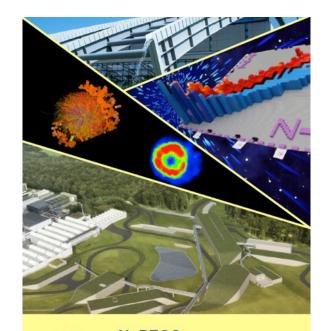
CBM:


Au+Au program
Cold matter physics (p+A)

HADES:

Cold matter physics (p+A)
Exclusive measurements (p+p)
(Ag+Ag 4.5A GeV for comparison)

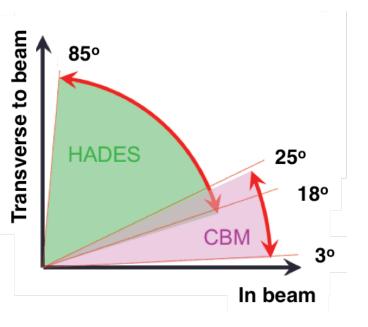
Tunnel for SIS100 / SIS500

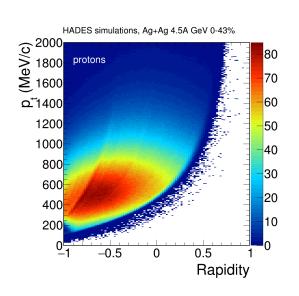


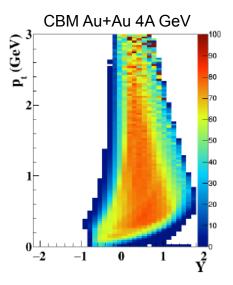
Priority endorsed by

□ NuPECC Long Range Plane□ Strategic planning until 2030

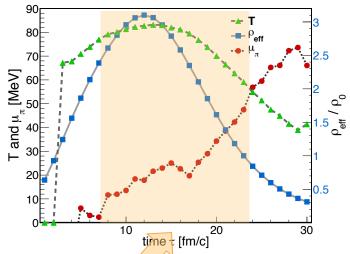
- Recommendations
 - At intermediate energies, we recommend the continuation of the on-going programmes: HADES at SIS-18, NA61 at the SPS.
 - In order to investigate nuclear matter at high baryonic density, the timely construction of SIS-100 at FAIR and the realization of the CBM experiment are of utmost importance.
 - In parallel, efforts should continue in order to support developments for a future SIS-300 upgrade.


NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics

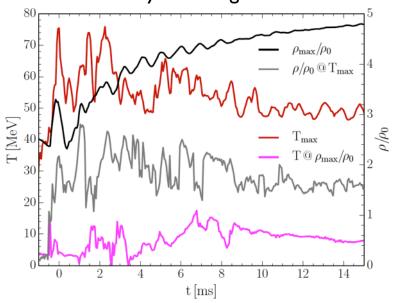



Thank you for your attention!

HADES – CBM complementarity



Evolution of HIC and NS merger


Central cell (3x3x3 fm3) thermodynamic properties from coarse graining UrQMD

TG, F. Seck, R. Rapp, J. Stroth, Eur. Phys. J.A 52 (2016) 131

Active thermal e⁺e⁻ radiation window ~13 fm/c Dileptons sensitive to dense phase

Evolution of the central region in a binary NS merger

M. G. Alford et al., Phys. Rev. Lett. 120, 041101 M. G. Alford, et al., Phys. Rev. D 96, 124005, A. Bauswein et. al., Astrophys. J. 773, 78 (2013) M. Hanauske (priv. com.)