STAR Plan for future Heavy-Ion Physics

www.star.bnl.gov

Zhangbu Xu for the STAR Collaboration • 2021+ Unique Physics cases

- nPDF
 - forward jets/ γ /DY
- Viscosity [η/s(T)] Multiple Harmonics and Rapidity Correlations
- Vorticity

Rapidity Dependence of Global Hyperon Polarization

• Luminosity

Dilepton Radiation, Chiral Symmetry resolving photon puzzle

• Conductivity

Create and Probe Magnetic Field

Current STAR Detector System

STAR Major Upgrades for BES-II (2019-2021)

The STAR Forward Upgrade

Forward Tracking System:

<u>**3 Silicon disks:**</u> at 90, 140, 187 cm from IR Built on successful experience with STAR IST

- Single-sided double-metal mini-strip sensors
- Existing IST FEE, DAQ and cooling system

<u>4 sTGC disks:</u> at 270, 300, 330, 360 cm from IP

- Position resolution: ~100 mm
- Readout: reuse current STAR TPC electronics
- ¹ 1st sTGC prototype to be installed in STAR in 2019
 - 1/4 size of ATLAS sTGC

Forward Calorimeter System:

ECal:

□ reuse PHENIX PbSC calorimeter with new readout on front phase

HCal:

□ sandwich iron-scintillator plate sampling Calo

Same readout for both calorimeters \rightarrow cost

Detector	pp and pA	AA
ECal	~10%/VE	~20%/\E
HCal	~60%/\E	
Tracking	charge separation	$0.2 < p_T < 2 \text{ GeV/c with } 20-30\%$
	photon suppression	1/p _T

Nuclear PDF and Initial Conditions for A+A collisions

measure nPDF in a x-Q² region where nuclear effects are large

 $Q^2 > Q_s^2$ over a wide range in *x*

Forward upgrade essential

Current knowledge

Forward DY and Photon Measurements

DY and direct photon R_{pA} give significant constraints on nPDF Important input for initial condition in heavy-ion collisions

Forward upgrade essential

Temperature Dependent Viscosity

2015 US Nuclear Long Range Plan (#22):

comparative analyses of the wealth of bulk observables being measured hint that the hotter QGP created at the LHC has a somewhat larger viscosity.

This temperature dependence will be more tightly constrained by upcoming measurements at RHIC and the LHC.

Multiple Flow Harmonic Correlations

Sparse RHIC data for higher order flow harmonics (v_3 , v_4 , v_5) & rapidity density correlations/fluctuations

Why do we need wider window in rapidity?

- Flow like correlations are early time long-range → large Δη
- Background comes from Jets & non-flow
 - → small $\Delta \eta$

Precise extraction of flow (azimuthal correlations) requires measurements over wide window of rapidity

Forward upgrade essential

Rapidity Decorrelation and Initial State Fluctuations

Torque/twist of event plane

- Rapidity decorrelation sensitive to initial state fluctuations
- Observe large flow decorrelation in longitudinal direction at RHIC
- (3+1)D hydrodynamics tuned for LHC, over-predicts decorrelation at RHIC
- Large uncertainty at RHIC with FTPC and FMS

Global Hyperon Polarization in QGP

Rapidity Dependent Global Polarization

Polarization increases with viscosity and decreases with thermalization, Rapidity dependence is key; Different models predict opposite rapidity trend Forward upgrade + EPD + iTPC essential 0.10----200GeV

Hydrodynamic calculations:

Li,Pang,Wang & Xia, PRC 96 (2017) 054908; (private comm.) F. Beccattini et al. EPJC 75(2015)406; arXiv:1501.04468

Quantifying Chiral Symmetry Restoration and Thermal Radiation

(c²/GeV)

dN/dM_{ee} (

10⁻³

Ratio to Cocktail 7 2.5 7 2.

p^e>0.2 GeV/c

h^el<1,ly_l<1

M_{ee} (GeV/

QUARK-GLUON PLASMA AND HADRONIC PRODUCTION OF LEPTONS, PHOTONS AND PSIONS

E.V. SHURYAK Institute of Nuclear Physics, Novosibirsk, USSR

Received 16 March 1978

The best known example is dilepton production $(\mu^+\mu^-, e^+e^-)$, in which deviations from the Drell-Yan model [1] for dilepton mass $M \leq 5$ GeV reach a factor

Photon Puzzle:

yields of photons above model prediction at RHIC photon v_2 systematically above model

STAR at RHIC:

virtual photon spectra match Model Low-mass dilepton excess matches model

Important to resolve the puzzle

Thermal Dilepton at Low and Intermediate Mass

Mid-rapidity e^+e^- measurement at $\mu_B \sim 0$:

Connection to chiral symmetry restoration

Thermal radiation from QGP

iTPC upgrade essential

Low-mass di-lepton emission: T, total baryon density, and life time; more importantly dynamics of approaching Chiral Symmetry

The slope T in IMR: the true average temperature T of the medium. (no blue shift by flow)

Improvement:

Factor 2 smaller systematic uncertainties Factor 5.5 more statistics

Heavy ion collisions as a source of the strongest magnetic fields available in the Laboratory

Fig. A.2. Magnetic field at the center of a gold-gold collision, for different impact parameters. Here the center of mass energy is 200 GeV per nucleon pair ($Y_0 = 5.4$).

Probe Magnetic Field and QGP Conductivity

e⁺e⁻ pair from Photon-photon collisions generated by the passing of target and projectile nuclei, accompanying formation of QGP

Spectra peaks at p_T=30-50MeV, right magnitude to be very sensitive to magnetic field

Clean probe with unique characteristics

Summary on STAR future 2021+

Unique Detector Capability and beam species/energies To address fundamental physics

- Quantitatively improve nuclear PDF
- Quantifying QGP properties of Viscosity, understanding mechanics of Vorticity and polarization
- Quantifying degree of freedom and resolving photon puzzle
- Potential new study of QGP properties: Conductivity
- Jets, Quarkonia, Beam Energy Scan phase II and many other measurements

Backup slides

STAR Public documents on future programs and upgrades

- 1. SN0696-May. 1, 2018, STAR Collaboration Beam Use Request for Runs 19 and 20
- 2. SN0669-May. 11, 2017, The STAR midrapidity pp, pA, AA physics program beyond BES-II
- 3. SN0688-Mar. 9, 2018, Results from Large Scale STAR Raw Data Reconstruction on NERSC HPC
- 4. SN0670-May. 15, 2017, STAR Collaboration Beam Use Request for run 18 and run 19
- 5. SN0657-May. 30, 2016, The STAR Beam Use Requests for run 17 and run 18 (2016)
- 6. The RHIC Cold QCD Plan from 2017 to 2023: A portal to the EIC Jan. 2016, draft: December 2015
- 7. SN0666-May. 1, 2016, An Event Plane Detector for STAR
- 8. SN0665-Sep. 16, 2016, Physics Program for the STAR/CBM eTOF Upgrade
- 9. SN0648 January, 2016, STAR Forward Calorimeter and Forward Tracking Systems beyond BES-II
- 10. SN0644 Nov. 29, 2016, Technical Design Report for the iTPC Upgrade
- 11. SN0640-Oct. 19, 2015, Physics Opportunities with STAR in 2020+
- 12. SN0639-Oct. 15, 2015, Letter of Interest: CBM TOF as STAR Endcap TOF for BES-II at RHIC
- 13. SN0625-May. 19, 2015, RHIC Beam Use Request for runs 16 and 17
- 14. SN0619-Feb. 18, 2015, A Proposal for STAR Inner TPC Sector Upgrade (iTPC)
- 15. SN0617-Jan. 19, 2015, a case for run16 pp510 (supplementary material)
- 16. e-Print: arXiv:1502.02730, The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC
- 17. e-Print: <u>arXiv:1501.06477</u>, Exploring the properties of the phases of QCD matter research opportunities and priorities for the next decade
- 18. SN0606-Jun. 2, 2014, STAR Beam Use Request (BUR) for run-15 and run-16
- 19. SN0605-Jun. 1, 2014, A polarized p+p and p+A program for the next years
- 20. SN0598-Mar. 28, 2014, Studying the Phase Diagram of QCD Matter at RHIC
- 21. SN0592-Oct. 1, 2013, eSTARLetter of Intent
- 22. 2014 Computing plan https://drupal.star.bnl.gov/STAR/starnotes/private/psn0622
- 23. SN0588-Aug. 21, 2013, EsNETHEP/NP Science Network Requirements 2013
- 24. STAR Decadal Plan, December 2010, <u>https://drupal.star.bnl.gov/STAR/starnotes/public/sn0645</u>

STAR Collaboration Institutes from Europe (13/66)

- AGH University of Science and Technology, Poland
- Warsaw University of Technology, Poland
- Institute of Nuclear Physics Polish Academy of Sciences
- Czech Technical University in Prague, Czech
- Nuclear Physics Institute, The Czech Academy of Sciences
- Technische Universität Darmstadt, Germany
- Max-Planck-Institut fuer Physik, Germany
- University of Heidelberg, Germany
- Eotvos Lorand University, Hungary
- University of Zagreb, Croatia
- Joint Institute for Nuclear Research, Russia
- National Research Nuclear University MEPhI, Russia
- Institute of High Energy Physics Protvino, Russia

STAR, PRC 96 (2017)

Recent Highlights

<u>ک</u>

Directed flow

- Charm Flow v_0, v_1, v_2
- Jet Deflection Angle
- CME Background Estimates
- R_{AA} of Separated Upsilon States

Au+Au √s_{NN} = 200 GeV (20-50%) STAR preliminary $\Psi_{\rm BP}/\Psi_{\rm PP}$ (TPC full) 1 (1S) R 80 AA $\Psi_{\rm RP}/\Psi_{\rm PP}$ (TPC sub-evt) - 1 $m_{inv} > 1.5 \text{ GeV/c}^2$ (TPC full) Low m_{inv} + ESE (TPC sub-evt) $\Delta \gamma_{112}$ ESE ($\Delta \gamma_{123}$ similar) 0.2 0.3 -0.10.1 0.4 0.5 0 Possible CME $\Delta \gamma$ / inclusive $\Delta \gamma$

