Properties of strongly interacting matter from Lattice QCD calculations

Frithjof Karsch

Brookhaven National Laboratory & Bielefeld University

- current understanding of the QCD phase diagram based on lattice QCD calculations
- the search for a critical point
- heavy quarks at high temperature
- current and future challenges
- from petascale to exascale to zettascale calculations

Towards an understanding of the phase diagram of strongly interacting matter

- exploring the transition from hadrons to quarks& gluons
 deconfinement, chiral symmetry restoration, axial anomaly
- search for the existence of the chiral critical point (RHIC)
- establish the imprint of the chiral PHASE transition of QCD on properties of QCD matter with its physical quark mass spectrum (LHC)

Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$

$$rac{\Delta(T,\mu_B)}{T^4} = rac{P(T,\mu_B) - P(T,0)}{T^4} = rac{\chi_2^B}{2} \left(rac{\mu_B}{T}
ight)^2 + rac{\chi_4^B}{24} \left(rac{\mu_B}{T}
ight)^4 + rac{\chi_6^B}{720} \left(rac{\mu_B}{T}
ight)^6 + ...$$

HISQ: Bielefeld-BNL-CCNU, arXiv:1701.04325

stout: Wuppertal-Budapest, arXiv:1607.02493

The EoS is well controlled for $\mu_B/T \leq 2$ or equivalently $\sqrt{s_{NN}} \geq 12~{
m GeV}$

A new determination of the chiral crossover temperature

The crossover line at non-zero baryon chemical potential

STAR, arXiv:1701.07065 ALICE, arXiv:1408.6403

Taylor-expansion of physical observables, e.g. the chiral susceptibility:

$$rac{\chi_{sub}}{f_K^4} = \sum_n rac{c_n^\chi}{n!} \left(rac{\mu_B}{T}
ight)^n$$
 up to $\mathcal{O}(\mu_B^6)$

Net proton number fluctuations at LHC:

probing the chiral phase transition

$$\kappa_1(X) = \langle X \rangle$$
 $\kappa_2(X) = \langle (X - \langle X \rangle^2 \rangle$

$$.....\kappa_4(X), \kappa_6(X)....$$

A. Rustamov (ALICE Collaboration), Nucl. Phys. A967 (2017) 453, arXiv:1704.05329

What is next ? → Higher moments → Higher stat. + Good PID

Friman, B., Karsch, F., Redlich, K. et al. Eur. Phys. J. C (2011) 71: 1694

 6^{th} and 8^{th} order cumulants of the net baryon number fluctuations at $\mu_q/T=0$

RUN1: 2nd order (~13M events)

RUN2: 4th order (~150M events)

RUN3:? FCC

Lattice QCD experience: each order requires about a factor 100 increase in statistics

Critical behavior and higher order cumulants

many 8th order cumulants turn negative for

$$T^- \gtrsim (140-145)~{
m MeV}$$

plausible scenario:

$$T_{cp} < 140 \mathrm{MeV}$$
 , $\mu_B^{cp} > 400 \mathrm{MeV}$

statistics

Critical behavior and higher order cumulants

S. Borsanyi et al, arXiv:1805.04445

The radius of convergence of Taylor expansions constraints on the location of a possible critical point

disfavored as expansion coefficients are no longer strictly positive

update of:

A. Bazavov et al. (hotQCD), arXiv:1701.04325

Cumulants of net-baryon number fluctuations free quark gas from Lattice QCD

up to 10th order of net baryon-number cumulants will be known soon; next step about 5 years

based on: A. Ukawa, HPC summer school, 2013

Transport and bound state properties from thermal hadron correlation functions

$$G(\tau,\vec{p},T) = \int\limits_0^\infty \frac{\mathrm{d}\omega}{2\pi} \rho(\omega,\vec{p},T) K(\tau,\omega,T) \qquad \text{in the spectral function} \\ - \text{continuum at large frequencies}$$

$$K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Spectral functions in the QGP

Different contributions and scales enter

- possible bound states at intermediate frequencies
- transport contributions at small frequencies
- in addition cut-off effects on the lattice notoriously difficult to extract from correlation functions

Transport and bound state properties from thermal hadron correlation functions

- state of the art lattice calculations with continuum extrapolated correlation functions are done in quenched QCD (no dynamical quarks)
- electrical conductivity: $rac{\sigma_{el}}{C_{em}T}=rac{1}{6}\lim_{\omega o 0}rac{
 ho_{ii}(\omega,ec{p}=0,T)}{\omega T}$
- heavy quark diffusion: $\dfrac{\kappa}{T^3}\equiv\dfrac{1}{2TD}=\lim_{\omega o 0}\dfrac{2T
 ho_E(\omega,T)}{\omega}$

$$G_E(\tau) \equiv -\frac{1}{3} \sum_{i=1}^{3} \frac{\left\langle \operatorname{Re} \operatorname{Tr} \left[U(\frac{1}{T}; \tau) g E_i(\tau, \mathbf{0}) U(\tau; 0) g E_i(0, \mathbf{0}) \right] \right\rangle}{\left\langle \operatorname{Re} \operatorname{Tr} \left[U(\frac{1}{T}; 0) \right] \right\rangle}$$

J.Casalderrey-Solana, D.Teaney, PRD74(2006) 085012 S.Caron-Huot, M.Laine, G.D. Moore, JHEP04(2009) 053

heavy quark diffusion

A.Francis et al., PRD92(2015)116003

electrical conductivity

B.B. Brandt et al., PRD93 (2016) 054510

J.Ghiglieri et al., PRD94(2016)016005

Thermal bottomonium melting

arXiv:1706.05984

bottomonium melting

states	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$
$T_{ m melt}^{\Gamma=E_{ m bind}}/T_C$	$2.66^{+0.49}_{-0.14}$	$1.25^{+0.17}_{-0.05}$	$1.01^{+0.03}_{-0.03}$	< 0.95

Y. Burnier, O. Kaczmarek, A. Rothkopf, JHEP 1512 (2015) 101

S. Chatrchyan et al. (CMS), Mass($\mu^+\mu^-$) [GeV/c²] PRL 109 (2012) 222301

FCC: high temperatures even after quarkonium formation time scale

direct photon yield at LHC and RHIC

 $T_{LHC} = (304 \pm 11^{stat} \pm 40^{sys}) \mathrm{MeV}$ $T_{RHIC} = (239 \pm 25^{stat} \pm 7^{sys}) \mathrm{MeV}$

J. Adam, Phys. Lett. B754 (2016) 235 arXiv:1509.07324

quarkonium formation time: $au_{qar{q}} \simeq 0.5 \; \mathrm{fm}$

temperature at $\tau_{q\bar{q}}$

collider	$T(au_{qar{q}}) \; [ext{MeV}]$	T/T_c
RHIC	230 - 280	1.5 - 1.8
LHC	300 - 360	1.9 - 2.3
FCC	370 - 450	2.4 - 2.9

Y(1s) will melt at the FCC

 J/ψ does melt at RHIC&LHC

Transport and bound state properties from thermal hadron correlation functions

- state of the art lattice calculations with continuum extrapolated correlation functions are done in quenched QCD (no dynamical quarks)
- quenched QCD, state-of-the-art lattices:

$$192^3 \times 64$$

– QCD with physical light quarks, state-of-the-art lattices:

$$64^3 \times 16$$

about a factor 100 in compute performance is needed in order to do todays quenched studies in QCD with physical quark masses

$$\mathcal{O}(5)$$
 years

Evidence for many charmed baryons in QCD thermodynamicsclose to Tc charmed

all charmed baryons/mesons

strange charmed baryons/mesons

close to Tc charmed baryon fluctuations are about 50% larger than expected in a HRG based on known charmed baryon resonances (PDG-HRG); missing states of QCD

> observation of 5 new charmed baryons by LHCb arXiv:1703.04639

Conclusions

- lattice QCD have provided important input to the interpretation and modeling of heavy ion collisions (EoS, Tc, transport and diffusion constants)
- some of them are still lattice results and still need to be promoted to become QCD results: calculations with physical quark masses, continuum extrapolated
- the steady improvement of compute resources as well as new, more sophisticated simulation software guarantees steady improvements