4 WE J7

| VAtNDERBII:E_UNIVERSITY

v-i

. —

PRE-SUSY SCHOOL 2019

INTRODUCTION

» About Me
» Postdoc at Vanderbilt University

» Member of CMS

» Focused on CMS Computing & SUSY searches

PRE-SUSY SCHOOL 2019

CONTENT

1. History of Big Data
2. Apache Spark, Dask, Scientific Pythion

3. Big Data and HEP

LECTURE 1

HISTORY OF BIG DATA

The data deluge

Businesses, governments and society are only starting to tap its vast potential

s S

BrettiRvden

https://www.economist.com/leaders/2010/02/25/the-data-deluge

2010: 1.2 ZETTABYTES

*1 LETTABYTE = 1BILLION TERABYTES

https://www.seagate.com/our-story/data-age-2025/

https://www.seagate.com/our-story/data-age-2025/

2010: 1.2 ZETTABYTES
2018: 33 ZETTABYTES

*1 LETTABYTE = 1BILLION TERABYTES

https://www.seagate.com/our-story/data-age-2025/

https://www.seagate.com/our-story/data-age-2025/

2010: 1.2 ZETTABYTES
2018: 33 ZETTABYTES
2025: 178 LETTABYTES

A 61% annual increase!

*1 LETTABYTE = 1BILLION TERABYTES

https://www.seagate.com/our-story/data-age-2025/

https://www.seagate.com/our-story/data-age-2025/

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz

Typical Power
1 (Watts)

Number of
Logical Cores

! |
1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

High-k + Metal Gate Transistors

Standard HK+MG
Transistor Transistor

Low resistance layer | | - Low resistance layer

Polysilicon gate | | | , / Metal gate

NMOS and PMQOS

L 1«— High-k gate oxide

I
Haimnium pased

Silicon substrate Silicon substrate

High-k + metal gate transistors provide significant performance
Increase and leakage reduction, ensuring continuation of Moore's Law

Leap ahead Jan. 2007

https://www.hardwaresecrets.com/details-on-intels-forthcoming-45-nm-manufacturing-technology/

PRE-SUSY SCHOOL 2019

POWER IS EXPENSIVE

» Electricity costs
» Switches, PDUs

» Cooling

Each rack at full load consumes 10KW

A typical (American) house consumes
1.2KW!

PRE-SUSY SCHOOL 2019 10

SINGLE-THREAD PERFORMANCE

» Cache utilisation
» IPC/Pipelining

» SIMD

Tightly-written code can take advantage of these, to gain more
operations per GHz but hard to get right!

PRE-SUSY SCHOOL 2019 11

SIMD - SINGLE INSTRUCTION MULTIPLE DATA

» Performing an operation over multiple input data
s X e — U
W X [=

simultaneously
I X I = I
s X e = K

Traditional SIMD/Vectorized

Intel CPU supports up to 16-way SIMD, GPUs support many many more

PRE-SUSY SCHOOL 2019

12

RECAP

» An explosion in data
» CPUs aren't getting faster

» Architecture hitting fundamental power/physics
limitations

» Individual disks are slowly increasing capacity

» Simultaneously, individual "consumer grade" hardware
becoming cheaper

A PERFECT STORM FOR A FUNDAMENTAL CHANGE

PRE-SUSY SCHOOL 2019

13

BIG DATA -- NOT (ONLY) ABOUT VOLUME

» The "three Vs" of Big Data
» Volume
» Velocity

» Variability

soccer !/
s e o et

Find live Soccer scores, Soccer player; team news, Soccer videos, rumors, stats, standings, team
schedules; fantasy games on FOX Sports.

2019 Soccer news, photos, stats, schedules, standings and videos

Get the latest Soccer football results, fixtures and exclusive video highlights from Yahoo Sports
including live scores, match stats and team news.

Corpus Christi FC

https://corpuscfc.com/ ¥

CORPUS CHRISTI FC LAUNCHES YOUTH SOCCER ACADEMY. CORPUS CHRISTI, TX- February
25th,2019 Corpus Christi FC today announced the official ...

Q

PRE-SUSY SCHOOL 2019

15

VARIABILITY

» Unstructured data is quickly becoming dominant

2 YouTube

48 hours of video uploaded 3m "likes"/day

every minute
10m images uploaded/day

PROCESSING THESE
DATA VOLUMES

PRE-SUSY SCHOOL 2019

17

TARGET PARALLELIZATION FROM THE OUTSET

» Look at a whole cluster as an execution unit
» Not just a single CPU or node
» Handle resiliency
» More hardware - something guaranteed to fail

» Minimize shared state, synchronization

» Amdahl's Law

- 50%
ceerneees 759%
—-— 90%
—— 95%

Parallel portion

Amdahl's Law

4
[=]
(7]
(7]
[
o
[=}
1
=3
-
(=]
1
[
-}
£
=
=

dnpaads

PRE-SUSY SCHOOL 2019

19

DIVIDE AND CONCUR

» Splitinputinto N pieces
» Do "something" over each piece
» Shuffle/sort/combine intermediate outputs

» Generate final output

MAP
MAP
MAP
MAP

Producers
3

App

App
SUB Connectors Kafka Stream
Cluster Processors

App

Consumers

PRE-SUSY SCHOOL 2019

21

COMMON ISSUES

» What if a worker dies?

» How do we aggregate partial/complete results
» Shared filesystem? IPC?

» How do we know when the workers are done?

» What if workers need to share large static data?

» Which worker should run which task?

PRE-SUSY SCHOOL 2019

22

MANAGING WORKERS IS DIFFICULT

» Run asynchronously on possibly many nodes
» No guarantee of ordering
» Or completion! Hardware can fail in subtle ways

» Need some type of shared state/synchronization

»

PRE-SUSY SCHOOL 2019

23

SHARED STATE IS HARD

» Concurrent programming on a single machine is hard
» Distributed concurrent programming is even harder
» Even a "distributed clock" is hard!

» Barriers, semaphores, counters, etc.. are all difficult to
reason about and get correct

» Separate "what to do" from "how to do it"

» Let the experts handle the sticky details

PRE-SUSY SCHOOL 2019 24

DECLARATIVE VS IMPERATIVE

std: :vector<int> nums{3, 4, 2, 8, 15, 267}; By Swapping for—eaCh OUt Wlth
auto increment = [](int& num) { num += 1; };

std::for_each(nums.begin(), nums.end(), increment); g dlﬁ:erent |mp|ementat|0n, th|$
Declarative code can be parallelized w/o

any changes to end-user code

The for loop is "baked in", and

e SV e e U iels e Ze o alee 24Srds

(sutos num:”nums) { adapting this code to run in
num += 1;
: parallel would involve
Imperative

significant changes/boiler plate

PRE-SUSY SCHOOL 2019 25

FUNCTIONAL PROGRAMMING

e A el e GIEiE s e Ze ey dllss ZErn
auto increment = [](int& num) { num += 1; };
std::for_each(nums.begin(), nums.end(), increment);

A declarative, functional style allows for separation
of interests - users provide the function to be
executed, and the framework provides the
execution engine

N Rl

DAIA
MANAGEMENT

PRE-SUSY SCHOOL 2019

27

DATA MANAGEMENT

» The ability to reliably store extremely large datasets is
Important

» Cost is key
» Cheap hardware

» Enhance reliability via software

PRE-SUSY SCHOOL 2019 28

» Common on workstation-class machines
RAID DRIVER
» Limited to single
PARITY machine
» Bad performance
RAID DRIVER during rebuilds

» Bad probability of
double-fault errors

Probability of data loss vs Rebuild time
6% AFR

RAID5-6

mn
-.--.llllll
l....
a " RAID6-8
- 000000000000000000
¢
00000000000
UIR 4
PR 3 4
¢ ¢
.0
o RS-6+3

"
(72
°
©
o)
C
©
G
o
>
o —
e
©
0
()
L™
o,

12.0

Rebuild time (hours)

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

ABSTRACT 1. INTRODUCTION

We have designed and implemented the Google File Sys- We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed tem (GFS) to meet the rapidly growing demands of Google’s
data-intensive applications. It provides fault tolerance while data processing needs. GF'S shares many of the same goals
running on inexpensive commodity hardware, and it delivers as previous distributed file systems such as performance,

"MULTIPLE GFS CLUSTERS ARE CURRENTLY DEPLOYED FOR DIFFERENT PURPOSES. THE

LARGEST ONES HAVE QVER 1000 STORAGE NODES, OVER 300 TB OF DISK STORAGE, AND ARE

HEAVILY ACCESSED BY HUNDREDS OF CLIENTS ON DISTINCT MACHINES ON A CONTINUOUS
BASIS.

https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

PRE-SUSY SCHOOL 2019 32

GFS ASSUMPTIONS

» System built on inexpensive commodity parts
» A small number of larger files

» Primarily streaming, not random access

» All files are appended and rarely modified

» Many producers will concurrently append to the same file

HOW DOES A SYSTEM WITH OUR SCALING PRINCIPALS LOOK?

PRE-SUSY SCHOOL 2019 33

GFS ARCHITECTURE

» Files are divided into chunks

GFS CLIENT

» 64-128MByte

A<
/ i » Chunks are stored on
W ChunkServers

CHUNK » Many standard disks

- » Reports health to Master

» Master tracks metadata

1]

» SPOF initially

» Clients avoid/cache Master

\\\1\.\\ /)

I \\\\ Q\\\

::

mﬂmﬁwhjnwimm?ﬁ.

i

) \\M\- \\?\u \\n

- — W emer——

i

E

\\\

(LA LLLLERA LA

/:: nn
i

A

//

"}
\

W o o g

i N SRR UL gt Taesd T TN Wit T M
I t t , , 7 (N
J u¢, s s 14 _ .m. » » -~
| _
J L | .
:‘ fhte THEE edi f e ORLE LB 1

e .

 r<:¢r1

:__. ‘::. :.:, .::, ;:” 1 ::. ,:p_ N ,_:.,,
R R AL R R A A
it L [ST | R /.:: i /::/.::/.:

~ .ﬂ.qun.llT g]| s s Jpust | BERRER (RSO0 o
] L L e\

LAY

/

W /:: Wi an] o ,/::, L\
\ \ ,

-

SRNAN loaoc A\
.0

AATTERNRLRRNY
/éﬁﬁ.ﬁdﬁ??

P R

_41114

aeer \adad \aeb ::/:..:.

-

e Sl

,
:.. /..: :.. ...- Ladae \aad

(R

/... ls.d

AN AN

A
\ \ .
\
WA /:: /:: v/:: ANAA
\

A
ot
//

AN AN

A
\

/:: AN

)\ /
RN //:: /::
s e N e Aa \ e

z S
' \ T A\

/ \ \
AAARL LA A

\ \

/:: ::/:: /:: TR L
- -. _- ,ol - -
../ - v
\ \ \ /
A 3 \
LRRRY WAL LA\

...
\
.
\ \

" 153 134 MmN T AR R L)

> = ®

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar, fikes,gruber } @ google.com

Google, Inc.

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"

l o |>;."” - 1} I " " E" "|

https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

PRE-SUSY SCHOOL 2019 36

APACHE HDFS ARCHITECTURE

CLIENT
—
Chunkserver
CHUNK

HDFS Architecture

— Metadata (Name, replicas, ...):
Meta dataops'M /home/foo/data, 3, ...
PN - ""\\I\
BIoc’Kops

Re?d Datanodes Datanodes

Replication %l
Blocks

l \) -.//../ '\r'/
- Rack 1 "'\yvrlt__,e/’/ Rack 2

https://hadoop.apache.org/docs/stable/hadoop-project-dist’/hadoop-hdfs/HdfsDesign.html

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

MISCELLANEQUS

PRE-SUSY SCHOOL 2019

DATA SCIENCE AND NOTEBOOKS

» Many people (me) want to minimize "time-to-plot”
» AKA "time-to-insight" in industry

» Web-based, iterative data analysis/data science has
become extremely popular

(<N N) fi ~— vim test.cpp — 93x52

[1: test.cpp @

1 #include <vector>
#include <algorithm>
#include <iostream>

2
3
A
5 struct Sum
6
7
8

{
Sum(): sum{0} { }
void ()(int n) { sum += n; }
9 int sum;
10 };
alal
Or 12 int main()
13 {
14 std::vector<int> nums{3, 4, 2, 8, 15, 267};
15 auto increment = [1(int& num) { num += 1; };
16 std::for_each(nums.begin(), nums.end(), increment);
17
18 std::vector<int> nums{3, 4, 2, 8, 15, 26jJ};
19 (auto& num: nums) {
20 num += 1;
21 }

22 }

plot +- deltat seconds around the event:
index into the strain time series for this time interval:
deltat =

indxt = np.where((time >= tevent-deltat) & (time < tevent+deltat))

print(tevent)

if make plots:
plt.figure()

plt.plot(time[indxt]-tevent,strain Hl[indxt], 'r',label='H1 strain')
plt.plot(time[indxt]-tevent,strain Ll[indxt], 'g',label='L1l strain')

plt.xlabel('time (s) since '+str(tevent))
plt.ylabel('strain')

plt.legend(loc="'lower right')

plt.title('Advanced LIGO strain data near '+eventname)
plt.savefig(eventname+' strain.'+plottype)

1126259462.44

o le-18 Advanced LIGO strain data near GW150914

|

Ll

H1 strain
L1 strain
4

-2 0 2
time (s) since 1126259462.44

Plot the Amplitude Spectral Density (ASD)

Plotting these data in the Fourier domain gives us an idea of the frequency content of the data.
A way to visualize the frequency content of the data is to plot the amplitude spectral density,
ASD.

The ASDs are the square root of the power spectral densities (PSDs), which are averages of the
square of the fast fourier transforms (FFTs) of the data.

They are an estimate of the "strain-equivalent noise" of the detectors versus frequency, which
limit the ability of the detectors to identify GW signals.

They are in units of strain/rt(Hz). So, if you want to know the root-mean-square (rms) strain noise
in a frequency band, integrate (sum) the squares of the ASD over that band, then take the
square-root.

There's a signal in these datal For the moment, let's ignore that, and assume it's all noise.

make psds = 1

if make psds:
number of sample for the fast fourier transform:
NFFT = 4*fs
Pxx H1l, freqs = mlab.psd(strain H1l, Fs = fs, NFFT =
Pxx L1, freqs = mlab.psd(strain L1, Fs = fs, NFFT

https://nbviewer.jupyter.org/github/losc-tutorial/LOSC_Event_tutorial/blob/master/index.ipynb
https://www.gw-openscience.org/GW150914data/LOSC_Event_tutorial_GW150914.html
http://beta.mybinder.org/repo/losc-tutorial/LOSC_Event_tutorial

PRE-SUSY SCHOOL 2019 40

DATA SCIENCE AND NOTEBOOKS 3

» Different Paradigm
—b

Instead of running a script from
the beginning each time, run only
the modified snippets

Can greatly accelerate analysis

Latency Hurts

Interactive tasks are sensitive
to latency.

Analysis is often "hit enter,
come back in an hour”

Context-switching is inefficient
for humans

Can we lower the "reducible"
latency?

Analysis with Spark

DiMuon Invariant Mass (os)

=E=alll 931M events in ~90 secs

5000000 - TT)ets
 Wets
Bl DYlets
BN SingleTop

Change a cut

1000000

New plots in ~15 secs

* Analysis-level non-flat ntuples
e ~20TB total size
* Time includes the full chain
e Core aquisition, File I/O, cuts, flattening, histogramming, plotting

e 350 cores, HDFS on spinning HDDs

PRE-SUSY SCHOOL 2019

43

RECAP

» Data has exploded while machine performance stalled
» Both CPU and storage need to be scaled-out

» Scaling out -> Distributed Computing = new problems
» Reliability/Performance/Correctness

» New architectures
» Shared-nothing/declarative/functional

» Increased focus on latency, not throughput

