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Topics:

• Why: Motivation for supersymmetry (SUSY)

• What: SUSY Lagrangians, SUSY breaking and the Minimal

Supersymmetric Standard Model, superpartner decays

• Who: Sorry, not covered.

For some more details and a slightly better attempt at proper referencing:

• A supersymmetry primer, hep-ph/9709356, version 7, January 2016

• TASI 2011 lectures notes: two-component fermion notation and

supersymmetry, arXiv:1205.4076.

If you find corrections, please do let me know!
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Lecture 1: Motivation and Introduction

to Supersymmetry

• Motivation: The Hierarchy Problem

• Supermultiplets

• Particle content of the Minimal Supersymmetric Standard Model

(MSSM)

• Need for “soft” breaking of supersymmetry

• The Wess-Zumino Model
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People have cited many reasons why extensions of the Standard Model might

involve supersymmetry (SUSY).

Some of them are:

• A possible cold dark matter particle

• A light Higgs boson,Mh = 125 GeV

• Unification of gauge couplings

• Mathematical elegance, beauty

⋆ “What does that even mean? No such thing!” – Some modern pundits

⋆ “We beg to differ.” – Einstein, Dirac, . . .

However, for me, the single compelling reason is:

• The Hierarchy Problem
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An analogy: Coulomb self-energy correction to the electron’s mass

A point-like electron would have an infinite classical electrostatic energy.

Instead, suppose the electron is a solid sphere of uniform charge density and

radiusR. An undergraduate problem gives:

∆ECoulomb =
3e2

20πǫ0R

Interpreting this as a correction ∆me = ∆ECoulomb/c
2 to the electron mass:

me,physical = me,bare + (1 MeV/c2)

(
0.86× 10−15meters

R

)
.

A divergence arises if we try to take R→ 0. Naively, we might expect

R >∼ 10−17 meters, to avoid having to tune the bare electron mass to better

than 1%, for example:

0.511 MeV/c2 = −100.000 MeV/c2 + 100.511 MeV/c2.
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However, there is another important quantum mechanical contribution:

e− e− e−
+

e−

e+

e−

The virtual positron effect cancels most of the Coulomb contribution, leaving:

me,physical = me,bare

[
1 +

3α

4π
ln

(
h̄/mec

R

)
+ . . .

]

with h̄/mec = 3.9× 10−13 meters. Even if R is as small as the Planck length

1.6× 10−35 meters, where quantum gravity effects become dominant, this is

only a 9% correction.

The existence of a “partner” particle for the electron, the positron, is

responsible for eliminating the dangerously huge contribution to its mass.
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This “reason” for the positron’s existence can be understood from a symmetry,

namely the Poincaré invariance of Einstein’s special relativity imposed on the

quantum theory of electrons and photons (QED).

If we did not yet know about special relativity or the positron, we would have had

three options:

• Assume that the electron has structure at a measurable size

R >∼ 10−17 meters. Conflicts with LEP e+e− collider measurements.

• Accept that the electron is pointlike or very small, R≪ 10−17 meters,

and there is a mysterious fine-tuning between the bare mass and the

Coulomb correction.

• Predict that the electron’s symmetry “partner”, the positron, must exist.

Today we know that the last option is the correct one.
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The Hierarchy Problem

Potential for H , the complex scalar field that

is the electrically neutral part of the Standard

Model Higgs field:

V (H) = m2
H |H|2 + λ|H|4

V(H)

|H|
174 GeV

|

From MZ and GFermi, we need:

〈H〉 =
√
−m2

H/2λ ≈ 174 GeV

For the physical Higgs mass MH = 2
√
λ〈H〉+ . . . to be 125 GeV, we need:

λ ≈ 0.126, m2
H ≈ − (93 GeV)2

However, this appears fine-tuned (incredibly and mysteriously lucky!) when we

consider the likely size of quantum corrections to m2
H .
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Contributions to m2
H from a

Dirac fermion loop:

H
yf yf

f

f

The correction to the Higgs squared mass parameter from this loop diagram is:

∆m2
H =

y2f
16π2

[
−2M2

UV + 6m2
f ln (MUV/mf ) + . . .

]

where yf is the coupling of the fermion to the Higgs field H .

MUV should be interpreted as (at least!) the scale at which new physics enters

to modify the loop integrations.

Therefore,m2
H is directly sensitive to the largest mass scales in the theory.
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For example, some people believe that String Theory is responsible for modifying

the high energy behavior of physics, making the theory finite. Compared to field

theory, string theory modifies the Feynman integrations over Euclidean momenta:

∫
d4p [. . .] →

∫
d4p e−p

2/M2
string [. . .]

Using this, one obtains from each Dirac fermion one-loop diagram:

∆m2
H ∼ −

y2f
8π2

M2
string + . . .

A typical guess is that Mstring is comparable to MPlanck ≈ 2.4× 1018 GeV.

These huge corrections make it difficult to explain how−m2
H could be as small

as (93 GeV)2.
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The Hierarchy Problem

We already know:

m2
H

M2
Planck

≈ −1.4× 10−33

Why should this be so small, if individual radiative corrections ∆m2
H can be of

order M2
Planck or M2

string, multiplied by loop factors?

This applies even if String Theory is wrong and some other unspecified effects

modify physics at MPlanck, or any other very large mass scale, to make the loop

integrals converge.

An incredible coincidence seems to be required to make the corrections to the

Higgs squared mass cancel to give a much smaller number.
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The Higgs mass is also quadratically sensitive

to other scalar masses.

Suppose S is some heavy complex scalar

particle that couples to the Higgs.
λS

S

H

∆m2
H =

λS
16π2

[
M2

UV − 2m2
S ln (MUV/mS) + . . .

]

Note that a scalar loop gives the opposite sign compared to a fermion loop.

In dimensional regularization, the terms proportional to M2
UV do not occur.

However, this does NOT solve the problem, because the term proportional to m2
S

is always there.
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Indirect couplings of the

Higgs to heavy particles

still give a problem:
(b)

H

F

(a)

H

F

Here F is any heavy fermion that shares gauge quantum numbers with the Higgs

boson. Its massmF does not come from the Higgs boson and can be arbitrarily

large. One finds (C is a group-theory factor):

∆m2
H = C

(
g2

16π2

)2 [
kM2

UV + 48m2
F ln(MUV/mF ) + . . .

]

Here k depends on the choice of cutoff procedure (and is 0 in dimensional

regularization). However, the m2
F contribution is always present.

More generally, any indirect communication between the Higgs boson and

very heavy particles, or very high-mass phenomena in general, can give an

unreasonably large contribution to m2
H .
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1435570439269386543577505169283829

− 1435570439269386543577505169283828

= 1
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The systematic cancellation of loop corrections to the Higgs mass squared

requires the type of conspiracy that is better known to physicists as a symmetry.

Fermion loops and boson loops gave contributions with opposite signs:

∆m2
H = −

y2f
16π2

(2M2
UV) + . . . (Dirac fermion)

∆m2
H = +

λS
16π2

M2
UV + . . . (complex scalar)

SUPERSYMMETRY, a symmetry between fermions and bosons, makes the

cancellation not only possible, but automatic.

There are two complex scalars for every Dirac fermion, and λS = y2f .
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Supersymmetry

A SUSY transformation turns a boson state into a fermion state, and vice versa.

So the operatorQ that generates such transformations acts, schematically, like:

Q|Boson〉 = |Fermion〉; Q|Fermion〉 = |Boson〉.

This implies that Q must be an anticommuting spinor. This is an intrinsically

complex object, so Q† is also a distinct symmetry generator:

Q†|Boson〉 = |Fermion〉; Q†|Fermion〉 = |Boson〉.

The single-particle states of the theory fall into groups called supermultiplets,

which are turned into each other by Q and Q†. Fermion and boson members of a

given supermultiplet are superpartners of each other.

Each supermultiplet contains equal numbers of fermion and boson degrees

of freedom.
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Types of supermultiplets

Chiral (or “Scalar” or “Matter” or “Wess-Zumino”) supermultiplet:

1 two-component Weyl fermion, helicity± 1
2 . (nF = 2)

2 real spin-0 scalars = 1 complex scalar. (nB = 2)

The Standard Model quarks, leptons and Higgs bosons must fit into these.

Gauge (or “Vector”) supermultiplet:

1 two-component Weyl fermion gaugino, helicity± 1
2 . (nF = 2)

1 real spin-1 massless gauge vector boson. (nB = 2)

The Standard Model photon γ, gluon g, and weak vector bosons Z,W±

must fit into these.

Gravitational supermultiplet:

1 two-component Weyl fermion gravitino, helicity± 3
2 . (nF = 2)

1 real spin-2 massless graviton. (nB = 2)
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How do the Standard Model quarks and leptons fit in?

Each quark or charged lepton is 1 Dirac = 2 Weyl fermions

Electron: Ψe =

(
eL

eR

) ← two-component Weyl LH fermion

← two-component Weyl RH fermion

Each of eL and eR is part of a chiral supermultiplet, so each has a complex,

spin-0 superpartner, called ẽL and ẽR respectively. They are called the

“left-handed selectron” and “right-handed selectron”, although they carry no spin.

The conjugate of a right-handed Weyl spinor is a left-handed Weyl spinor. So,

there are two left-handed chiral supermultiplets for the electron:

(eL, ẽL) and (e†R, ẽ
∗
R).

The other charged leptons and quarks are similar. We do not need νR in the

Standard Model, so there is only one neutrino chiral supermultiplet for each family:

(νe, ν̃e).
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Chiral supermultiplets of the Minimal Supersymmetric Standard Model (MSSM):

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1

6
)

(×3 families) ū ũ∗
R u†

R ( 3, 1, − 2

3
)

d̄ d̃∗R d†R ( 3, 1, 1

3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , − 1

2
)

(×3 families) ē ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , + 1

2
)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , − 1

2
)

The superpartners of the Standard Model particles are written with a ˜ . The

scalar names are obtained by putting an “s” in front, so they are generically called

squarks and sleptons, short for “scalar quark” and “scalar lepton”.

The Standard Model Higgs boson requires two different chiral supermultiplets,Hu and

Hd. The fermionic partners of the Higgs scalar fields are called higgsinos. There

are two charged and two neutral Weyl fermion higgsino degrees of freedom.
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Why do we need two Higgs supermultiplets? Two reasons:

1) Anomaly Cancellation

f H̃u H̃d

∑

SM fermions

Y 3
f = 0 + 2

(
1

2

)3

+ 2

(
−1

2

)3

= 0

This anomaly cancellation occurs if and only if both H̃u and H̃d higgsinos are

present. Otherwise, the electroweak gauge symmetry would not be allowed!

2) Quark and Lepton masses

Only the Hu Higgs scalar can give masses to charge +2/3 quarks (u, c, t).

Only the Hd Higgs scalar can give masses to charge −1/3 quarks (d, s, b) and

the charged leptons (e, µ, τ). We will show this later.
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The vector bosons of the Standard Model live in gauge supermultiplets:

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

The spin 1/2 gauginos transform as the adjoint representation of the gauge

group. Each gaugino carries a .̃

The color-octet superpartner of the gluon is called the gluino. The SU(2)L

gauginos are called winos, and the U(1)Y gaugino is called the bino.

However, the winos and the bino are not mass eigenstate particles; they mix with

each other and with the higgsinos of the same charge.
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Recall that if supersymmetry were an exact symmetry, then superpartners would

have to be exactly degenerate with each other. For example,

mẽL = mẽR = me = 0.511 MeV

mũL
= mũR

= mu

mg̃ = mgluon = 0 +QCD effects

etc.

New particles with these properties have been ruled out long ago, so:

Supersymmetry must be broken in the vacuum state chosen by Nature.

Supersymmetry is usually thought to be spontaneously broken and therefore

hidden, the same way that the full electroweak symmetry SU(2)L × U(1)Y is

hidden from very low-energy experiments.
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A clue for SUSY breaking is given by our motivation in the Hierarchy Problem.

The Higgs mass parameter gets corrections from each chiral supermultiplet:

∆m2
H =

1

16π2
(λS − y2f )M

2
UV + . . .

If supersymmetry were exact and unbroken,

λS = y2f .

If we want SUSY to be a solution to the hierarchy problem, we must demand that

this is still true even after SUSY is broken:

The breaking of supersymmetry must be “soft”. This means that the part of the

Lagrangian with dimensionless couplings remains supersymmetric.
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The effective Lagrangian has the form:

L = LSUSY + Lsoft

• LSUSY contains all of the gauge, Yukawa, and dimensionless scalar

couplings, and preserves exact supersymmetry

• Lsoft violates supersymmetry, and contains only mass terms and couplings

with positive mass dimension.

If msoft is the largest mass scale in Lsoft, then by dimensional analysis,

∆m2
H = m2

soft

[
λ

16π2
ln(MUV/msoft) + . . .

]
,

where λ stands for dimensionless couplings. This is because ∆m2
H must vanish

in the limit msoft → 0, in which SUSY is restored. Therefore, we might expect

that msoft should not be much larger than roughly 1000 GeV.
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Without further justification, “soft” SUSY breaking might seem like a

rather arbitrary requirement.

Fortunately, it arises naturally from the spontaneous breaking of

SUSY, as we will see later.
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Is there any good reason why the superpartners of the Standard Model

particles should be heavy enough to have avoided discovery so far?

Yes! The reason is electroweak gauge invariance.

• All particles discovered as of 1995 (quarks, leptons, gauge bosons) would be

exactly massless if the electroweak symmetry were not broken. So, their

masses are at most of order v = 174 GeV, the electroweak breaking scale.

They were required to be light.

• All of the particles in the MSSM that have not yet been discovered as of 2019

(squarks, sleptons, gauginos, Higgsinos, Higgs scalars) can get a mass even

without electroweak symmetry breaking. They are not required to be light.

• The lightest Higgs scalar is an exception; its mass of∼ 125 GeV is within

(and near the upper end of) the range predicted by supersymmetry.
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Two-component spinor language is much more natural and

convenient for SUSY, because the supermultiplets are in

one-to-one correspondence with the LH Weyl fermions.

More generally, two-component spinor language is more natural

for any theory of physics beyond the Standard Model, because

parity violation is an Essential Truth.

Nature does not treat left-handed and right-handed fermions

the same, and the higher we go in energy, the more essential

this becomes.
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Notations for two-component (Weyl) fermions

Left-handed (LH) two-component Weyl spinor: ψα α = 1, 2

Right-handed (RH) two-component Weyl spinor: ψ†
α̇ α̇ = 1, 2

The Hermitian conjugate of a left-handed Weyl spinor is a right-handed Weyl

spinor, and vice versa:

(ψα)
† = (ψ†)α̇ ≡ ψ†

α̇

All spin-1/2 fermionic degrees of freedom in any theory can be defined in terms

of a list of left-handed Weyl spinors, ψiα where i is a flavor index. With this

convention, right-handed Weyl spinors always carry a dagger: ψ†i
α̇ .

I use metric signature (−,+,+,+).
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Products of spinors are defined as:

ψξ ≡ ψαξβǫβα and ψ†ξ† ≡ ψ†
α̇ξ

†
β̇
ǫα̇β̇

Since ψ and ξ are anti-commuting fields, the antisymmetry of ǫαβ implies:

ψξ = ξψ = (ψ†ξ†)∗ = (ξ†ψ†)∗.

To make Lorentz-covariant quantities, define matrices (σµ)α̇β and (σµ)αβ̇ with:

σ0 = σ0 =

(
1 0

0 1

)
; σn = −σn = (~σ)n (for n = 1, 2, 3).

Then the Lagrangian for an arbitrary collection of LH Weyl fermions ψi is:

L = iψ†iσµDµψi − 1
2M

ijψiψj − 1
2Mijψ

†iψ†j

where Dµ = covariant derivative, and the mass matrix M ij is symmetric, with

Mij ≡ (M ij)∗.
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Two LH Weyl spinors ξ, χ can form a 4-component Dirac or Majorana spinor:

Ψ =

(
ξα

χ†α̇

)

In the 4-component formalism, the Dirac Lagrangian is:

L = iΨγµ∂µΨ−mΨΨ, where γµ =

(
0 σµ

σµ 0

)
,

In the two-component fermion language, with spinor indices suppressed:

L = iξ†σµ∂µξ + iχ†σµ∂µχ−m(ξχ+ ξ†χ†),

up to a total derivative.

A Majorana fermion can be described in 4-component language in the same way

by identifying χ = ξ, and multiplying the Lagrangian by a factor of 1
2 to

compensate for the redundancy.
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The simplest SUSY model: a free chiral supermultiplet

The minimum particle content for a SUSY theory is a complex scalar φ and its

superpartner fermion ψ. We must at least have kinetic terms for each, so:

S =

∫
d4x (Lscalar + Lfermion)

Lscalar = −∂µφ∗∂µφ Lfermion = iψ†σµ∂µψ

A SUSY transformation should turn φ into ψ, so try:

δφ = ǫψ; δφ∗ = ǫ†ψ†

where ǫ = infinitesimal, anticommuting, constant spinor, with dimension

[mass]−1/2, that parameterizes the SUSY transformation. Then we find:

δLscalar = −ǫ∂µψ∂µφ∗ − ǫ†∂µψ†∂µφ.

We would like for this to be canceled by an appropriate SUSY transformation of

the fermion field. . .
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To have any chance, δψ should be linear in ǫ† and in φ, and must contain one

spacetime derivative. There is only one possibility, up to a multiplicative constant:

δψα = −i(σµǫ†)α∂µφ; δψ†
α̇ = i(ǫσµ)α̇∂µφ

∗

With this guess, one obtains:

δLfermion = −δLscalar + (total derivative)

so the action S is indeed invariant under the SUSY transformation, justifying the

guess of the multiplicative factor. This is called the free Wess-Zumino model.

Furthermore, if we take the commutator of two SUSY transformations:

δǫ2(δǫ1φ)− δǫ1(δǫ2φ) = i(−ǫ1σµǫ2 + ǫ2σ
µǫ1)∂µφ

Since ∂µ corresponds to the spacetime 4-momentum Pµ, This says that the

commutator of two SUSY transformations is just a spacetime translation.
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The fact that two SUSY transformations give back another symmetry (namely a

spacetime translation) means that the SUSY algebra “closes”.

If we do the same check for the fermion ψ:

δǫ2(δǫ1ψα)− δǫ1(δǫ2ψα) = i(−ǫ1σµǫ2 + ǫ2σ
µǫ1)∂µψα

+iǫ1α(ǫ
†
2σ
µ∂µψ)− iǫ2α(ǫ†1σµ∂µψ)

The first line is expected, but the second line only vanishes on-shell (when the

classical equations of motion are satisfied). This seems like a problem, since we

want SUSY to be a valid symmetry of the quantum theory (off-shell)!

To show that there is no problem, we introduce another bosonic spin-0 field, F ,

called an auxiliary field. Its Lagrangian density is:

Laux = F ∗F

Note that F has no kinetic term, and has dimensions [mass]2, unlike an ordinary

scalar field. It has the not-very-exciting equations of motion F = F ∗ = 0.
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The auxiliary field F does not affect the dynamics, classically or in the quantum

theory. But it does appear in modified SUSY transformation laws:

δφ = ǫψ

δψα = −i(σµǫ†)α∂µφ+ ǫαF

δF = −iǫ†σµ∂µψ

Now the total Lagrangian

L = −∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F

is still invariant, and also one can now check:

δǫ2(δǫ1X)− δǫ1(δǫ2X) = i(−ǫ1σµǫ2 + ǫ2σ
µǫ1)∂µX

for each of X = φ, φ∗, ψ, ψ†, F, F ∗, without using equations of motion.

So in the “modified” theory, SUSY does close off-shell as well as on-shell.
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The auxiliary field F is really just a book-keeping device to make this simple.

We can see why it is needed by considering the number of degrees of freedom

on-shell (classically) and off-shell (quantum mechanically):

φ ψ F

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 2 4 2

Going on-shell eliminates half of the propagating degrees of freedom of the

fermion, because the Lagrangian density is linear in time derivatives; the

fermionic canonical momenta are not independent phase-space variables. The

momentum conjugate to ψ is ψ†.

The auxiliary field will also plays an important role when we add interactions to

the theory, and in gaining a simple understanding of SUSY breaking.
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Covered in Lecture 1:

• The Hierarchy Problem, mZ ≪ mPlanck, is a strong motivation for

supersymmetry (SUSY)

• In SUSY, all particles fall into:

– Chiral supermultiplet = complex scalar boson and fermion partner

– Gauge supermultiplet = vector boson and gaugino fermion partner

– Gravitational supermultiplet = graviton and gravitino fermion partner

• The Minimal Supersymmetric Standard Model (MSSM) introduces squarks,

sleptons, Higgsinos, gauginos as the superpartners of Standard Model states

• Soft supersymmetry breaking

• Two-component fermion notation: ψα = LH fermion, ψ†
α̇ = RH fermion

• The Wess-Zumino Model Lagrangian describes a single chiral supermultiplet

• Auxiliary fields are a useful trick.

36



Lecture 2: Supersymmetric gauge

theories and the Minimal SUSY

Standard Model
• Supercurrents, supercharges, and the supersymmetry algebra

• Superpotentials and interactions

• Supersymmetric gauge interactions

• Soft SUSY breaking in general

• The MSSM superpotential

• R-parity and its consequences

• Soft SUSY breaking in the MSSM

• The MSSM particles
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Recall: the Wess-Zumino model Lagrangian involves a

scalar φ, a fermion ψ, and an auxiliary field F :

L = −∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F.

This describes a massless, non-interacting theory with

supersymmetry.
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Noether’s Theorem: for every symmetry, there is a conserved current. In SUSY,

the supercurrent Jµα is an anti-commuting 4-vector that also carries a spinor

index.

By the usual Noether procedure, one finds for the supercurrent (and its conjugate

J†), in terms of the variations of the fields δX for X = (φ, φ∗, ψ, ψ†, F, F ∗):

ǫJµ + ǫ†J†µ ≡
∑

X

δX
δL

δ(∂µX)
−Kµ,

where Kµ satisfies δL = ∂µK
µ. One finds:

Jµα = (σνσµψ)α ∂νφ
∗; J†µ

α̇ = (ψ†σµσν)α̇ ∂νφ.

The supercurrent and its hermitian conjugate are separately conserved:

∂µJ
µ
α = 0; ∂µJ

†µ
α̇ = 0,

as can be checked using the equations of motion.
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From the conserved supercurrents one can construct the conserved charges:

Qα =
√
2

∫
d3x J0

α; Q†
α̇ =
√
2

∫
d3x J†0

α̇ ,

As quantum mechanical operators, they satisfy:

[
ǫQ+ ǫ†Q†, X

]
= −i

√
2 δX

for any field X . Let us also introduce the 4-momentum operator Pµ = (H, ~P ),

which satisfies:

[Pµ, X ] = i∂µX.

Now by using the canonical commutation relations of the fields, one finds:

[
ǫ2Q+ ǫ†2Q

†, ǫ1Q+ ǫ†1Q
†] = 2(ǫ1σµǫ

†
2 − ǫ2σµǫ†1)Pµ[

ǫQ+ ǫ†Q†, Pµ
]

= 0

This implies. . .
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The SUSY Algebra

{Qα, Q†
α̇} = −2σ

µ
αα̇Pµ,

{Qα, Qβ} = {Q†
α̇, Q

†
β̇
} = 0

[Qα, P
µ] = [Q†

α̇, P
µ] = 0

(The commutators turned into anti-commutators in the first two, when we

extracted the anti-commuting spinors ǫ1, ǫ2.)
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Masses and Interactions for Chiral Supermultiplets

The Lagrangian describing a collection of free, massless, chiral supermultiplets is

L = −∂µφ∗i∂µφi + iψ†iσµ∂µψi + F ∗iFi.

Question: How do we make mass terms and interactions for these fields, while

still preserving supersymmetry invariance?

Answer: choose a superpotential,

W = 1
2M

ijφiφj +
1
6y
ijkφiφjφk.

Must be holomorphic. In other words, only depends on the φi, not on the φ∗i.

The superpotentialW contains massesM ij and couplings yijk , which must be

symmetric under interchange of i, j, k.

Supersymmetry is very restrictive; you cannot just do anything you want!
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The resulting Lagrangian for interacting chiral supermultiplets is:

L = −∂µφ∗i∂µφi + iψ†iσµ∂µψi

− 1
2

(
M ijψiψj + yijkφiψjψk

)
+ c.c.

−V (φi, φ
∗i)

where the scalar potential is:

V (φi, φ
∗i) = MikM

kjφ∗iφj +
1

2
M inyjknφiφ

∗jφ∗k

+
1

2
Miny

jknφ∗iφjφk +
1

4
yijnyklnφiφjφ

∗kφ∗l

The superpotential W “encodes” all of the information about these masses

and interactions.
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The superpotential W = 1
2M

ijφiφj +
1
6y
ijkφiφjφk determines

all non-gauge masses and interactions.

Both scalars and fermions have squared mass matrix MikM
kj .

The interaction Feynman rules for the chiral supermultiplets are:

Yukawa interactions:
j k

i

−iyijk
j k

i

−iyijk

Scalar interactions:
j k

i

−iM inynjk

j k

i

−iMiny
njk

i j

k ℓ

−iyijnykℓn
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Supersymmetric Gauge Theories

A gauge or vector supermultiplet contains physical fields:

• a gauge bosonAaµ

• a gaugino λaα.

• Da, a real spin-0 auxiliary field with no kinetic term (non-propagating).

The index a runs over the gauge group generators [1, 2, . . . , 8 for SU(3)C ,

1, 2, 3 for SU(2)L, and 1 for U(1)Y ].

Suppose the gauge coupling constant is g and the structure constants of the

group are fabc. The Lagrangian for the gauge supermultiplet is:

L = − 1

4
Fµν
a F a

µν + iλ†aσµ∇µλ
a + 1

2
DaDa

where

∇µλa ≡ ∂µλa + gfabcAbµλ
c.
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The auxiliary field Da is again needed so that the SUSY algebra closes on-shell.

Counting fermion and boson degrees of freedom on-shell and off-shell:

Aµ λ D

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 3 4 1

To make a gauge-invariant supersymmetric Lagrangian involving both gauge and

chiral supermultiplets, one must turn the ordinary derivatives into covariant ones:

∂µφi → ∇µφi = ∂µφi − igAaµ(T aφ)i
∂µψi → ∇µψi = ∂µψi − igAaµ(T aψ)i

One must also add three new terms to the Lagrangian:

L = Lgauge + Lchiral −
√
2g(φ∗T aψ)λa −

√
2gλ†a(ψ†T aφ)

+g(φ∗T aφ)Da.

You can check (after some algebra) that this full Lagrangian is now invariant under

both SUSY transformations and gauge transformations.
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Supersymmetric gauge interactions

The following interactions are dictated by ordinary gauge invariance alone:

φ φ∗ φ φ∗ ψ ψ† λ λ†

SUSY also predicts interactions that have gauge coupling strength, but are not

gauge interactions in the usual sense:

ψi

λa

φ∗j

−i
√
2ga(T

a)i
j

λ†a

φi ψ†j

−i
√
2ga(T

a)i
j

φi φj

φ∗k φ∗ℓ

−ig2a(Tak
i Taℓ

j +Taℓ
i Tak

j )

These interactions are entirely determined by supersymmetry and the

gauge group. Experimental measurements of the magnitudes of these

couplings will provide an important test that we really have SUSY.
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Soft SUSY-breaking Lagrangians

It has been shown that the quadratic sensitivity to MUV is still absent in SUSY

theories with these SUSY-breaking terms added in:

Lsoft = − 1
2 (Ma λ

aλa + c.c.)− (m2)ijφ
∗jφi

−
(
1
2b
ijφiφj +

1
6a
ijkφiφjφk + c.c.

)
,

They consist of:

• gaugino massesMa,

• scalar (mass)2 terms (m2)ji and bij ,

• (scalar)3 couplings aijk
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How to make a SUSY Model:

• Choose a gauge symmetry group.

In the MSSM, this is already done: SU(3)C × SU(2)L × U(1)Y .

• Choose a superpotentialW ; must be invariant under the gauge symmetry.

In the MSSM, this is almost already done: Yukawa couplings are dictated by

the observed fermion masses.

• Choose a soft SUSY-breaking Lagrangian, or else choose a method for

spontaneous SUSY breakdown.

Almost all unknowns and arbitrariness in the MSSM are here.

Let’s do this for the MSSM now, and then explore the consequences.

49



The Superpotential for the Minimal SUSY Standard Model:

WMSSM = ˜̄uyuQ̃Hu − ˜̄dydQ̃Hd − ˜̄eyeL̃Hd + µHuHd

Hu, Hd, Q̃, L̃, ˜̄u,
˜̄d, ˜̄e are the scalar fields appearing in the left-handed chiral

supermultiplets. Tricky notation:

Q = (u, d) ≡ (uL, dL), L = (e, ν) ≡ (eL, νL),

ē ≡ e†R, ū ≡ u†R, d̄ ≡ d†R

The dimensionless Yukawa couplings yu, yd and ye are 3×3 matrices in family

space. Up to a normalization, they are the same as in the Standard Model.

We need both Hu and Hd, because ˜̄uyuQ̃H
∗
d and

˜̄dydQ̃H
∗
u are not analytic,

and so not allowed in the superpotential.
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In the approximation that only t, b, τ Yukawa couplings are included:

yu ≈




0 0 0

0 0 0

0 0 yt


 ; yd ≈




0 0 0

0 0 0

0 0 yb


 ; ye ≈




0 0 0

0 0 0

0 0 yτ




the superpotential becomes (in SU(2)L components):

WMSSM ≈ yt(t̄tH
0
u − t̄bH+

u )− yb(b̄tH−
d − b̄bH0

d)

−yτ (τ̄ ντH−
d − τ̄ τH0

d ) + µ(H+
u H

−
d −H0

uH
0
d).

The minus signs are arranged so that if the neutral Higgs scalars get positive

VEVs 〈H0
u〉 = vu and 〈H0

d〉 = vd, and the Yukawa couplings are defined

positive, then the fermion masses are also positive:

mt = ytvu, mb = ybvd, mτ = yτvd.
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Actually, the most general possible superpotential would also include:

W∆L=1 = 1
2λijkLiLj ēk + λ′ijkLiQj d̄k + µ′

iLiHu

W∆B=1 = 1
2λ

′′
ijkūid̄j d̄k

These violate lepton number (∆L = 1) or baryon number (∆B = 1).

If both types of couplings were present,

and of order 1, then the proton would

decay in a tiny fraction of a second

through diagrams like this: u

uR

dR s̃∗R

p+

{

}
π+

νe

u

d∗L

ν∗
e

λ′′∗
112 λ′

112

Many other proton decay modes, and other experimental limits on B and L

violation, give strong constraints on these terms in the superpotential.

One cannot require exactB and L conservation, since they are known to be

violated by non-perturbative electroweak effects. Instead, in the MSSM, one

postulates a new discrete symmetry called Matter Parity, also known as R-parity.
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Matter parity is a multiplicatively conserved quantum number defined as:

PM = (−1)3(B−L)

for each particle in the theory. All quark and lepton supermultiplets carry

PM = −1, and the Higgs and gauge supermultiplets carry PM = +1. This

eliminates all of the dangerous ∆L = 1 and ∆B = 1 terms from the

renormalizable superpotential.

R-parity is defined for each particle with spin S by:

PR = (−1)3(B−L)+2S

All of the known Standard Model particles and the Higgs scalar bosons carry

PR = +1, while all of the squarks and sleptons and higgsinos and gauginos

carry PR = −1.

Matter parity and R-parity are exactly equivalent, because the product of

(−1)2S for all of the fields in any interaction vertex that conserves angular

momentum is always +1.
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Consequences if R-parity is conserved

The particles with odd R-parity (PR = −1) are the “supersymmetric particles” or

“sparticles”.

Every interaction vertex in the theory has an even number of PR = −1
sparticles. Then:

• The lightest sparticle with PR = −1, called the “Lightest Supersymmetric

Particle” or LSP, is absolutely stable. If the LSP is electrically neutral, it

interacts only weakly, and so could be the non-baryonic dark matter required

by cosmology and astrophysics.

• In collider experiments, sparticles can only be produced in even numbers

(usually two-at-a-time).

• Each sparticle other than the LSP must decay into a state with an odd

number of LSPs (usually just one). The LSP escapes the detector, with a

missing momentum signature.
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The Lightest SUSY Particle as Cold Dark Matter

Recent results in experimental cosmology require cold dark matter with density:

ΩCDMh
2 = 0.12 (WMAP, Planck, . . . )

where h ≈ 0.7 is the Hubble constant in units of 100 km/(sec Mpc).

A stable particle which freezes out of thermal equilibrium will have Ωh2 = 0.12

today if its thermal-averaged annihilation cross-section is, roughly:

〈σv〉 = 1 pb

As a crude estimate, a weakly interacting particle that annihilates in collisions with

a characteristic mass scale M will have

〈σv〉 ∼ α2

M2
∼ 1 pb

(150 GeV

M

)2

So, a stable, weakly interacting particle with mass roughly of order the weak scale

is a candidate. In particular, a neutralino LSP (Ñ1) may do it, if R-parity is

conserved.
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Is R-parity inevitable?

No! MaybeB violation is allowed but L violation isn’t. Or, maybe L violation is

allowed, butB violation isn’t.

Or maybe both types of couplings are allowed, but the ones relevant for proton

decay are just very small.

Two specific alternatives:

• R-parity could be spontaneously broken, by the VEV of some scalar field with

PR = −1.

• Baryon triality, a Z3 discrete symmetry:

ZB3 = e2πi(B−2Y )/3

If ZB3 is multiplicatively conserved, then the proton is absolutely stable, but

the LSP is not.
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The Soft SUSY-breaking Lagrangian for the MSSM

LMSSM
soft = − 1

2

(
M3g̃g̃ +M2W̃ W̃ +M1B̃B̃

)
+ c.c.

−
(˜̄uau Q̃Hu − ˜̄dad Q̃Hd − ˜̄e ae L̃Hd

)
+ c.c.

−Q̃† m2

Q̃
Q̃− L̃† m2

L̃
L̃− ˜̄um2

˜̄u
˜̄u† − ˜̄dm2

˜̄d

˜̄d
†
− ˜̄em2

˜̄e
˜̄e†

−m2
Hu
H∗
uHu −m2

Hd
H∗
dHd − (bHuHd + c.c.) .

The first line gives masses to the MSSM gauginos (gluino g̃, winos W̃ , bino B̃).

The second line consists of (scalar)3 interactions.

The third line is (mass)2 terms for the squarks and sleptons.

The last line is Higgs (mass)2 terms.

If SUSY is to solve the Hierarchy Problem, we expect:

M1, M2, M3, au, ad, ae ∼ msoft;

m2

Q̃
, m2

L̃
, m2

˜̄u
, m2

˜̄d
, m2

˜̄e
, m2

Hu
, m2

Hd
, b ∼ m2

soft

where msoft is not huge compared to 1 TeV.
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The soft SUSY-breaking Lagrangian of the MSSM contains 105 new

parameters not found in the Standard Model.

Most of what we do not already know about SUSY is expressed

by the question: “How is supersymmetry broken?”

Many proposals have been made.

The question can be answered experimentally by discovering the

pattern of gaugino and squark and slepton masses, because they

are the main terms in the SUSY-breaking Lagrangian.
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Electroweak symmetry breaking and the Higgs bosons

In SUSY, there are two complex Higgs scalar doublets, (H+
u , H

0
u) and

(H0
d , H

−
d ), rather than one in the Standard Model.

The Higgs VEVs can be parameterized:

vu = 〈H0
u〉, vd = 〈H0

d〉, where

v2u + v2d = v2 = 2m2
Z/(g

2 + g′2) ≈ (174 GeV)2

tanβ = vu/vd.

The quark and lepton masses are related to these VEVs and the superpotential Yukawa

couplings by:

yt =
mt

v sinβ
, yb =

mb

v cosβ
, yτ =

mτ

v cosβ
, etc.

If we want the Yukawa couplings to avoid getting non-perturbatively large up to

very high scales, we need:

1.5 <∼ tanβ <∼ 55
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Define mass-eigenstate Higgs bosons: h0, H0, A0, G0, H+, G+ by:

(
H0

u

H0
d

)
=

(
vu

vd

)
+

1√
2

(
cosα sinα

− sinα cosα

)(
h0

H0

)
+

i√
2

(
sinβ cosβ

− cosβ sinβ

)(
G0

A0

)

(
H+

u

H−∗
d

)
=

(
sinβ cosβ

− cosβ sinβ

)(
G+

H+

)

Now, expand the potential to second order in these fields to find:

m2
A0 = 2b/ sin 2β

m2
h0,H0 = 1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 +m2

Z)
2 − 4m2

Zm
2
A0 cos2 2β

)
,

m2
H± = m2

A0 +m2
W

tan 2α = [(m2
A0 +m2

Z)/(m
2
A0 −m2

Z)] tan 2β

Note only two independent parameters: tan β, mA0 .

The Goldstone bosons have mG0 = mG± = 0; they are absorbed by the Z ,

W± bosons to give them masses, as in the Standard Model.
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Typical contour map of the Higgs potential in SUSY:

0 50 100 150 200 250 300
H

u
  [GeV]

0

20

40

60
H

d  [
G

eV
]

The Standard Model-like Higgs boson h0 corresponds to oscillations along the

shallow direction with (H0
u − vu, H0

d − vd) ∝ (cosα,− sinα). At tree-level, it

is easy to show from above that the lightest Higgs scalar would obey:

mh0 < mZ .

Naively, this disagrees with the recent discovery of mh0 = 125 GeV.

However, taking into account loop effects, one can get the observed Higgs mass.
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Radiative corrections to the Higgs mass in SUSY:

m2
h0 = m2

Z cos2(2β) +
3

4π2
y2tm

2
t ln

(mt̃1
mt̃2

m2
t

)
+ . . .

h0 +
t

t

h0 +

t̃
h0 +

t̃

t̃

t

t

h0 g̃ + . . .

At tree-level: m2
Z pure electroweak

At one-loop: y2tm
2
t top Yukawa comes in

At two-loop: αSy
2
tm

2
t SUSYQCD comes in

At three-loop: α2
Sy

2
tm

2
t

Even the three-loop corrections can add±1 GeV or so to mh0 .

This is much larger than the eventual experimental uncertainty expected at the

LHC, so we aren’t done calculating yet!
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The decoupling limit for the Higgs bosons

If mA0 ≫ mZ , then:

• h0 has the same couplings as would a Standard Model Higgs boson of the

same mass

• α ≈ β − π/2

• A0, H0, H± form an isospin doublet, and are much heavier than h0

Mass

h0

A0, H0

H±
Isospin doublet Higgs bosons

125 GeV SM-like Higgs boson

Many (but not all) models of SUSY breaking approximate this decoupling limit.
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Neutralinos

The neutral higgsinos (H̃0
u, H̃0

d ) and the neutral gauginos (B̃, W̃ 0) mix with

each other because of electroweak symmetry breaking. In the gauge eigenstate

basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u),

Lneutralino mass = − 1

2
(ψ0)TMÑψ

0

MÑ =




M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0




The diagonal terms are just the gaugino masses in the soft SUSY-breaking

Lagrangian. The−µ entries can be traced back to the superpotential. The

off-diagonal terms come from the gaugino-Higgs-Higgsino interactions, and are

always less than mZ .
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The physical neutralino mass eigenstates Ñi (another popular notation is χ̃0
i ) are

obtained by diagonalizing the mass matrix with a unitary matrix.

Ñi = Nijψ
0
j ,

where 


mÑ1
0 0 0

0 mÑ2
0 0

0 0 mÑ3
0

0 0 0 mÑ4




= N∗MN−1,

with mÑ1
< mÑ2

< mÑ3
< mÑ4

.

The lightest neutralino fermion, Ñ1, is a candidate for the cold dark matter

required by cosmology and astrophysics.

65



Charginos

Similarly, the charged higgsinos H̃+
u , H̃

−
d and the charged winos W̃+, W̃− mix

to form chargino fermion mass eigenstates.

Lchargino mass = − 1
2 (ψ

±)TMC̃ψ
± + c.c.

where, in 2× 2 block form,

MC̃ =

(
0 XT

X 0

)
with X =

(
M2 gvu

gvd µ

)

The mass eigenstates C̃±
1,2 (many other sources use χ̃±

1,2) are related to the

gauge eigenstates by two unitary 2×2 matrices U and V according to

(
C̃+

1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
;

(
C̃−

1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
.

Note that the mixing matrix for the positively charged left-handed fermions is

different from that for the negatively charged left-handed fermions.

66



The chargino mixing matrices are chosen so that

U∗XV−1 =

(
mC̃1

0

0 mC̃2

)
,

with positive real entries mC̃i
. In this case, one can solve for the tree-level

(mass)2 eigenvalues in simple closed form:

m2
C̃1
,m2

C̃2
=

1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√
(|M2|2 + |µ|2 + 2m2

W )2 − 4|µM2 −m2
W sin 2β|2

]
.

In many models of SUSY breaking, one finds thatM2 ≪ |µ|, so the lighter

chargino is mostly wino with mass close to M2, and the heavier is mostly

higgsino with mass close to |µ|.
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A typical mass hierarchy for the neutralinos and charginos, assumingmZ ≪ |µ|
and M1 ≈ 0.5M2 < |µ|.

Ñ1

Ñ2 C̃1

C̃2Ñ4

Ñ3

Mass

bino-like LSP

wino-like

higgsino-like

Although this is a very popular scenario, it is NOT guaranteed. The lightest

states could be the higgsinos, or the winos.
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The Gluino

The gluino is an SU(3)C color octet fermion, so it does not have the right

quantum numbers to mix with any other state. Therefore, at tree-level, its mass is

the same as the corresponding parameter in the soft SUSY-breaking Lagrangian:

Mg̃ =M3

However, the quantum corrections to this are quite large (again, because this is a

color octet!). If one calculates the one-loop pole mass of the gluino, one finds:

Mg̃ =M3(Q)
(
1 +

αs
4π

[
15 + 6 ln(Q/M3) +

∑
Aq̃

])

whereQ is the renormalization scale, the sum is over all 12 squark multiplets, and

Aq̃ =

∫ 1

0

dx x ln
[
xm2

q̃/M
2
3 + (1− x)m2

q/M
2
3 − x(1− x)− iǫ

]
.

This correction can be of order 5% to 25%, depending on the squark masses.

It increases the gluino mass, compared to the tree-level value.
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Squarks and Sleptons

To treat these in complete generality, we would have to take into account arbitrary

mixing. So the mass eigenstates would be obtained by diagonalizing:

• a 6× 6 (mass)2 matrix for up-type squarks (ũL, c̃L, t̃L, ũR, c̃R, t̃R),

• a 6× 6 (mass)2 matrix for down-type squarks (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R),

• a 6× 6 (mass)2 matrix for charged sleptons (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R),

• a 3× 3 matrix for sneutrinos (ν̃e, ν̃µ, ν̃τ )

In many popular models, the first- and second-family squarks and sleptons are in

7 very nearly degenerate, unmixed pairs:

(ẽR, µ̃R), (ν̃e, ν̃µ), (ẽL, µ̃L), (ũR, c̃R), (d̃R, s̃R), (ũL, c̃L), (d̃L, s̃L),

with mixing angles assumed small.
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But, for the third-family squarks and sleptons, large Yukawa (yt, yb, yτ ) and soft

(at, ab, aτ ) couplings are definitely important. For the top squark:

t̃L t̃R

〈H0
u〉

at
and

t̃L t̃R

〈H0
d〉

µyt

The first diagram comes directly from the soft SUSY-breaking Lagrangian, and the

second from the F -term contribution to the scalar potential. So, in the (t̃L, t̃R)

basis, the top squark (mass)2 matrix is:

(
m2
Q̃3

+m2
t +∆t̃L

a∗t vu − µytvd
atvu − µ∗ytvd m2

˜̄u3
+m2

t +∆t̃R

)
.

The off-diagonal terms imply significant t̃L, t̃R mixing.
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Diagonalizing the top squark mass2 matrix, one finds mass eigenstates:

(
t̃1

t̃2

)
=

(
ct̃ −s∗t̃
st̃ c∗

t̃

)(
t̃L

t̃R

)

where m2
t̃1
< m2

t̃2
by convention, and |ct̃|2 + |st̃|2 = 1. If they are real, then

ct̃ = cos θt̃ and st̃ = sin θt̃.

Similarly, mixing for the bottom squark and tau slepton states:

(
b̃1

b̃2

)
=

(
cb̃ −s∗

b̃

sb̃ c∗
b̃

)(
b̃L

b̃R

)
;

(
τ̃1

τ̃2

)
=

(
cτ̃ −s∗τ̃
sτ̃ c∗τ̃

)(
τ̃L

τ̃R

)

To avoid flavor constraints, often assume for the first- and second-family squarks

and sleptons that the mixing is small, due to small Yukawa and a terms. However,

the mixing could be large if they are heavy.
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The undiscovered particles in the MSSM:

Names Spin PR Mass Eigenstates Gauge Eigenstates

Higgs bosons 0 +1 h0 H0 A0 H± H0
u H0

d H+
u H−

d

ũL ũR d̃L d̃R “ ”

squarks 0 −1 s̃L s̃R c̃L c̃R “ ”

t̃1 t̃2 b̃1 b̃2 t̃L t̃R b̃L b̃R

ẽL ẽR ν̃e “ ”

sleptons 0 −1 µ̃L µ̃R ν̃µ “ ”

τ̃1 τ̃2 ν̃τ τ̃L τ̃R ν̃τ

neutralinos 1/2 −1 Ñ1 Ñ2 Ñ3 Ñ4 B̃0 W̃ 0 H̃0
u H̃0

d

charginos 1/2 −1 C̃±
1 C̃±

2 W̃± H̃+
u H̃−

d

gluino 1/2 −1 g̃ “ ”
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Lecture 3: Experimental Signatures of

Supersymmetry

• What flavor teaches us about SUSY breaking

• Planck-scale Mediated SUSY Breaking

• mSUGRA/CMSSM

• Patterns of SUSY breaking

• Superpartner Decays
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There are 105 new parameters associated with SUSY

breaking in the MSSM.

How are we supposed to make any meaningful

predictions in the face of this uncertainty?

Fortunately, we already have strong constraints on the

MSSM soft terms, because of experimental limits on

flavor violation.
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Hints of an Organizing Principle

For example, if there is a smuon-selectron mixing

(mass)2 term L = −m2
µ̃∗
L
ẽL
µ̃∗
LẽL, and

M̃ = Max[mẽL ,mẽR ,M2], then this one-loop

diagram gives the decay width:

γ

e−µ−

B̃,W̃ 0

µ̃ ẽ

µ− → e−γ

Γ(µ− → e−γ) = 5× 10−19
eV

(m2
µ̃∗
L
ẽL

M̃2

)2(1000 GeV

M̃

)4

For comparison, the experimental limit is (from MEG at PSI):

Γ(µ− → e−γ) < 1.3× 10−22
eV.

So the amount of smuon-selectron mixing in the soft Lagrangian is limited:

m2
µ̃∗
L
ẽL

M̃2
< 0.016

( M̃

1000 GeV

)2
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Another example: K0 ↔ K0 mixing:
g̃ g̃

d̃ s̃

s̃ d̃

d s

s d

K0 ↔ K0

This constrains the flavor-violating SUSY breaking terms:

L = −m2
d̃∗
L
s̃L
d̃∗Ls̃L −m2

d̃Rs̃∗R
d̃Rs̃

∗
R.

Comparing this diagram with the observed ∆mK0 gives:

Re[m2
d̃∗
L
s̃L
m2
d̃Rs̃∗R

]1/2

M̃2
<∼ 0.002

( M̃

1000 GeV

)

where M̃ is the dominant squark or gluino mass.

The experimental values of ǫ and ǫ′/ǫ in the effective Hamiltonian for the

K0, K0 system also give strong constraints on the amount of d̃L, s̃L and

d̃R, s̃R mixing and CP violation in the soft terms.
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Similarly:

The D0, D0 system constrains ũL, c̃L and ũR, c̃R soft SUSY-breaking mixing.

The B0
d, B

0
d system constrains d̃L, b̃L and d̃R, b̃R soft SUSY-breaking mixing.

To avoid experimental limits on flavor violation, the soft-SUSY

breaking masses must be

• nearly flavor-bind, or

• aligned in flavor space, or

• very heavy (over 1000 GeV) .

Direct limits from the LHC suggest that the last option is at least part

of the explanation.
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The Flavor-Preserving Minimal Supersymmetric Standard Model

Idealized limit: the squark and slepton (mass)2 matrices are flavor-blind, each

proportional to the 3× 3 identity matrix in family space.

m2

Q̃
= m2

Q̃
1, m2

˜̄u
= m2

˜̄u
1, m2

˜̄d
= m2

˜̄d
1, m2

L̃
= m2

L̃
1, m2

˜̄e
= m2

˜̄e
1.

Then all squark and slepton mixing angles are rendered trivial, because squarks

and sleptons with the same electroweak quantum numbers will be degenerate in

mass and can be rotated into each other at will.

Also assume:

au = Au0 yu, ad = Ad0 yd, ae = Ae0 ye,

and no new CP-violating phases:

M1, M2, M3, Au0, Ad0, Ae0 = real.
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The Flavor-Preserving Minimal Supersymmetric Standard Model (continued)

The new parameters, besides those already found in the Standard Model, are:

• M1, M2, M3 (3 real gaugino masses)

• m2
Q̃

, m2
˜̄u

, m2
˜̄d
, m2

L̃
, m2

˜̄e
(5 squark and slepton mass2 parameters)

• Au0, Ad0, Ae0 (3 real scalar3 couplings)

• m2
Hu

, m2
Hd

, b, µ (4 real parameters)

So there are 15 real parameters in this model.

The parameters µ and b ≡ Bµ are often traded for the known Higgs VEV

v = 174 GeV, tanβ, and sign(µ).

Many SUSY breaking models are special cases of this.

However, these are Lagrangian parameters that run with the renormalization

scale,Q. Therefore, one must also choose an “input scale” Q0 where the

flavor-independence holds.
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What is the input scaleQ0 ?

Perhaps:

• Q0 =MPlanck, or

• Q0 =Mstring, or

• Q0 =MGUT, or

• Q0 is some other scale associated with the type of SUSY breaking.

In any case, the SUSY-breaking parameters are picked at Q0 as boundary

conditions, then run them down to the weak scale using their renormalization

group (RG) equations.

Flavor violation will remain small, because the Yukawa couplings of the first two

families are small.

At the weak scale, use the renormalized parameters to predict physical masses,

decay rates, cross-sections, dark matter relic density, etc.
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A reason to be optimistic that this

program can succeed: the SUSY

unification of gauge couplings. The

measured α1, α2, α3 are run up to

high scales using the RG equations

of the Standard Model (dashed lines)

and the MSSM (solid lines). 2 4 6 8 10 12 14 16 18
Log

10
(Q/GeV)
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At one-loop order, the RG equations are:

d

d(lnQ)
α−1
a = − ba

2π
(a = 1, 2, 3)

with bSM
a =(41/10,−19/6,−7) in the Standard Model, and bMSSM

a =(33/5, 1,−3) in

the MSSM because of the extra particles in the loops. The results for the MSSM

are in agreement with unification at MGUT ≈ 2× 1016 GeV.

If this hint is real, we might hope that a similar extrapolation for the soft

SUSY-breaking parameters can also work.
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Origins of SUSY breaking

Up to now, we have simply put SUSY breaking into the MSSM explicitly.

For deeper understanding, how can SUSY spontaneously broken?

This means that the Lagrangian is invariant under SUSY transformations, but the

ground state is not:

Qα|0〉 6= 0, Q†
α̇|0〉 6= 0.

The SUSY algebra tells us that the Hamiltonian is related to the SUSY charges by:

H = P 0 = 1

4
(Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2).

Therefore, if SUSY is unbroken in the ground state, then H|0〉 = 0, so the

ground state energy is 0. Conversely, if SUSY is spontaneously broken, then the

ground state must have positive energy, since

〈0|H|0〉 = 1

4

(
‖Q†

1|0〉‖2 + ‖Q1|0〉‖2 + ‖Q†
2|0〉‖2 + ‖Q2|0〉‖2

)
> 0

To achieve spontaneous SUSY breaking, we need a theory in which the

prospective ground state |0〉 has positive energy.
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In SUSY, the potential energy can be written, using the equations of motion, as:

V =
∑

i

|Fi|2 + 1
2

∑

a

DaDa,

a sum of squares of auxiliary fields.

So, for spontaneous SUSY breaking, one must arrange a stable (or

quasi-stable) ground state with at least one of 〈Fi〉 6= 0 or 〈Da〉 6= 0.

Here, the auxiliary fields are given by algebraic equations:

F ∗
i = −∂W

∂φi
and Da = −g(φ†T aφ).

Models of SUSY breaking where

• 〈Fi〉 6= 0 are called “O’Raifeartaigh models” or “F-term breaking models”

• 〈Da〉 6= 0 are called “Fayet-Iliopoulis models” or “D-term breaking models”

F -term breaking is used in (almost) all known realistic models.
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F -term breaking: the O’Raifeartaigh Model

The simplest example has 3 chiral supermultiplets, with:

W = −kφ1 +mφ2φ3 +
y

2
φ1φ

2
3

Then the auxiliary fields are found from the algebraic equation F ∗
i = −∂W∂φi

:

F1 = k − y

2
φ∗23 , F2 = −mφ∗3, F3 = −mφ∗2 − yφ∗1φ∗3.

The reason SUSY must be broken is that F1 = 0 and F2 = 0 are not

compatible. The minimum of V (φ1, φ2, φ3) is at φ2 = φ3 = 0, with φ1 not

determined (classically).

Quantum corrections fix the true minimum to be at φ1 = 0, where:

F1 = k, V = k2 > 0.

Note that φ1 must be a gauge singlet. Otherwise, k = 0 to make W invariant.
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F -term breaking (continued)

If you assumem2 > yk and expand the scalar fields around the minimum at

φ1 = φ2 = φ3 = 0, you will find 6 real scalars with tree-level squared masses:

0, 0, m2, m2, m2 − yk, m2 + yk.

Meanwhile, there are 3 Weyl fermions with squared masses

0, m2, m2.

The fact that the fermions and scalars aren’t degenerate is a clear sign that SUSY

has indeed been spontaneously broken.

This theory always breaks SUSY at the true minimum of the potential, for any

values of the superpotential parameters.
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Behavior of the scalar potential as a function of some order parameter φ:

V (φ)

φ

SUSY unbroken

V (φ)

φ

SUSY broken

V (φ)

φ

meta-stable SUSY breaking

Meta-stable SUSY breaking is acceptable if the tunneling lifetime to decay from

our SUSY-breaking vacuum (with φ = 0 here) to the global minimum

SUSY-preserving vacuum is longer than the age of the universe.

Intriligator, Seiberg, Shih arXiv:hep-th/0602239 showed that this can work in

simple, uncontrived SUSY Yang-Mills models.

An even simpler example: adding a small term ǫφ22 to the O’Raifeartaigh

superpotential turns it into a meta-stable SUSY breaking model. (Try it!)
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Spontaneous Breaking of SUSY requires us to extend the MSSM

MSSM has no gauge-singlet chiral supermultiplet that could get a non-zero

F -term VEV.

Even if there were such an 〈F 〉, there is another general obstacle. Gaugino

masses cannot arise in a renormalizable SUSY theory at tree-level. This is

because SUSY does not contain any (scalar)-(gaugino)-(gaugino) coupling

that could turn into a gaugino mass term when a scalar gets a VEV.

We also have the clue that SUSY breaking could be essentially flavor-blind in

order to not conflict with experiment.

This leads to the following general schematic picture of SUSY breaking. . .
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Spontaneous SUSY breaking occurs in a “hidden sector” of particles with no

(or tiny) direct couplings to the “visible sector” chiral supermultiplets of the MSSM.

(Hidden sector)
(Visible sector)

Supersymmetry
breaking origin

     MSSMFlavor-blind

interactions

However, the two sectors do share some mediating interactions that transmit

SUSY-breaking effects indirectly. As a bonus, if the mediating interactions are

flavor-blind, then the soft SUSY-breaking terms of the MSSM will be also.

By dimensional analysis,

msoft ∼
〈F 〉
M

where M is a mass scale associated with the physics that mediates between the

two sectors.
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The O’Raifeartaigh model has the mass scale of supersymmetry breaking put in

by hand, as the parameter k =
√
〈F 〉.

More plausible: dynamical SUSY breaking. The scale of 〈F 〉 arises from some

strong dynamics, set by the scale at which a new gauge theory gets strong:

Λ = e−8π2/bg2MPlanck

just as in QCD.

Then the field that breaks supersymmetry might be a composite made of strongly

interacting fundamental fields.

Some great reviews on this subject:

Intriligator, Seiberg hep-ph/0702069

Dine, Mason hep-th/1012.2836

Poppitz, Trivedi hep-th/9803107

Shadmi, Shirman hep-th/9907225
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Planck-scale Mediated SUSY Breaking (also known as “gravity mediation”)

The idea: SUSY breaking is transmitted from a hidden sector to the MSSM by the

new interactions, including gravity, that enter near the Planck mass scale MP .

If SUSY is broken in the hidden sector by some VEV 〈F 〉, then the MSSM soft

terms should be of order:

msoft ∼
〈F 〉
MP

This follows from dimensional analysis, since msoft must vanish in the limit that

SUSY breaking is turned off (〈F 〉 → 0) and in the limit that gravity becomes

irrelevant (MP →∞).

Since we think msoft ∼ 103 GeV, and MP ∼ 2.4× 1018 GeV:

√
〈F 〉 ∼ 1011 GeV
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Planck-scale Mediated SUSY Breaking (continued)

Write down an effective field theory non-renormalizable Lagrangian that couples

F to the MSSM scalar fields φi and gauginos λa:

LPMSB = −
( fa

2MP
Fλaλa + c.c.

)
− kji
M2
P

FF ∗φiφ
∗j

−
( αijk
6MP

Fφiφjφk +
βij

2MP
Fφiφj + c.c.

)

This is (part of) a fully supersymmetric Lagrangian that arises in supergravity.

When we replace F by its VEV 〈F 〉, we get exactly the MSSM soft

SUSY-breaking Lagrangian, with:

• Gaugino masses: Ma = fa〈F 〉/MP

• Scalar squared massed: (m2)ji = kji |〈F 〉|2/M2
P and bij = βij〈F 〉/MP

• Scalar3 couplings aijk = αijk〈F 〉/MP

Unfortunately, it is not obvious that these are flavor-blind!
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A dramatically simplified parameter space is often called “Minimal Supergravity”

(or “mSUGRA”) or the “Constrained MSSM”.

Assume only four parametersm1/2, m2
0, A0, and B0:

M3 =M2 =M1 = m1/2

m2

Q̃
= m2

˜̄u
= m2

˜̄d
= m2

L̃
= m2

˜̄e
= m2

0 1

m2
Hu

= m2
Hd

= m2
0

au = A0yu, ad = A0yd, ae = A0ye

b = B0µ.

The most important thing to know about mSUGRA is that it is almost

certainly wrong!

These soft relations should be true at the renormalization scale Q0 =MP , and

then run down to the weak scale.

However, it is traditional to use Q0 =MGUT instead, because nobody knows

how to extrapolate above MGUT. (Not a very good reason!)
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Renormalization Group Running for an mSUGRA model with

m1/2 = 1000 GeV, m0 = 300 GeV, A0 = −1000 GeV, tanβ = 15, µ > 0

Gaugino massesM1,M2,M3

Slepton masses (dashed=stau)

Squark masses (dashed=stop)

Higgs: (m2
Hd

+ µ2)1/2,

(m2
Hu

+ µ2)1/2
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Here is the resulting sparticle mass spectrum:

h0

H0 A0

H±

Ñ1

Ñ2

Ñ3

Ñ4

C̃1

C̃2

g̃ d̃L ũL

ũR d̃R

ẽL

ẽR

ν̃e

t̃1

t̃2 b̃2

b̃1

τ̃1

τ̃2

ν̃τ

Mg̃ = 2300 GeV

Msquarks = 2000 GeV

Mh = 121 GeV

This model would be OK as of today, except. . . it predicts Mh ≈ 121 GeV = too light!
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Impact of the discovery Mh = 125 GeV in the MSSM

In the decoupling limit:

M2
h = m2

Z cos2(2β)

+
3

4π2
y2tm

2
t

[
ln
(mt̃1

mt̃2

m2
t

)
+ sin2(2θt̃)F1 − sin4(2θt̃)F2

]
+ . . .

where F1 and F2 are certain positive functions of mt,mt̃1
,mt̃2

.

To get Mh = 125 GeV, need

• heavy top squarks
√
mt̃1

mt̃2
≫ m2

t ,

and/or

• large stop mixing sin(2θt̃), in which case

[
. . .

]
<∼ ln

(
mt̃1

mt̃2

m2
t

)
+ 3

The level-repulsion associated with large stop mixing suggests that one of the

stop masses is much lighter than the other.
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What’s left for mSUGRA? Here’s a typical model that survives LHC:

h0

H0 A0

H±

Ñ1

Ñ2

Ñ3

Ñ4

C̃1

C̃2

g̃
d̃L ũL

ũR d̃R

ẽL ν̃e

ẽR

t̃1

b̃2

t̃2,b̃1

τ̃1

τ̃2 ν̃τ

Mg̃ = 4200 GeV

Msquarks = 3700 GeV

Mh = 125 GeV

Mt̃1
≪ other squarks

M1/2 = 500 GeV, m0 = 2000 GeV, A0 = −2000 GeV, tanβ = 15.

To get Mh = 125 GeV, squarks and gluino out of reach of LHC.
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Computer programs, including:

SoftSUSY, SuSpect, SARAH, SPheno, FlexibleSUSY,

ISASUSY, SuSeFLAV, FeynHiggs, SUSYHD, H3m,

CPsuperH, NMSPEC, NMSSMCalc, NMSSMtools, . . .

can help you generate the superpartner and Higgs mass spectrum, given a

choice of SUSY-breaking model parameters.

These can be interfaced to programs that produce cross-sections, decay rates,

and Monte Carlo events:

PROSPINO, MadGraph/MadEvent, Pythia, ISAJET, HERWIG,

WHIZARD, SHERPA, SUSYGEN, SDECAY, HDECAY, GRACE, CompHEP,

CalcHEP, . . .

They can also be interfaced to programs that compute the abundance of dark

matter and dark matter detection signals:

micrOMEGAs, DarkSUSY, ISAReD, . . . .
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SUSY signatures at colliders

• The most important interactions for producing sparticles are gauge

interactions, and interactions related to gauge interactions by SUSY.

• The production rate is known, up to mixing of sparticles, because of SUSY

prediction of couplings.

• The LSPs are neutral and extremely weakly interacting, so they carry away

energy and momentum, if R-parity conserved.

• At hadron colliders, the component of the momentum along the beam is

unknown, so only the energy component in particles transverse to the beam

is observable. So one may look for “missing transverse energy”, Emiss
T .
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Superpartner decays:

1) Neutralino decays

2) Chargino decays

3) Gluino decays

4) Squark decays (especially stops)

5) Slepton decays
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1) Neutralino Decays

If R-parity is conserved and Ñ1 is the LSP, then it cannot decay. For the others,

the decays are of weak-interaction strength:

Ñi f̃

f̄ f

Ñ1 Ñi Z

Ñ1 f̄

f Ñi h0

Ñ1
b̄, τ+, ...

b, τ−, ...

In each case, the intermediate boson (squark or slepton f̃ , Z boson, or Higgs

boson h0) might be on-shell, if that two-body decay is kinematically allowed.

In general, the visible decays are either:

Ñi → QQ̄Ñ1 (seen in detector as jj + /E)

Ñi → ℓ+ℓ−Ñ1 (seen in detector as ℓ+ℓ− + /E)

Some SUSY signals rely on leptons in the final state. This is more likely if

sleptons are relatively light.
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If Ñi → Ñ1h
0 is kinematically open, then it often dominates, with

Branching Ratio > 90%.

In the last millenium, this was known as the “spoiler mode”.

• Experimentalists often ignore this fact, which is quite robust

across models. Beware of claimed limits on simplified models!

They often are not even qualitatively similar to the SUSY models

they claim to represent.

• Can one use the known Higgs mass to enhance the signal, or to

enhance our understanding after an eventual discovery?
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2) Chargino Decays

Charginos C̃i also have decays of weak-interaction strength:

C̃±
i f̃

f̄ ′ f

Ñ1 C̃i W±

Ñ1 f̄ ′

f

Again, the intermediate boson (squark or slepton f̃ , or W boson) might be

on-shell, if that two-body decay is kinematically allowed.

In general, the decays are either:

C̃±
i → QQ̄′Ñ1 (seen in detector as jj + /E)

C̃±
i → ℓ±νÑ1 (seen in detector as ℓ± + /E)

Again, leptons in final state are more likely if sleptons are relatively light.

For both neutralinos and charginos, a relatively light, mixed τ̃1 can lead to

enhanced τ ’s in the final state. This is increasingly important for larger tanβ.

Tau identification may be a crucial limiting factor for experimental SUSY.
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3) Gluino Decays

The gluino can only decay through squarks, either on-shell (if allowed) or virtual.

If mt̃1
≪ other squark masses, top quarks are plentiful in these decays.

For example:

g̃ Q̃R

Q̄ Q

Ñ1

jj + /E or tt̄+ /E

g̃ Q̃L

Q̄ Q

Ñ2 Z

Ñ1 f

f̄

jjjj + /E or jjℓ+ℓ− + /E or

tt̄jj + /E or tt̄ℓ+ℓ− + /E

g̃ Q̃L

Q̄ Q

C̃1 W

Ñ1 f

f̄ ′

jjjj + /E or jjℓ± + /E or

tt̄jj + /E or tt̄ℓ± + /E

The possible signatures of gluinos and squarks can be numerous and

complicated because of these and other cascade decays.
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An important feature of gluino decays with one lepton, for example:

g̃ t̃1

t̄→b̄jj t→bℓ+ν

Ñ1 or
g̃ t̃1

t̄→b̄ℓ−ν̄ t→bjj

Ñ1

or
g̃ Q̃L

Q̄ Q

C̃±
1 W±

Ñ1 ν

ℓ± or . . .

The lepton has either charge with equal probability. (The gluino does not “know”

about electric charge.) So, when two gluinos are produced, probability 0.5 to have

same-charge leptons, and probability 0.5 to have opposite-charge leptons.

(SUSY)→ ℓ±ℓ′± + jets + Emiss
T

Same-charge lepton signals are important at the LHC, because Standard Model

backgrounds are much smaller. Note lepton flavors are uncorrelated. Event may

also have 2 or 4 taggable b jets.
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4) Squark Decays

If a decay Q̃→ Qg̃ is kinematically allowed, it will always dominate, because the

squark-quark-gluino vertex has QCD strength:

Q̃

Q

g̃

Otherwise, right-handed squarks prefer to decay directly to a bino-like LSP, while

left-handed squarks prefer to decay to a wino-like C̃1 or Ñ2:

Q̃R

Q

Ñ1 Q̃L

Q′

C̃1 Q̃L

Q

Ñ2

If a top squark is light, then the decays t̃1 → tg̃ and t̃1 → tÑ1 may not be

kinematically allowed, so it may decay only into charginos: t̃1 → bC̃1. If all those

decays are closed, then t̃1 → bWÑ1. If even that is closed, it has only a

suppressed flavor-changing decay t̃1 → cÑ1 or 4-body decay t̃1 → bf f̄ ′Ñ1.
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5) Slepton Decays

When Ñ1 is the LSP and mostly large bino, the sleptons ẽR, µ̃R

(and often τ̃1 and τ̃2) prefer the direct two-body decays with strength proportional

to g′2:

ℓ̃R

ℓ

Ñ1

(seen in detector as ℓ± + /E)

However, the left-handed sleptons ẽL, µ̃L, ν̃ have no coupling to the bino

component of Ñ1, so they often decay preferentially through mostly wino Ñ2 or

C̃1, with strength proportional to g2:

ℓ̃L

ℓ

Ñ2 ℓ̃±
L

ν

C̃±
1 ν̃

ℓ−

C̃+
1

with Ñ2 and C̃1 decaying as before.
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Lecture 4: Superfields and Superspace
A geometric interpretation of supersymmetry can be given in superspace.

Super-coordinates:

xµ, θα, θ†α̇

Last two are constant, complex, anti-commuting (“Grassmann-odd”),

two-component spinors with dimension [mass]−1/2.

• 4 commuting coordinates, 4 anti-commuting coordinates.

• Component fields of a supermultiplet will be united into a single superfield =

classically, a function on superspace.

• Supersymmetry transformations = translations in superspace

• Elegant formulation, some calculations much nicer and easier
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Warm-up: derivatives, integrals for a single anti-commuting variable η.

Since η2 = 0, a power-series expansion terminates at first order, and a general

function is linear in η:

f(η) = f0 + ηf1.

Therefore:
df

dη
= f1.

To define the integration operation, take:

∫
dη = 0,

∫
dη η = 1,

and impose linearity. This is called Berezin integration, and implies:

∫
dη f(η) = f1,

so differentiation and integration are the same thing!
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Important properties of differentiation and integration:

Note that d/dη anti-commutes with every Grassmann-odd object, so

d(η′η)

dη
= −d(ηη

′)

dη
= −η′.

The Berezin integration obeys translation invariance:
∫
dη f(η + η′) =

∫
dη f(η)

and integration by parts:
∫
dη

df

dη
= 0 (Fundamental Theorem of Calculus!)

Can define a delta function by:
∫
dη δ(η − η′)f(η) = f(η′)

which implies:

δ(η − η′) = η − η′.
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Return to the superspace for 4 dimensions: a superfield can be expanded in a

power series in anticommuting variables θα and θα̇. There are two of each, so

the expansion ends after at most two θ and two θ†.

So, a general (complex) Grassmann-even superfield is:

S(x, θ, θ†) = a+ θξ + θ†χ† + θθb+ θ†θ†c+ θ†σµθvµ

+θ†θ†θη + θθθ†ζ† + θθθ†θ†d.

where

a(x), b(x), c(x), vµ(x), d(x)

are 1 + 1 + 1 + 4 + 1 = 8 complex bosonic component fields, and

ξα(x), χ†
α̇(x), ηα(x), ζ†α̇(x)

are 2 + 2 + 2 + 2 = 8 complex fermionic component fields.

However, this superfield S is too general; it has too many components to be a

chiral supermultiplet or a vector supermultiplet.
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Differentiation in superspace (compare the η toy example):

∂

∂θα
(θβ) = δβα,

∂

∂θα
(θ†
β̇
) = 0,

∂

∂θ†α̇
(θ†
β̇
) = δα̇

β̇
,

∂

∂θ†α̇
(θβ) = 0.

Integration over superspace:

d2θ = −1

4
dθαdθβǫαβ , d2θ† = −1

4
dθ†α̇dθ

†
β̇
ǫα̇β̇ ,

so that:
∫
d2θ θθ = 1,

∫
d2θ† θ†θ† = 1.

The first one just picks out the coefficient of θθ, and the second picks out the

coefficient of θ†θ†.

Integration by parts works just as you would hope:
∫
d2θ

∂

∂θα
(anything) = 0,

∫
d2θ†

∂

∂θ†α̇
(anything) = 0,
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Supersymmetry transformations the superspace way:

Define linear differential operators that act on superfields:

Q̂α = i
∂

∂θα
− (σµθ†)α∂µ, Q̂†α̇ = i

∂

∂θ†α̇
− (σµθ)α̇∂µ.

Then an infinitesimal SUSY transformation on S, parameterized by ǫ, ǫ†, is:

√
2 δǫS = −i(ǫQ̂+ ǫ†Q̂†)S

=
(
ǫα

∂

∂θα
+ ǫ†α̇

∂

∂θ†α̇
+ i

[
ǫσµθ† + ǫ†σµθ

]
∂µ

)
S

= S(xµ + iǫσµθ† + iǫ†σµθ, θ+ǫ, θ†+ǫ†)− S(xµ, θ, θ†),

As promised, this is just a translation in superspace, with:

θα → θα + ǫα,

θ†α̇ → θ†α̇ + ǫ†α̇,

xµ → xµ + iǫσµθ† + iǫ†σµθ.
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Exercise: you can show that
{
Q̂α, Q̂

†
β̇

}
= 2iσµ

αβ̇
∂µ = −2σµ

αβ̇
P̂µ,

{
Q̂α, Q̂β

}
= 0,

{
Q̂†
α̇, Q̂

†
β̇

}
= 0.

Here, the differential operator generating spacetime translations is

P̂µ = −i∂µ.

This is the SUSY algebra again!

However, the hatted objects Q̂α, Q̂
†
α̇, P̂

µ here are differential operators acting

on functions in superspace, conceptually different from the corresponding

unhatted objectsQα, Q
†
α̇, P

µ in lectures 1 and 2, which were operators acting

on the Hilbert space of states. The correspondence between them, for a quantum

operatorX in the Heisenberg picture that is also a function of superspace, is:

[
X, ǫQ+ ǫ†Q†] = (ǫQ̂+ ǫ†Q̂†)X,

[
X, Pµ

]
= P̂µX.
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Goal: define a Lagrangian in terms of superfields and their derivatives

Problem: the obvious derivatives of a superfield,

∂S

∂θα
and

∂S

∂θ†α̇

are not themselves superfields; they don’t transform correctly. The SUSY

transformation of the derivative is not the derivative of the SUSY transformation:

δǫ

(
∂S

∂θα

)
6= ∂

∂θα
δǫS

Instead, need to define chiral and anti-chiral covariant derivatives:

Dα =
∂

∂θα
− i(σµθ†)α∂µ, D

α̇
=

∂

∂θ†α̇
− i(σµθ)α̇∂µ

Note these look very similar to Q̂ and Q̂†, but have different minus signs and i’s.
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The crucial feature of chiral and anti-chiral covariant derivatives is:

δǫ (DαS) = Dα (δǫS) , δǫ
(
Dα̇S

)
= Dα̇ (δǫS)

for any superfield S.

Thus DαS andDα̇S are both superfields, unlike the ordinary derivatives

∂S/∂θα and ∂S/∂θα̇.

They still obey integration by parts:

∫
d2θDα(anything) and

∫
d2θ†Dα̇(anything)

and the useful identities:

DαDβDγ (anything) = 0 and Dα̇Dβ̇Dγ̇ (anything) = 0.
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An aside: why do we use † to conjugate Q̂, but to conjugateD ?

Answer: they denote different kinds of conjugation.

• The dagger on Q̂†
represents Hermitian conjugation in the same sense that

P̂ = −i∂µ is an Hermitian differential operator on an inner product space.

• The bar on D represents conjugation in the same sense that ∂µ is a real differential

operator (without the −i)
Recall, from undergraduate QM, using integration by parts,

∫
d4x ψ∗(x) P̂ φ(x) =

(∫
d4x φ∗(x) P̂ ψ(x)

)∗

Similarly, for integration on superspace:
∫
d4x

∫
d2θ

∫
d2θ†T ∗Q̂†

α̇S =
(∫

d4x

∫
d2θ

∫
d2θ†S∗Q̂αT

)∗

In contrast, the identity

Dα̇S
∗ = (DαS)

∗

is just analogous to the equation

(∂µφ)
∗ = ∂µφ

∗.
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To describe a chiral supermultiplet, use the anti-chiral derivative to impose constraint:

Dα̇Φ = 0

A superfield Φ that obeys this is a chiral superfield.

To solve the constraint, define

yµ ≡ xµ + iθ†σµθ,

and use the superspace coordinates.

yµ, θα, θ†α̇

In these coordinates:

Dα =
∂

∂θα
− 2i(σµθ†)α

∂

∂yµ
, and Dα̇ = − ∂

∂θ†α̇
.

The last says that a chiral superfield is a function of yµ and θ only, but not θ†.

Therefore, the expansion of a chiral superfield is just:

Φ = φ(y) +
√
2θψ(y) + θθF (y).

Exactly the correct degrees of freedom for a chiral supermultiplet!
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Going back to the original xµ, θ, θ† coordinates:

Φ = φ(x) + iθ†σµθ∂µφ(x) +
1

4
θθθ†θ†∂µ∂

µφ(x) +
√
2θψ(x)

− i√
2
θθθ†σµ∂µψ(x) + θθF (x),

Now, using the ǫQ̂+ ǫ†Q̂† superfield form of the SUSY transformation, you can

check that:

δǫφ = ǫψ,

δǫψα = −i(σµǫ†)α∂µφ+ ǫαF,

δǫF = −iǫ†σµ∂µψ,

exactly agreeing with what was found in the component language.
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More things you can check:

• Any analytic function of chiral superfields is also a chiral superfield.

• The complex conjugate of a chiral superfield, Φ∗, is an antichiral superfield,

obeyingDαΦ
∗ = 0.

• If Φ is any chiral superfield, then
∫
d4x

∫
d2θ Φ is invariant under a SUSY

transformation (trivial: integration by parts!)

The usual Wess-Zumino model Lagrangian is:

L =

∫
d2θd2θ† Φ∗Φ+

(∫
d2θ W (Φ) + c.c.

)

The first term contains the kinetic terms, and W is the superpotential containing

the masses and non-gauge interactions.
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Four equivalent ways of writing the chiral supermultiplet kinetic term, called a

“D-term”:∫
d2θd2θ† Φ∗Φ = Φ∗Φ

∣∣∣
θθθ†θ†

= −1

4

∫
d2θ ΦDDΦ∗ = [Φ∗Φ]D

Three equivalent ways of writing the superpotential mass/interaction part, called

an “F-term”: ∫
d2θ W (Φ) = W (Φ)

∣∣∣
θθ

= [W (Φ)]F

Can use the same notations for non-renormalizable contributions to the Lagrangian:

[
Φ∗Φ2

]
D

and
[
Φ4

]
F

For example, in the MSSM, the term

1

M
[QQQL]F

is a non-renormalizable superpotential interaction term that violates both baryon

number and lepton number (but not R-parity!)
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What about gauge fields and interactions?

Define a vector superfield by imposing a reality constraint on the general case:

V (x, θ, θ†) =
[
V (x, θ, θ†)

]∗

The component field expansion for this is a special case of the general superfield:

V (x, θ, θ†) = a+ θξ + θ†ξ† + θθb+ θ†θ†b∗ + θ†σµθAµ + θ†θ†θ(λ− i

2
σµ∂µξ

†)

+θθθ†(λ† − i

2
σµ∂µξ) + θθθ†θ†(

1

2
D +

1

4
∂µ∂

µa).

Here Aµ is the usual gauge field for a U(1) gauge group, λ is the gaugino,D is

the auxiliary field we’ve already met.

The other component fields a, ξ, b are additional auxiliary fields that have no

dynamics and can be “gauged away”.
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The action is invariant under supergauge transformations:

V → V + i(Ω∗ − Ω)

where Ω is a chiral superfield gauge transformation parameter. In components:

a → a+ i(φ∗ − φ),

ξα → ξα − i
√
2ψα,

b → b− iF,

Aµ → Aµ + ∂µ(φ+ φ∗),

λα → λα,

D → D.

If we use this freedom to get rid of a, ξ, b, then we are said to be in Wess-Zumino gauge, and:

V (x, θ, θ†) = θ†σµθAµ + θ†θ†θλ+ θθθ†λ† +
1

2
θθθ†θ†D.

Can still do ordinary gauge transformations parameterized by φ, while remaining in

Wess-Zumino gauge.
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There is also a field-strength chiral superfield, which contains the usual gauge

field strength Fµν as one of its components.

Define:

Wα = −1

4
DDDαV

Then can show that in Wess-Zumino gauge (up to total derivative terms):

L =
1

4

∫
d2θWαWα + c.c. =

1

2
D2 + iλ†σµ∂µλ−

1

4
FµνFµν ,

is the usual Lagrangian for the gauge field, gaugino, and auxiliary field D. As

before, this Lagrangian is manifestly invariant under the SUSY transformation

(defined using ǫQ̂+ ǫ†Q̂†), just by integrating by parts in superspace.
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To couple the gauge field to a chiral superfield with gauge charge q and gauge

coupling g, just modify the kinetic term:

L =

∫
d2θd2θ† Φ∗e2gqV Φ.

This might look non-renormalizable, because the exponential has arbitrarily many

terms in its expansion. But, in Wess-Zumino gauge, the exponential series soon

terminates, because:

V 2 = −1

2
θθθ†θ†AµA

µ,

V n = 0 (for all n ≥ 3)

Can also show that this Lagrangian is invariant under U(1) gauge

transformations, if we take:

Φ→ e2igqΩΦ.
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Non-abelian gauge fields require slightly more complicated

expressions, but are conceptually very similar.

I won’t go through the details, because I think we’ve hit (or more

likely, greatly exceeded) what can be absorbed from slides in one

lecture, unless you’ve already seen this before.

Instead, I’d like to conclude with some lighter material: personal

opinions and observations about the fact that the LHC hasn’t yet

discovered SUSY.
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The LHC vs. Supersymmetric Models
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Constraints on SUSY are often colloquially overstated, perhaps due

to temptation to make grand statements.

Glass half empty: “Exclusion of top-squark masses now up to 1100 GeV!”

Glass half full: “NO constraints on direct top-squark pair production at all, if

LSP mass exceeds about 500 GeV.”
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Glass half empty: “Exclusion of charginos, neutralinos well above 1 TeV!”

Glass mostly full: “If decays through sleptons are not kinematically open,

then the magenta and light blue curves are the appropriate ones. No

exclusions at all for MLSP > 120 GeV.”
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Why did we think superpartners should be light?

Minimizing the Higgs potential, we find:

M2
Z = −2(|µ|2 +m2

Hu
) +O(1/ tan2 β) + loop corrections

So avoiding fine-tuning just suggests that Higgsinos should be light µ ∼MZ .

Other superpartners should be light only if their masses are correlated with, or

feed into, m2
Hu

.

Corrections from loop diagrams give:

∆m2
Hu

= − 3y2t
8π2

(m2
t̃L

+m2
t̃R
) ln(Λ/TeV)− αSy

2
t

π3
M2
g̃ ln

2(Λ/TeV) + small.

So we conclude that the top squarks and gluino should also not be too heavy.

But, “not too heavy” is a notoriously fuzzy statement.
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What is fine tuning?

“I shall not today attempt further to define [it]... and perhaps I could

never succeed in intelligibly doing so. But I know it when I see it...”

U.S. Supreme Court Justice Potter Stewart

concurrence in Jacobellis v. Ohio (1964).
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I hold these truths to be self-evident:

• There is no way of objectively defining, let alone measuring,

“fine-tuning”, or “naturalness”.

• Naturalness is personal and subjective, rather than scientific.

• Despite this, naturalness is useful, and even crucial, for

scientists. We are constantly making practical decisions about

which research directions to pursue, given finite time and money.
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How bad is the problem, really? (opinion, not science!)

If all superpartners have masses 3-10 TeV, then they easily explainMh = 125 GeV

and decouple from flavor violating effects.

We then needm2
Hu

fine-tuned to be −|µ|2, in order to getM2
Z correct.

Tuning is of order 1 part in 103 to 104.

Small numbers sometimes do happen in Nature for no obvious reason!

• Electron Yukawa coupling is 3× 10−6. Why?

• Rsun
Dsun

= 6.955×108 m
(1.496±0.025)×1011 m

= 0.00465± 0.00008

Rmoon
Dmoon

= 1.738×106 m
(3.844±0.214)×108 m

= 0.00452± 0.00028

Why?

So maybe we will see no SUSY particles at the LHC?

134



Question: Can the LHC rule out SUSY?

Answer: No. Supersymmetry is a decoupling theory; the more you

raise the masses of the new particles, the better it agrees with the

Standard Model.

Actually, there is one exception to decoupling in SUSY: we predicted

that the Higgs boson had to be light (Mh
<∼ 135 GeV). When we

discovered the Higgs with mass 125 GeV, we lost the last chance to

rule out SUSY.

The LHC had a real chance to rule out SUSY, but it failed!
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Despite strong limits, my personal bias is that the case for SUSY as

the solution to the Big Hierarchy problem:

Why is M 2

W
≪ M 2

Planck
, M 2

GUT
, M 2

seesaw
, f 2

axion
, . . . ?

is about as strong as ever.

None of the competitor theories to explain the Big Hierarchy

problem are being discovered at LHC either! And many are in worse

shape than SUSY is, or are now completely dead (technicolor,

top-quark condensate models, chiral quarks and leptons. . . ).

The theories remaining unkilled by the LHC are also decoupling

theories.
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Another personal bias: SUSY is likely to be non-minimal; not just

the MSSM. What follows is my own personal Top 7 list.

(Not including the obvious, a SUSY breaking sector.)

The first three involve adding a singlet chiral superfield in different

ways. . .
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1) Add a singlet chiral superfield S: the NMSSM.

W = λSHuHd + . . .

The scalar component of S gets a VEV of order msoft, and then:

µ = λ〈S〉 ∼ msoft.

Get an extra singlino fermion (could be dark matter, hard to see in direct detection

experiments!) and singlet scalars mix with the Higgs.

2) Kim-Nilles mechanism:

W =
λ

MP
S2HuHd + . . .

Now, 〈S〉 ∼
√
msoftMP ∼ 1011 GeV, and

µ =
λ〈S〉2
MP

∼ msoft

Still get a TeV-scale singlino. Bonus: if S carries a Peccei-Quinn charge, get an

invisible axion, solving the strong CP problem, and providing dark matter.
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3) Giudice-Masiero mechanism: couple the singlet to the Higgs through the

kinetic term (Kahler potential):

L =

∫
d2θd2θ†

[
H∗
uHu +H∗

dHd +
λ

MP
S∗HuHd + . . .

]

This time,

µ =
λ

MP
〈FS〉 ∼ 1011 GeV,

because 〈FS〉 ∼ msoftMP .
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4) Dirac gauginos: chiral supermultiplets in adjoint representation.

For example, the usual gluino g̃ can mix with a color octet fermion g̃′:

L = −
(
g̃ g̃′

)

M3 MD

MD M





 g̃

g̃′


+ c.c.

• If M3 =M = 0, the gauginos are pure Dirac.

• If MD = 0, the gauginos are pure Majorana.

• Otherwise, mixed Dirac/Majorana.

Rich phenomenology, including suppression of production cross-sections.

Can be motivated theoretically in different ways, including “supersoft symmetry

breaking”.
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5) Vectorlike quarks and leptons: chiral supermultiplets in real (“vectorlike”)

representation of gauge group.

Q+Q = (3,2, 1/6) + (3,2, 1/6),

U + U = (3,1, 2/3) + (3,1,−2/3),
. . .

The decouple from low-energy physics as their masses are raised, except forMh.

W = λHuQU +MQQQ+MUUU

gives a correction to the lightest Higgs boson mass:

∆M2
h =

3

4π2
λ4v2

[
ln(M2

S/M
2
F )− 5/6 +M2

F /M
2
S

]
,

where MS and MF are vectorlike squark, quark masses.

Vectorlike quarks are easy to search for, vectorlike leptons may be more of a

challenge.
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6) A fixed point for the weak scale: m2 ≡ |µ|2 +m2
Hu

.

Can we drive it towards 0, as a power law, due to some strong dynamics?

βm2 = Q
∂

∂Q
m2 = Km2

where K is a large-ish constant. Then

m2(Q) =

(
Q

Q0

)K
m2(Q0) → 0

Then we could have a natural explanation for mW ≪ msoft.

Not clear if this can really work. Some background literature:

Roy, Schmaltz, 0708.3593

Murayama, Nomura, Poland, 0709.0775

Perez, Roy, Schmaltz, 0811.3206

Knapen, Shih, 1311.7107

SPM, 1712.05806.
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7) Something that nobody has thought of yet. . .

This is the most exciting, and most likely, possibility!

Thank you for your attention.
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