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CP Violation in Neutrino Oscillation

• With leptonic Dirac CP phase δ ≠ 0  ➜  leptonic CP violation

• Predict different transition probabilities for neutrinos and antineutrinos


• One of the major scientific goals at current and planned neutrino experiments 
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P (να→νβ) ≠ P ( να→νβ)
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CP Violation in Neutrino Oscillation

• Oscillation Probability for neutrino (anti-neutrino) mode:


• CP violation:
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6 Boris Kayser

Now, from Eq. (12), we see that

P(νβ → να; U) = P(να → νβ; U
∗) . (14)

Hence, assuming CPT invariance holds,

P(να → νβ ; U) = P(να → νβ; U
∗) . (15)

That is, the probability for oscillation of an antineutrino is the same as that for a neutrino,
except that the mixing matrix U is replaced by its complex conjugate. Thus, from Eq. (12),

P(( )να → ( )νβ ) = δαβ − 4
∑

i>j

Re (U∗
αiUβiUαjU

∗
βj) sin

2(∆m2
ijL/4E)

+

( − )
2
∑

i>j

Im (U∗
αiUβiUαjU

∗
βj) sin(∆m2

ijL/2E) . (16)

We see that if U is not real, the probabilities for να → νβ and for the corresponding an-
tineutrino oscillation, να → νβ , will in general differ. Since να → νβ and να → νβ are
CP-mirror-image processes, this difference will be a violation of CP invariance.

As Eq. (16) makes clear, neutrino oscillation in vacuum from one flavor α into a different
one β implies nonzero mass splittings ∆m2

ij , hence nonzero neutrino masses. It also implies
nontrivial leptonic mixing. That is, the mixing matrix U cannot be diagonal.

Including the so-far omitted factors of h− and c, we have

∆m2
ij

L

4E
= 1.27∆m2

ij(eV
2)

L(km)

E(GeV)
. (17)

From Eq. (16), if the U matrix cooperates, the probability for να → νβ , β ≠ α, will be
appreciable if the kinematical phase difference in Eq. (17) is O(1) or larger. This requires
only that for some ij,

∆m2
ij(eV

2) >∼
E(GeV)

L(km)
. (18)

Thus, for example, an experiment that studies 1GeV neutrinos that travel a distance
L ∼ 104km, the diameter of the earth, will be sensitive to neutrino (mass)2 splittings ∆m2

ij

as small as 10−4eV2. Through quantum interference between neutrino mass eigenstates of
different masses, neutrino oscillation gives us sensitivity to very tiny (mass)2 splittings. How-
ever, as Eq. (16) underscores, oscillation cannot determine the masses mi of the individual
mass eigenstates. To learn those will require another approach.

There are basically two kinds of neutrino oscillation experiments. In the first, an ap-
pearance experiment, one starts with a beam of neutrinos that initially are purely of flavor
α, and looks for the appearance in this beam of neutrinos of a new flavor β, β ≠ α, that
were not originally present in the beam. In the second kind of experiment, a disappearance
experiment, one starts with a known flux of να, and looks to see whether some of the initial
να flux disappears as the beam travels.

By the definition of “probability”, the probability that a neutrino changes flavor, plus
the probability that it does not change flavor, must equal unity. That is, we must have

∑

β

P(να → νβ) =
∑

β

P(να → νβ) = 1 , (19)

Jarlskog invariant for lepton sector



CP Violation in Nature
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Discrete Family Symmetries and Origin of CP Violation Introduction

CP violation in Nature

CP violation in Nature

+ CP so far only observed in flavor sector

Â it appears natural to seek connection between flavor physics & CP

+ flavor structure may be explained by (non–Abelian discrete) flavor
symmetries

this talk:

non–Abelian discrete (flavor) symmetry G$ CP



Origin of CP Violation

• CP violation ⇔ complex mass matrices


• Conventionally, CPV arises in two ways:


• Explicit CP violation: complex Yukawa coupling constants Y


• Spontaneous CP violation: complex scalar VEVs  <h>


• Complex CG coefficients in certain discrete groups ⇒ explicit CP violation  

• CPV in quark and lepton sectors purely from complex CG coefficients

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(x⃗, t) = αO(x⃗, t) + α∗
O

†(x⃗, t) , (19)

where O(x⃗, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(x⃗, t)
CP−→ O

†(−x⃗, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(x⃗, t)
T−→ O(x⃗,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=

⎛

⎜

⎝

ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1

⎞

⎟

⎠
, (25)

Md, MT
e

ybvdφ0ζ0
=

⎛

⎜

⎝

0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1

⎞

⎟

⎠
, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb ≃ θ4.7

c : θ2.7

c : 1, mu : mc : mt ≃ θ8

c : θ3.2

c : 1,
with θc ≃

√

md/ms ≃ 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 ≃ mb/mt ≃ 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,

⎛

⎜

⎝

0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999

⎞

⎟

⎠
. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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CG coefficients in non-Abelian discrete symmetries  
➪ relative strengths and phases in entries of Yukawa matrices 

➪ mixing angles and phases (and mass hierarchy)



 Group Theoretical Origin of CP Violation

• if Z3 symmetric ⇒〈∆1〉= 〈∆2〉=〈∆3〉≡〈∆〉 real


• Complex effective mass matrix: phases determined by group theory 

(   L1          L2    ) ( R
1   R

2 )

C i j k : complex 
CG coefficients 

of G
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C112

Discrete 
symmetry G

Basic idea

C121 C211 C223

C112

C121

C211

C223

M.-C.C., K.T. Mahanthappa

Phys. Lett. B681, 444 (2009)



CP Transformation

• Canonical CP transformation


• Generalized CP transformation
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Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

The canonical CP transformation

The canonical CP transformation

+ scalar field operator

�(x) =
Z

d3
p

1

2E~p

⇥
a(~p) e

�i p·x + b†(~p) e
i p·x⇤

annihilates particlecreates anti–particle
+ CP exchanges particles & anti–particles

(C P)�1 a(~p)C P = ⌘CP b(�~p) & (C P)�1 a†(~p)C P = ⌘⇤CP b†(�~p)

(C P)�1 b(~p)C P = ⌘⇤CP a(�~p) & (C P)�1 b†(~p)C P = ⌘CP a†(�~p)

phase factor
+ CP transformation of (scalar) fields

�(x)
C P7���! ⌘CP �⇤(Px)

freedom of re–phasing fields
Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)0

BBBBBBBBB@

"
�ri1

#
"
�ri2

#
...

1

CCCCCCCCCA

fCP7��!

0

BBBBBBBBB@

- %
Uri1

. &
- %

Uri2

. &
. . .

1

CCCCCCCCCA

0

BBBBBBBBB@

"
�⇤ri1

#
"
�⇤ri2

#
...

1

CCCCCCCCCA
field transforming in representation ri2

+ fCP depends on symmetry, not on model E disagreement w/ Holthausen,
Lindner, and Schmidt (2013)

Holthausen, Lindner, and Schmidt (2013)
+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987);

Grimus, Rebelo (1995) 

unitary matrix



Generalized CP Transformation

•
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Group theory of CP violation Generalizing CP transformations

Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T
0

⇥
�12
⌦ (x3 ⌦ y3)11

⇤
10

/ �
�
x1 y1 + !

2
x2 y2 + ! x3 y3

�

! = e
2⇡ i/3

+ canonical CP transformation maps A4/T0 invariant contraction to
something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0
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x2

x3

1
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0
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3
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2
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3

y
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2

1
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Group theory of CP violation Generalizing CP transformations

Generalized CP transformations

Generalized CP transformations
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Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T
0

⇥
�12
⌦ (x3 ⌦ y3)11

⇤
10

/ �
�
x1 y1 + !

2
x2 y2 + ! x3 y3

�

! = e
2⇡ i/3

+ canonical CP transformation

x
CP7��! x

⇤ & y
CP7��! y

⇤ & �
CP7��! �⇤

maps A4/T0 invariant contraction to something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0

@
x1

x2

x3

1

A fCP7��!

0

B@
x
⇤
1

x
⇤
3

x
⇤
2

1

CA &

0

@
y1

y2

y3

1

A fCP7��!

0

B@
y
⇤
1

y
⇤
3

y
⇤
2

1

CA

Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)

G and CP transformations do not commute 



Physical CP vs. Generalized CP Transformations
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complex CGs ➪ G and physical CP transformations do not commute 

Generalized CP transformation:

Necessary Consistency condition:

Constraints on generalized CP transformations

8

Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations
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M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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The Bickerstaff-Damhus automorphism (BDA)

• Bickerstaff-Damhus automorphism (BDA) u


• BDA vs. Clebsch-Gordan (CG) coefficients


•
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+ Bickerstaff–Damhus automorphism (BDA) u

⇢ri
(u(g)) = Uri

⇢ri
(g)⇤U

†
ri
8 g 2 G and 8 i ( ? )

unitary & symmetric

+ BDA vs. Clebsch–Gordan (CG) coefficients

9 BDA u

fulfilling (?)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ⇢ri
(u(g)) = ⇢ri

(g)⇤ 8 g 2 G and 8 i
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Twisted Frobenius-Schur Indicator

• How can one tell whether or not a given automorphism is a BDA?

• Frobenius-Schur indicator:


• Twisted Frobenius-Schur indicator


•
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The twisted Frobenius–Schur indicator

+ How can one tell whether or not a given automorphism u is a BDA?

+ Frobenius–Schur indicator

FS(ri) :=
1

|G|
X

g2G
�ri

(g2) =
1

|G|
X

g2G
tr
⇥
⇢ri

(g)2
⇤

Bickerstaff and Damhus (1985); Kawanaka and Matsuyama (1990)

+ twisted Frobenius–Schur indicator

FSu(ri) =
1

|G|
X

g2G

⇥
⇢ri

(g)
⇤
↵�

⇥
⇢ri

(u(g))
⇤
�↵

+ crucial property

FSu(ri) =

8
<

:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting and involutory,
different from ±1, otherwise.
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A Novel Origin of CP Violation

• For discrete groups that do not have class-inverting, involutory automorphism, CP is 
generically broken by complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ Physical CP violation 

•   

�153

Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)

symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

CP Violation from Group Theory!

no class-
inverting 

involutory 
automorphism 

BDA 

non-BDA, class- 
inverting 

automorphism  



Examples

• Type I: all odd order non-Abelian groups


• Type IIA: dihedral and all Abelian groups


• Type IIB
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group 5 o 4 T7 �(27) 9 o 3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups. Generally,
all odd order non–Abelian groups are of this
type with the caveat of groups that have a
class–inverting automorphism that squares
to a non–trivial outer one.

group S3 Q8 A4 3 o 8 T0
S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. The dihedral and all Abelian
groups are also of this type.

group ⌃(72) (( 3 ⇥ 3)o 4)o 4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 2.1: Examples for the three types of groups: (a) I, (b) II A and (c) II B with their
common names and SmallGroups library ID of GAP [15].

with unitary W and

⌃ =

8
>>>>>>><

>>>>>>>:

⌃+ = , if U is symmetric,

⌃� =

0

BBBBB@

1
�1

. . .
1

�1

1

CCCCCA
, if U is anti–symmetric.

(2.38)

Note that, since representation matrices always have full rank, the anti–symmetric case
does not arise for odd–dimensional irreps [20], i.e. ⌃ always has full rank. We can, hence,
perform the unitary basis change

ri ! W
†
ri
ri , ⇢ri(g) ! W

†
ri
⇢ri(g)Wri 8 g 2 G , (2.39)

such that in the new basis the matrices Uri take the simple form

Uri ! W
†
ri
Uri W

⇤
ri

= ⌃ri . (2.40)

For type II A groups, all the ⌃ri ’s equal the identity matrix and the new basis is a CP
basis. In this basis all Clebsch–Gordan coe�cients are real [16].
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Novel Origin of CP (Time Reversal) Violation
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complex CGs ➪ CP symmetry 
cannot be defined for certain 
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The Plan

• Part I: Neutrinos in the SM; What do We Know from Experiments


• Part II: Neutrinos Mass in BSM 


• Part III: Neutrino Mixing and Leptonic CP Violation


• Part IV: Baryogenesis through Leptogenesis 
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Three Sakharov Conditions

• Baryon number can be generated dynamically, if 
• violation of baryon number

• violation of Charge (C) and Charge Parity (CP)

• departure from thermal equilibrium
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Why neutrinos?
Particle physics has been very successful in creating the Standard Model, a
theoretical framework that describes many particle physics phenomena. However,
major discoveries such as the evidence for dark matter and the observation of
neutrino mass have shown that the Standard Model is incomplete. These findings
strongly suggest that new physics discoveries beyond the Standard Model await us.

Neutrinos could provide the path to unveiling these hidden physics phenomena. In
particular, physicists hope that neutrinos will shed light on these questions:

Why is the universe as we know it made of matter, with no antimatter present?
What is the origin of this matter-antimatter asymmetry, also known as CP
violation?
Are neutrinos connected to the matter-antimatter asymmetry, and if so, how?
If neutrinos exhibit CP violation, is it related to the CP violation observed in
quark interactions?
Are neutrinos their own antiparticles?
What role did neutrinos play in the evolution of the universe?

Physicists have discovered three types of neutrinos so far: electron neutrinos, muon
neutrinos and tau neutrinos. Although neutrinos are among the most abundant
particles in the universe, they rarely interact with other matter. Hence, they are often
referred to as ghost particles.

"For every electron, for every proton, for every neutron, there are about a billion neutrinos... every second there are 100 trillion neutrinos
from the sun passing through each person," says Fermilab theorist Boris Kayser. "It's the neutrinos and photons, particles that make up light
beams, that are by far the most abundant particles in the universe."

Kayser further explains that a recent theory has developed, which is that the neutrinos may have something very important to do with how
the universe came to be dominated by matter and have no antimatter. "Life is possible only because there is no antimatter around. When
matter and antimatter meet, they annihilate each other."

By generating huge numbers of neutrinos using high-intensity accelerators and by building large detectors that increase the chance of
neutrino observation, physicists can study these mysterious particles and learn more about their role in the universe. The proposed Long-
Baseline Neutrino Experiment will give physicists the chance to push the door wide open to search for physics beyond the Standard Model
and allow them to make exciting discoveries at the Intensity Frontier.

Further reading:
For an excellent introduction to the neutrino physics opportunities presented by the
proposed Deep Underground Science and Engineering Laboratory (DUSEL, no
longer a funded entity), read this chapter in the report Deep Science, published by
the National Science Foundation.

Details on the scientific questions surrounding neutrinos and their properties and
interactions are given in this summary by Boris Kayser and Stephen Parke, members
of the Fermilab theory group.
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Baryon Number Asymmetry beyond SM

• Within the SM: 

‣ CP violation in quark sector not sufficient to explain the observed matter-

antimatter asymmetry of the Universe

‣ accidental symmetries Le, Lμ, Lτ, total L

‣ massless neutrinos, no cLFV


• neutrino oscillation ⇒ non-zero neutrino masses 

• physics beyond the Standard Model

• new CP phases in the neutrino sector


• neutrino masses open up a new possibility for baryogenesis
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Leptogenesis
Fukugita, Yanagida, 1986



Sources of CP Violation: SM
• SM: CP is not exact symmetry in weak interactions (Kaon & 

B-meson systems)

• charged current interactions in weak basis


• rotate to mass basis
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scale. These sphelaron processes violate B +L, but conserve B−L. There-
fore, unless a GUT mechanism generates an excess of B − L, any baryon
asymmetry produced will be equilibrated to zero by the sphaleron effects.
As U(1)B−L is a gauged subgroup of SO(10), GUT models based on SO(10)
are especially attractive for baryogenesis.

1.1.4.2. EW Baryogenesis

In electroweak baryogenesis, the departure from thermal equilibrium is pro-
vided by strong first order phase transition. The nice feature of this mech-
anism is that it can be probed in collider experiments. On the other hand,
the allowed parameter space is very small. It requires more CP violation
than what is provided in the SM. Even though there are additional sources
of CP violation in MSSM, the requirement of strong first order phase tran-
sition translates into a stringent bound on the Higgs mass, mH ! 120 GeV.
To obtain a Higgs mass of this order, the stop mass needs to be smaller
than, or of the order of, the top quark mass, which implies fine-tuning in
the model parameters.

1.1.4.3. Affleck-Dine Baryogensis

The Affleck-Dine baryogenesis [20] involves cosmological evolution of scalar
fields which carry B charges. It is most naturally implemented in SUSY
theories. Nevertheless, this mechanism faces the same challenges as in GUT
baryogenesis and in EW baryogenesis.

1.1.5. Sources of CP Violation

In the SM, C is maximally broken, since only LH electron couples to the
SU(2)L gauge fields. Furthermore, CP is not an exact symmetry in weak
interaction, as observed in the Kaon and B-meson systems. The charged
current in the weak interaction basis is given by,

LW =
g√
2
ULγµDLWµ + h.c. , (1.59)

where UL = (u, c, t)L and DL = (d, s, b)L. Quark mass matrices can be
diagonalized by bi-unitary transformations,

diag(mu, mc, mt) = V u
L MuV u

R , (1.60)

diag(md, ms, md) = V d
LMdV d

R . (1.61)
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Thus the charged current interaction in the mass eigenstates reads,

LW =
g√
2
U

′
LUCKMγµD′

LWµ + h.c. , (1.62)

where U ′
L ≡ V u

L UL and D′
L ≡ V d

L DL are the mass eigenstates, and UCKM ≡
V u

L (V d
L )† is the CKM matrix. For three families of fermions, the unitary

matrix K can be parameterized by three angles and six phases. Out of
these six phases, five of them can be reabsorbed by redefining the wave
functions of the quarks. There is hence only one physical phase in the CKM
matrix. This is the only source of CP violation in the SM. It turns out that
this particular source is not strong enough to accommodate the observed
matter-antimatter asymmetry. The relevant effects can be parameterized
by [21],

B ≃
α4

wT 3

s
δCP ≃ 10−8δCP , (1.63)

where δCP is the suppression factor due to CP violation in the SM. Since
CP violation vanishes when any two of the quarks with equal charge have
degenerate masses, a naive estimate gives the effects of CP violation of the
size

ACP = (m2
t − m2

c)(m
2
c − m2

u)(m2
u − m2

t ) (1.64)

·(m2
b − m2

s)(m
2
s − m2

d)(m
2
d − m2

b) · J .

Here the proportionality constant J is the usual Jarlskog invariant, which
is a parameterization independent measure of CP violation in the quark
sector. Together with the fact that ACP is of mass (thus temperature)
dimension 12, this leads to the following value for δCP , which is a dimen-
sionless quantity,

δCP ≃
ACP

T 12
C

≃ 10−20 , (1.65)

and TC is the temperature of the electroweak phase transition. The baryon
number asymmetry due to the phase in the CKM matrix is therefore of
the order of B ∼ 10−28, which is too small to account for the observed
B ∼ 10−10.

In MSSM, there are new sources of CP violation due to the presence of
the soft SUSY breaking sector. The superpotential of the MSSM is given
by,

W = µĤ1Ĥ2 + huĤ2Q̂ûc + hdĤ1Q̂d̂c + heĤ1L̂êc . (1.66)

The soft SUSY breaking sector has the following parameters:

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

18 M.-C. Chen

Thus the charged current interaction in the mass eigenstates reads,

LW =
g√
2
U

′
LUCKMγµD′

LWµ + h.c. , (1.62)

where U ′
L ≡ V u

L UL and D′
L ≡ V d

L DL are the mass eigenstates, and UCKM ≡
V u

L (V d
L )† is the CKM matrix. For three families of fermions, the unitary

matrix K can be parameterized by three angles and six phases. Out of
these six phases, five of them can be reabsorbed by redefining the wave
functions of the quarks. There is hence only one physical phase in the CKM
matrix. This is the only source of CP violation in the SM. It turns out that
this particular source is not strong enough to accommodate the observed
matter-antimatter asymmetry. The relevant effects can be parameterized
by [21],

B ≃
α4

wT 3

s
δCP ≃ 10−8δCP , (1.63)

where δCP is the suppression factor due to CP violation in the SM. Since
CP violation vanishes when any two of the quarks with equal charge have
degenerate masses, a naive estimate gives the effects of CP violation of the
size

ACP = (m2
t − m2

c)(m
2
c − m2

u)(m2
u − m2

t ) (1.64)

·(m2
b − m2

s)(m
2
s − m2

d)(m
2
d − m2

b) · J .

Here the proportionality constant J is the usual Jarlskog invariant, which
is a parameterization independent measure of CP violation in the quark
sector. Together with the fact that ACP is of mass (thus temperature)
dimension 12, this leads to the following value for δCP , which is a dimen-
sionless quantity,

δCP ≃
ACP

T 12
C

≃ 10−20 , (1.65)

and TC is the temperature of the electroweak phase transition. The baryon
number asymmetry due to the phase in the CKM matrix is therefore of
the order of B ∼ 10−28, which is too small to account for the observed
B ∼ 10−10.

In MSSM, there are new sources of CP violation due to the presence of
the soft SUSY breaking sector. The superpotential of the MSSM is given
by,
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Sources of CP Violation: MSSM

• soft SUSY breaking terms → new sources of CPV

• superpotential of MSSM


• parameters in soft SUSY breaking sector

• tri-linear couplings:


• bi-linear coupling in Higgs sector:


• gaugino masses:


• soft scalar masses:

• cMSSM w/ mSUGRA → 2 physical phases → soft 

leptogenesis
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• tri-linear couplings: ΓuH2Q̃c̃c + ΓdH1Q̃d̃c + ΓeH1L̃ẽc + h.c., where
Γ(u,d,e) ≡ A(u,d,e) · h(u,d,e);

• bi-linear coupling in the Higgs sector: µBH1H2;
• gaugino masses: Mi for i = 1, 2, 3 (one for each gauge group);
• soft scalar masses: m̃f .

In the constrained MSSM (CMSSM) model with mSUGRA boundary con-
ditions at the GUT scale, a universal value is assumed for the tri-linear
coupling constants, A(u,d,e) = A. Similarly, the gaugino masses and scalar
masses are universal, Mi = M , and m̃f = m̃. Two phases may be removed
by redefining the phase of Ĥ2 such that the phase of µ is opposite to the
phase of B. As a result, the product µB is real. Furthermore, the phase of
M can be removed by R-symmetry transformation. This then modifies the
tri-linear couplings by an additional factor of e−φM , while other coupling
constants are invariant under the R-symmetry transformation. There are
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Leptonic CP Violation

• Seesaw Lagrangian at high energy (in the presence of RH neutrinos)

in fij and Mij diagonal basis →   
 hij general complex matrix:  
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as a CKM-like matrix and a diagonal phase matrix,

UMNS =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠

·

⎛

⎝
1

eiα21/2

eiα31/2

⎞

⎠ . (1.69)

The Dirac phase δ affects neutrino oscillation (see Boris Kayser’s lectures),

P (να → νβ) = δαβ − 4
∑

i>j

Re(UαiUβjU
∗
αjU

∗
βi) sin2

(
∆m2

ij
L

4E

)
(1.70)

+2
∑

i>j

J lep

CP sin2

(
∆m2

ij
L

4E

)

where the parameterization invariant CP violation measure, the leptonic
Jarlskog invariant J lep

CP
, is given by,

J lep

CP
= −

Im(H12H23H31)

∆m2
21∆m2

32∆m2
31

, H ≡ (M eff
ν )(M eff

ν )† . (1.71)

The two Majorana phases, α21 and α31, affect neutrino double decay (see
Petr Vogel’s lectures). Their dependence in the neutrinoless double beta
decay matrix element is,

|⟨mee⟩|2 = m2
1 |Ue1|4 + m2

2 |Ue2|4 + m2
3 |Ue3|4 (1.72)

+2m1m2 |Ue1|2 |Ue2|2 cosα21

+2m1m3 |Ue1|2 |Ue3|2 cosα31

+2m2m3 |Ue2|2 |Ue3|2 cos(α31 − α21) .

The Lagrangian at high energy that describe the lepton sector of the
SM in the presence of the right-handed neurinos, νRi , is given by,

L = ℓLiiγ
µ∂µℓLi + eRi iγ

µ∂µeRi + NRiiγ
µ∂µNRi (1.73)

+fijeRiℓLjH
† + hijNRiℓLj H −

1

2
MijNRiNRj + h.c. .

Without loose of generality, in the basis where fij and Mij are diagonal, the
Yukawa matrix hij is in general a complex matrix. For 3 families, h has nine
phases. Out of these nine phases, three can be absorbed into wave functions
of ℓLi . Therefore, there are six physical phases remain. Furthermore, a real
hij can be diagonalized by a bi-unitary transformation, which is defined
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in terms of six mixing angles. After integrating out the heavy Majorana
neutrinos, the effective Lagrangian that describes the neutrino sector below
the seesaw scale is,

Leff = ℓLiiγ
µ∂µℓLi + eRiiγ

µ∂µeRi + fiieRiℓLiH
† (1.74)

+
1

2

∑

k

hT
ikhkjℓLiℓLj

H2

Mk
+ h.c. .

This leads to an effective neutrino Majorana mass matrix whose parameters
can be measured at the oscillation experiments. As Majorana mass matrix
is symmetric, for three families, it has six independent complex elements
and thus six complex phases. Out of these six phases, three of them can
be absorbed into the wave functions of the charged leptons. Hence at low
energy, there are only three physical phases and three mixing angles in
the lepton sector. Going from high energy to low energy, the numbers of
mixing angles and phases are thus reduced by half. Due to the presence
of the additional mixing angles and complex phases in the heavy neutrino
sector, it is generally not possible to connect leptogenesis with low energy
CP violation. However, in some specific models, such connection can be
established. This will be discussed in more details in Sec. 1.4.

1.2. Standard Leptogenesis

1.2.1. Standard Leptogenesis (Majorana Neutrinos)

As mentioned in the previous section, baryon number violation arises nat-
urally in many grand unified theories. In the GUT baryogenesis, the asym-
metry is generated through the decays of heavy gauge bosons (denoted by
“V” in the following) or leptoquarks (denoted by “S” in the following),
which are particles that carry both B and L numbers. In GUTs based on
SU(5), the heavy gauge bosons or heavy leptoquarks have the following
B-non-conserving decays,

V → ℓLuc
R, B = −1/3, B − L = 2/3 (1.75)

V → qLdc
R, B = 2/3, B − L = 2/3 (1.76)

S → ℓLqL, B = −1/3, B − L = 2/3 (1.77)

S → qLqL, B = 2/3, B − L = 2/3 . (1.78)

Since (B − L) is conserved, i.e. the heavy particles V and S both carry
(B−L) charges 2/3, no (B−L) can be generated dynamically. In addition,
due to the sphaleron processes, ⟨B⟩ = ⟨B − L⟩ = 0. In SO(10), (B − L)
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9-3 = 6 mixing angles
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6-3 = 3 mixing angles
6-3 = 3 physical phases

{

{



Standard Leptogenesis

• most general Lagrangian in lepton sector

• mass generation

• see-saw mechanism in neutrino sector
• resulting effective masses 

• basic idea:

• T < MR: out-of-equilibrium decays of N →  ∆L
• sphaleron processes:  ∆L →  ∆B
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is spontaneously broken, as it is a gauged subgroup of SO(10). Heavy
particles X with MX < MB−L can then generate a (B − L) asymmetry
through their decays. Nevertheless, for MX ∼ MGUT ∼ 1015 GeV, the
CP asymmetry is highly suppressed. Furthermore, one also has to worry
about the large reheating temperature TRH ∼ MGUT after the inflation,
the realization of thermal equilibrium, and in supersymmetric case, the
gravitino problem. These difficulties in GUT baryogenesis had led to a lot
of interests in EW baryogenesis, which also has its own disadvantages as
discussed in Sec. 1.1.4.

The recent advent of the evidence of neutrino masses from various neu-
trino oscillation experiments opens up a new possibility of generating the
asymmetry through the decay of the heavy neutrinos [25]. A particular
attractive framework in which small neutrino masses can naturally arise is
GUT based on SO(10) (for a review, see, i.e. Ref. [22]). SO(10) GUT
models accommodate the existence of RH neutrinos,

ψ(16) = (qL, uc
R, ec

R, dc
R, ℓL, νc

R) , (1.79)

which is unified along with the fifteen known fermions of each family into
a single 16-dimensional spinor representation. For hierarchical fermion
masses, one easily has

MN ≪ MB−L ∼ MGUT , (1.80)

where N = νR +νc
R is a Majorana fermion. The decays of the right-handed

neutrino,

N → ℓH, N → ℓH , (1.81)

where H is the SU(2) Higgs doublet, can lead to a lepton number asymme-
try. After the sphaleron processes, the lepton number asymmetry is then
converted into a baryon number asymmetry.

The most general Lagrangian involving charged leptons and neutrinos
is given by,

LY = fijeRiℓLj H
† + hijνRiℓLjH −

1

2
(MR)ijν

c
Ri

νRj + h.c. . (1.82)

As the RH neutrinos are singlets under the SM gauge group, Majorana
masses for the RH neutrinos are allowed by the gauge invariance. Upon
the electroweak symmetry breaking, the SM Higgs doublet gets a VEV,
⟨H⟩ = v, and the charged leptons and the neutrino Dirac masses, which
are much smaller than the RH neutrino Majorana masses, are generated,

mℓ = fv, mD = hv ≪ MR . (1.83)
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of interests in EW baryogenesis, which also has its own disadvantages as
discussed in Sec. 1.1.4.

The recent advent of the evidence of neutrino masses from various neu-
trino oscillation experiments opens up a new possibility of generating the
asymmetry through the decay of the heavy neutrinos [25]. A particular
attractive framework in which small neutrino masses can naturally arise is
GUT based on SO(10) (for a review, see, i.e. Ref. [22]). SO(10) GUT
models accommodate the existence of RH neutrinos,

ψ(16) = (qL, uc
R, ec

R, dc
R, ℓL, νc

R) , (1.79)

which is unified along with the fifteen known fermions of each family into
a single 16-dimensional spinor representation. For hierarchical fermion
masses, one easily has

MN ≪ MB−L ∼ MGUT , (1.80)

where N = νR +νc
R is a Majorana fermion. The decays of the right-handed

neutrino,

N → ℓH, N → ℓH , (1.81)

where H is the SU(2) Higgs doublet, can lead to a lepton number asymme-
try. After the sphaleron processes, the lepton number asymmetry is then
converted into a baryon number asymmetry.

The most general Lagrangian involving charged leptons and neutrinos
is given by,

LY = fijeRiℓLj H
† + hijνRiℓLjH −

1

2
(MR)ijν

c
Ri

νRj + h.c. . (1.82)

As the RH neutrinos are singlets under the SM gauge group, Majorana
masses for the RH neutrinos are allowed by the gauge invariance. Upon
the electroweak symmetry breaking, the SM Higgs doublet gets a VEV,
⟨H⟩ = v, and the charged leptons and the neutrino Dirac masses, which
are much smaller than the RH neutrino Majorana masses, are generated,

mℓ = fv, mD = hv ≪ MR . (1.83)
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The neutrino sector is therefore described by a 2 × 2 seesaw matrix as,
(

0 mD

mT
D MR

)
. (1.84)

Diagonalizing this 2 × 2 seesaw matrix, the light and heavy neutrino mass
eigenstates are obtained as,

ν ≃ V T
ν νL + V ∗

ν νc
L, N ≃ νR + νc

R (1.85)

with corresponding masses

mν ≃ −V T
ν mT

D
1

MR
mDVν , mN ≃ MR . (1.86)

Here the unitary matrix Vν is the diagonalization matrix of the neutrino
Dirac matrix.

At temperature T < MR, RH neutrinos can generate a lepton number
asymmetry by means of out-of-equilibrium decays. The sphaleron processes
then convert ∆L into ∆B.

1.2.1.1. The Asymmetry

At the tree level, the i-th RH neutrino decays into the Higgs doublet and
the charged lepton doublet of α flavor, Ni → H + ℓα, where α = (e, µ, τ).
The total width of this decay is,

ΓDi =
∑

α

[
Γ(Ni → H + ℓα) + Γ(Ni → H + ℓα)

]
(1.87)

=
1

8π
(hh†)iiMi .

Suppose that the lepton number violating interactions of the lightest right-
handed neutrino, N1, wash out any lepton number asymmetry generated in
the decay of N2,3 at temperatures T ≫ M1. (For effects due to the decays
of N2,3, see Ref. [26].) In this case with N1 decay dominating, the final
asymmetry only depends on the dynamics of N1. The out-of-equilibrium
condition requires that the total width for N1 decay, ΓD1 , to be smaller
compared to the expansion rate of the Universe at temperature T = M1,

ΓD1 < H

∣∣∣∣
T=M1

. (1.88)

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
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Fig. 1.7. Diagrams in SM model with RH neutrinos that contribute to the lepton num-
ber asymmetry through the decay of the RH neutrinos. The asymmetry is generated
due to the interference of the tree-level diagram (a) and the one-loop vertex correction
(b) and self-energy (c) diagrams.

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), after carrying out the loop integration,

f(x) =
⌃
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1� (1 + x) ln
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1 + x
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Diagram (c) is the one-loop self-energy. For |Mi �M1| ⇤ |�i � �1|, the
self-energy diagram gives the term

g(x) =
⌃

x

1� x
, (1.86)

in Eq. 1.84. For hierarchical RH neutrino masses, M1 ⇥ M2, M3, the
asymmetry is then given by,
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Fig. 1.7. Diagrams in SM with RH neutrinos that contribute to the lepton number
asymmetry through the decays of the RH neutrinos. The asymmetry is generated due
to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.

is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,
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. (1.90)

Diagram (c) is the one-loop self-energy. For |Mi − M1| ≫ |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
x

1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 ≪ M2, M3, the
asymmetry is then given by,
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow
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That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry
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of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow
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M1 to be much lower while still generating sufficient amount of the lepton
number asymmetry. This will be discussed in Sec. 1.3.1.

To prevent the generated asymmetry given in Eq. 1.89 from being
washed out by the inverse decay and scattering processes, the decay of the
RH neutrinos has to be out-of-equilibrium. In other words, the condition

r ≡
Γ1

H |T=M1

=
Mpl

(1.7)(32π)
√

g∗

(hνh†
ν)11

M1
< 1 , (1.93)

has to be satisfied. This leads to the following constraint on the effective
light neutrino mass

m̃1 ≡ (hνh†
ν)11

v2

M1
≃ 4

√
g∗

v2

Mpl

ΓD1

H

∣∣∣∣
T=M1

< 10−3 eV , (1.94)

where g∗ is the number of relativistic degrees of freedom. For SM, g∗ ≃
106.75, while for MSSM, g∗ ≃ 228.75. The wash-out effect is parameterized
by the coefficient κ, and the final amount of lepton asymmetry is given by,

YL ≡
nL − nL

s
= κ

ϵ1
g∗

, (1.95)

where κ parameterizes the amount of wash-out due to the inverse decays
and scattering processes. The amount of wash-out depends on the size of
the parameter r:

(1) If r ≪ 1 for decay temperature TD ! MX , the inverse decay and 2-2
scattering are impotent. In this case, the inverse decay width is given
by,

ΓID

H
∼

(
MX

T

)3/2

e−MX/T · r , (1.96)

while the width for the scattering processes is,

ΓS

H
∼ α

(
T

MX

)5

· r . (1.97)

Thus the inverse decays and scattering processes can be safely ig-
nored, and the asymmetry ∆B produced by decays is not destroyed
by the asymmetry −∆B produced in inverse decays and scatterings.
At T ≃ TD, the number density of the heavy particles X has thermal
distribution, nX ≃ nX ≃ nγ . Thus the net baryon neumber density
produced by out-of-equilibrium decays is

nL = ϵ1 · nX ≃ ϵ1 · nγ . (1.98)
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Fig. 1.8. Decay and inverse decay processes in the thermal bath.

(2) For r ≫ 1, the abundance of X and X follows the equilibrium values,
and there is no departure from thermal equilibrium. As a result, no
lepton number may evolve, and the net lepton asymmetry vanishes,

nℓ − nℓ

dt
+ 3H(nℓ − nℓ) = ∆γeq = 0 . (1.99)

In general, for 1 < r < 10, there could still be sizable asymmetry. The
wash out effects due to inverse decay and lepton number violating scattering
processes together with the time evolution of the system is then accounted
for by the factor κ, which is obtained by solving the Bolzmann equations
for the system (see next section). An approximation is given by [19],

106 ! r : κ = (0.1r)1/2e−
4
3 (0.1)1/4

(< 10−7) (1.100)

10 ! r ! 106 : κ = 0.3
r(ln r)0.8 (10−2 ∼ 10−7) (1.101)

0 ! r ! 10 : κ = 1
2
√

r2+9
(10−1 ∼ 10−2) . (1.102)

The EW sphaleron effects then convert YL into YB,

YB ≡
nB − nB

s
= cYB−L =

c

c − 1
YL , (1.103)

where c is the conversion factor derived in Sec. 1.1.3.

1.2.1.2. Boltzmann Equations

As the decays of RH neutrinos are out-of-equilibrium processes, they are
generally treated by Boltzmann equations. Main processes in the thermal
bath that are relevant for leptogenesis include,

(1) decay of N (Fig. 1.8 (a)):

N → ℓ + H, N → ℓ + H (1.104)
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where

cs =
8Nf + 4

22Nf + 13
. (1.57)

For models with NH Higgses, the parameter cs is given by,

cs =
8Nf + 4NH

22Nf + 13NH
. (1.58)

For T = 100 GeV ∼ 1012 GeV, which is of interest of baryogenesis,
gauge interactions are in equilibrium. Nervertheless, the Yukawa interac-
tions are in equilibrium only in a more restricted temperature range. But
these effects are generally small, and thus will be neglected in these lec-
tures. These effects have been investigated recently; they will be discussed
in Sec. 1.5.

1.1.4. Mechanisms for Baryogenesis and Their Problems

There have been many mechanisms for baryogenesis proposed. Each has
attractive and problematic aspects, which we discuss below.

1.1.4.1. GUT Baryongenesis

The GUT baryogenesis was the first implementation of Sakharov’s B-
number generation idea. The B-number violation is an unavoidable con-
sequence in grand unified models, as quarks and leptons are unified in the
same representation of a single group. Furthermore, sufficient amount of
CP violation can be incorporated naturally in GUT models, as there ex-
ist many possible complex phases, in addition to those that are present in
the SM. The relevant time scales of the decays of heavy gauge bosons or
scalars are slow, compared to the expansion rate of the Universe at early
epoch of the cosmic evolution. The decays of these heavy particles are thus
inherently out-of-equilibrium.

Even though GUT models naturally encompass all three Sakharov’s con-
ditions, there are also challenges these models face. First of all, to generate
sufficient baryon number asymmetry requires high reheating temperature.
This in turn leads to dangerous production of relic particles, such as grav-
itinos (see Sec. 1.2.3). As the relevant physics scale MGUT ∼ 1016 GeV is
far above the electroweak scale, it is also very hard to test GUT models ex-
perimentally using colliders. The electroweak theory ensures that there are
copious B-violating processes between the GUT scale and the electroweak
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The neutrino sector is therefore described by a 2 × 2 seesaw matrix as,
(

0 mD

mT
D MR

)
. (1.84)

Diagonalizing this 2 × 2 seesaw matrix, the light and heavy neutrino mass
eigenstates are obtained as,

ν ≃ V T
ν νL + V ∗

ν νc
L, N ≃ νR + νc

R (1.85)

with corresponding masses

mν ≃ −V T
ν mT

D
1

MR
mDVν , mN ≃ MR . (1.86)

Here the unitary matrix Vν is the diagonalization matrix of the neutrino
Dirac matrix.

At temperature T < MR, RH neutrinos can generate a lepton number
asymmetry by means of out-of-equilibrium decays. The sphaleron processes
then convert ∆L into ∆B.

1.2.1.1. The Asymmetry

At the tree level, the i-th RH neutrino decays into the Higgs doublet and
the charged lepton doublet of α flavor, Ni → H + ℓα, where α = (e, µ, τ).
The total width of this decay is,

ΓDi =
∑

α

[
Γ(Ni → H + ℓα) + Γ(Ni → H + ℓα)

]
(1.87)

=
1

8π
(hh†)iiMi .

Suppose that the lepton number violating interactions of the lightest right-
handed neutrino, N1, wash out any lepton number asymmetry generated in
the decay of N2,3 at temperatures T ≫ M1. (For effects due to the decays
of N2,3, see Ref. [26].) In this case with N1 decay dominating, the final
asymmetry only depends on the dynamics of N1. The out-of-equilibrium
condition requires that the total width for N1 decay, ΓD1 , to be smaller
compared to the expansion rate of the Universe at temperature T = M1,

ΓD1 < H

∣∣∣∣
T=M1

. (1.88)

That is, the heavy neutrinos are not able to follow the rapid change of the
equilibrium particle distribution, once the temperature dropped below the
mass M1. Eventually, heavy neutrinos will decay, and a lepton asymmetry



Bound on Light Neutrino Mass

• sufficient leptogenesis 
requires 


• upper bound on light 
neutrino mass


• incompatible with 
quasi-degenerate 
spectrum


• constraints slightly 
alleviated with flavored 
case 
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Figure 2: Lower bounds on the smallest heavy neutrino mass M1 and
upper bounds on the smallest light neutrino mass m1. From Ref. [12].

tries in B-, L- and B-L-number,

hBiT = cS hB � LiT =
cS

cS � 1
hLiT , (4)

where cS = O(1). In the Standard Model one has cs =
28/79.

This relation suggests that lepton number violation
can explain the cosmological baryon asymmetry. How-
ever, lepton number violation can only be weak at late
times, since otherwise any baryon asymmetry would be
washed out. The interplay of these conflicting condi-
tions leads to important contraints on neutrino proper-
ties, and on extensions of the Standard Model in gen-
eral. Because of the sphaleron processes, lepton num-
ber violation can replace baryon number violation in
Sakharov’s conditions for baryogenesis.

2. Thermal leptogenesis

Leptogenesis is an immediate consequence of the
seesaw mechanism, which explains the smallness of
light neutrino masses in terms of the largeness of heavy
Majorana neutrino masses. The heavy mass eigenstates
N and the light mass eigenstates ⌫ are given by

N ' ⌫R + ⌫
c
R : mN ' M , (5)

⌫ ' ⌫L + ⌫
c
L : m⌫ = �mD

1
M

mT
D , (6)

where mD is the Dirac neutrino mass matrix. For third
generation Yukawa couplings O(1), as in some SO(10)
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Figure 3: Dependence of the baryon asymmetry |YB| on the PMNS
phase � for a particular neutrino mass model with normal hierarchy.
From Ref. [17].

GUT models, one obtains the heavy and light neutrino
masses,

M3 ⇠ ⇤GUT ⇠ 1015GeV, m3 ⇠
v2

M3
⇠ 0.01eV . (7)

Remarkably, the light neutrino mass m3 is compati-
ble with (�m2

atm)1/2
⌘ matm ' 0.05 eV, as measured

in atmospheric ⌫-oscillations. This suggests that neu-
trino physics probes the mass scale of grand unifica-
tion (GUT), although other interpretations of neutrino
masses are possible as well. The heavy Majorana neu-
trinos have no gauge interactions. Hence, in the early
universe, they can easily be out of thermal equilibrium.
This makes N1, the lightest of them, an ideal candi-
date for baryogenesis, in accord with Sakharov’s condi-
tion of departure from thermal equilibrium. In the sim-
plest form of leptogenesis the heavy Majorana neutrinos
are produced by thermal processes, which is therefore
called ‘thermal leptogenesis’. The CP violating N1 de-
cays into lepton-Higgs pairs lead to a lepton asymme-
try hLiT , 0, which is partially converted to a baryon
asymmetry hBiT , 0 by the sphaleron processes. In
early work on leptogenesis, it was anticipated that the
light neutrino masses are then required to have masses
mi < O(1eV) [6]. After the discovery of atmospheric
neutrino oscillations, more stringent upper bounds on
neutrino masses could be derived, and leptogenesis be-
came increasingly popular.

The generated baryon asymmetry is proportional to
the CP asymmetry in N1-decays. For hierarchical heavy
neutrinos it satisfies the upper bound [7, 8]

✏1 =
�(N1 ! l�) � �(N1 ! l̄�̄)
�(N1 ! l�) + �(N1 ! l̄�̄)

. 10�6 M1

1010 GeV
matm

m1 + m3
= ✏max

1 , (8)
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Figure 5. Left: Neutrino mass bounds in the vanilla scenario. Right: Relax-
ation of the lower bound on M1 thanks to additional unbounded flavoured
CP violating terms.

processes in a way that κf2,3 ≪ κf1. Indeed if we indicate with N (2,3)
B−L(T ! M1) the contribution

to the NB−L asymmetry from the two heavier RH neutrinos prior to the lightest RH neutrino
wash-out, the final values are given very simply by

N (2,3),f
B−L = N (2,3)

B−L(T ! M1) e
− 3π

8
K1 . (27)

The same exponential wash-out factor applies to the residual value of a possible pre-existing
asymmetry. In this way it is sufficient to have a strong wash-out condition K1 ≫ 1 in order to
have both a pre-existing asymmetry and a contribution from heavier RH neutrinos negligible.
The strong wash-out condition K1 ≫ 1 is very easily satisfied since, barring special cases, one
has typically K1 ≃ (msol ÷ matm)/10−3 eV ≫ 1. The same condition also guarantees indepen-
dence of the final asymmetry on the initial N1-abundance. It is then quite suggestive that the
measured values of msol and matm have just the right values to produce a wash-out that is
strong enough to guarantee independence on the initial conditions but still not too strong to
prevent successful leptogenesis. This leptogenesis conspiracy between experimental results and
theoretical prediction is one of the main reasons that has determined the success of leptogenesis
so far.
There is actually a particular case where K1 ≫ 1 and |ε2| ≪ |ε1| do not hold and in this

case the final asymmetry is dominated by the contribution coming from the next-to-lightest RH
neutrinos. However, one still has K2 ≫ 1 so that the independence of the initial conditions still
holds. For the time being, as an additional third assumption of the vanilla scenario, we will bar
this particular case, we will be back on it in 3.1.
If, additionally, one excludes fine tuned cancelations among the different terms contributing

to the neutrino masses in the see-saw formula, one obtains the following upper bound on the
lightest RH neutrino CP asymmetry [24]

ε1 ≤ εmax
1 ≃ 10−6 M1

1010 GeV

matm

m1 +m3
. (28)

Imposing ηmax
B ≃ 0.01 εmax

1 κf1 > ηCMB
B , one obtains the allowed region in the plane (m1,M1)

shown in the left panel of Fig. 5. One can notice the existence of an upper bound on the
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measured values of msol and matm have just the right values to produce a wash-out that is
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If, additionally, one excludes fine tuned cancelations among the different terms contributing

to the neutrino masses in the see-saw formula, one obtains the following upper bound on the
lightest RH neutrino CP asymmetry [24]

ε1 ≤ εmax
1 ≃ 10−6 M1

1010 GeV

matm

m1 +m3
. (28)

Imposing ηmax
B ≃ 0.01 εmax

1 κf1 > ηCMB
B , one obtains the allowed region in the plane (m1,M1)

shown in the left panel of Fig. 5. One can notice the existence of an upper bound on the

P. Di Bari, 2012



Gravitino Problem

For light gravitino mass, 
BBN constraints                

⇒ TRH < 10(5-6) GeV 
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Figure 2: BBN constraints for the Case 1 at 95 % C.L. Each solid line shows upper bound
on the reheating temperature from D, 3He, 4He, 6Li, or 7Li. The dotted line is the upper
bound on the reheating temperature from the overclosure of the universe.

Figure 3: BBN constraints for the Case 2.
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Kawasaki, Kohri, Moroi, 
Yotsuyanagi, 2008

Sufficient leptogenesis  ⇒  

TRH > MR > 2 x 109 GeV


tension!  
(if SUSY)



Non-standard Scenarios

• resonant enhancement in self-energy diagram

• resonant leptogenesis (near degenerate RH neutrinos)


• relaxing relations between lepton number asymmetry and RH neutrino 
mass


• soft leptogenesis (SUSY CP phases)


• relaxing relation between TRH and RH neutrino mass

• non-thermal leptogenesis


• non-thermal production of NR by inflaton decay
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Leptogenesis    ↔   Gravitino Overproduction
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Resonant Leptogenesis

• Recall: Standard Leptogenesis

• self-energy diagram dominates for 

• enhanced asymmetry  if 

• O(1) asymmetry if

• Leptogenesis possible with M1,2 ~ TeV
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Fig. 1.7. Diagrams in SM with RH neutrinos that contribute to the lepton number
asymmetry through the decays of the RH neutrinos. The asymmetry is generated due
to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.

is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,

ϵ1 =

∑
α

[
Γ(N1 → ℓαH) − Γ(N1 → ℓα H)

]
∑

α

[
Γ(N1 → ℓαH) + Γ(N1 → ℓα H)

] (1.89)

≃
1

8π

1

(hνhν)11

∑

i=2,3

Im

{
(hνh†

ν)21i

}
·
[
f

(
M2

i

M2
1

)
+ g

(
M2

i

M2
1

)]
.

In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,

f(x) =
√

x

[
1 − (1 + x) ln

(
1 + x

x

)]
. (1.90)

Diagram (c) is the one-loop self-energy. For |Mi − M1| ≫ |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
x

1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 ≪ M2, M3, the
asymmetry is then given by,

ϵ1 ≃ −
3

8π

1

(hνh†
ν)11

∑

i=2,3

Im

{
(hνh†

ν)21i

}
M1

Mi
. (1.92)

Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow
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right-handed neutrino masses (resonant leptogenesis); (ii) relaxing the rela-
tion between the lepton number asymmetry and the right-handed neutrino
mass (soft leptogenesis); (iii) relaxing the relation between the reheating
temperature and the right-handed neutrino mass (non-thermal leptogene-
sis). These scenarios are discussed below.

1.3.1. Resonant Leptogenesis

Recall that in the standard leptogenesis discussed in Sec. 1.2, contributions
to the CP asymmetry is due to the interference between the tree-level and
the one-loop diagrams, that include the vertex correction and self-energy
diagrams. It was pointed out in Ref. [39] that in the limit MNi − MNj ≪
MNi , the self-energy diagrams dominate,

ϵSelf

Ni
=

Im[(hνh†
ν)ij ]2

(hνh†
ν)ii(hνh†

ν)jj

[
(M2

i − M2
j )MiΓNj

(M2
i − M2

j )2 + M2
i Γ

2
Nj

]
. (1.128)

When the lightest two RH neutrinos have near degenerate masses, M2
1 −

M2
2 ∼ Γ2

N2
, the asymmetry can be enhanced. To be more specific, CP

asymmetry of O(1) is possible, when

M1 − M2 ∼
1

2
ΓN1,2 , assuming

Im(hνh†
ν)212

(hνh†
ν)11(hνh†

ν)22
∼ 1 . (1.129)

Due to this resonant effect, the bound on the RH neutrino mass scale from
the requirement of generating sufficient lepton number asymmetry can be
significantly lower. It has been shown that sufficient baryogenesis can be
obtained even with M1,2 ∼ TeV [40].

1.3.2. Soft Leptogenesis

CP violation in leptogenesis can arise in two ways: it can arise in decays,
which is the case in standard leptogenesis described in the previous section.
It can also arise in mixing. An example of this is the soft leptogenesis.
Recall that in the Kaon system, non-vanishing CP violation exists due to
the mismatch between CP eigenstates and mass eigenstates (for a review,
see for example, Ref. [41]). The CP eigenstates of the K0 system are
1√
2

(∣∣K0
〉
±

∣∣K0〉)
. The time evolution of the (K0, K

0
) system is described

by the following Schrödinger equation,

d

dt

(
K0

K
0

)

= H

(
K0

K
0

)

(1.130)
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Due to this resonant effect, the bound on the RH neutrino mass scale from
the requirement of generating sufficient lepton number asymmetry can be
significantly lower. It has been shown that sufficient baryogenesis can be
obtained even with M1,2 ∼ TeV [40].

1.3.2. Soft Leptogenesis

CP violation in leptogenesis can arise in two ways: it can arise in decays,
which is the case in standard leptogenesis described in the previous section.
It can also arise in mixing. An example of this is the soft leptogenesis.
Recall that in the Kaon system, non-vanishing CP violation exists due to
the mismatch between CP eigenstates and mass eigenstates (for a review,
see for example, Ref. [41]). The CP eigenstates of the K0 system are
1√
2

(∣∣K0
〉
±

∣∣K0〉)
. The time evolution of the (K0, K

0
) system is described

by the following Schrödinger equation,

d

dt
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K
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)
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Fig. 1.7. Diagrams in SM with RH neutrinos that contribute to the lepton number
asymmetry through the decays of the RH neutrinos. The asymmetry is generated due
to the interference of the tree-level diagram (a) and the one-loop vertex correction (b)
and self-energy (c) diagrams.

is generated due to the CP asymmetry that arises through the interference
of the tree level and one-loop diagrams, as shown in Fig. 1.7,
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α
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.

In Fig. 1.7, the diagram (b) is the one-lop vertex correction, which gives
the term, f(x), in Eq. 1.89 after carrying out the loop integration,

f(x) =
√

x

[
1 − (1 + x) ln

(
1 + x

x

)]
. (1.90)

Diagram (c) is the one-loop self-energy. For |Mi − M1| ≫ |Γi − Γ1|, the
self-energy diagram gives the term

g(x) =

√
x

1 − x
, (1.91)

in Eq. 1.89. For hierarchical RH neutrino masses, M1 ≪ M2, M3, the
asymmetry is then given by,

ϵ1 ≃ −
3

8π

1

(hνh†
ν)11

∑

i=2,3

Im

{
(hνh†

ν)21i

}
M1

Mi
. (1.92)

Note that when Nk and Nj in the self-energy diagram (c) have near degen-
erate masses, there can be resonant enhancement in the contributions from
the self-energy diagram to the asymmetry. Such resonant effect can allow
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right-handed neutrino masses (resonant leptogenesis); (ii) relaxing the rela-
tion between the lepton number asymmetry and the right-handed neutrino
mass (soft leptogenesis); (iii) relaxing the relation between the reheating
temperature and the right-handed neutrino mass (non-thermal leptogene-
sis). These scenarios are discussed below.

1.3.1. Resonant Leptogenesis

Recall that in the standard leptogenesis discussed in Sec. 1.2, contributions
to the CP asymmetry is due to the interference between the tree-level and
the one-loop diagrams, that include the vertex correction and self-energy
diagrams. It was pointed out in Ref. [39] that in the limit MNi − MNj ≪
MNi , the self-energy diagrams dominate,
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Due to this resonant effect, the bound on the RH neutrino mass scale from
the requirement of generating sufficient lepton number asymmetry can be
significantly lower. It has been shown that sufficient baryogenesis can be
obtained even with M1,2 ∼ TeV [40].
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CP violation in leptogenesis can arise in two ways: it can arise in decays,
which is the case in standard leptogenesis described in the previous section.
It can also arise in mixing. An example of this is the soft leptogenesis.
Recall that in the Kaon system, non-vanishing CP violation exists due to
the mismatch between CP eigenstates and mass eigenstates (for a review,
see for example, Ref. [41]). The CP eigenstates of the K0 system are
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where the Hamiltanian H is given by H = M− i
2A. Here, the off-diagonal

matrix element M12 describes the dispersive part of the transition ampli-
tude, while the element A12 gives the absorptive part of the amplitude.
The physical (mass) eigenstates,

∣∣KL,S

〉
, are given in terms of the flavor

eigenstates,
∣∣K0

〉
and

∣∣K0〉
, as

∣∣KL

〉
= p

∣∣K0
〉

+ q
∣∣K0〉

(1.131)
∣∣KS

〉
= p

∣∣K0
〉
− q

∣∣K0〉
. (1.132)

To have non-vanishing CP violation requires that there exists a mismatch
between the CP eigenstates and the physical eigenstates. This in turn
implies,

∣∣∣∣
q

p

∣∣∣∣ ≠ 1 , where

(
q

p

)2

=

(
2M∗

12 − iA∗
12

2M12 − iA12

)
. (1.133)

For soft leptogenesis, the relevant soft SUSY Lagrangian that involves
lightest RH sneutrinos ν̃R1 is the following,

− Lsoft =

(
1

2
BM1ν̃R1 ν̃R1 + AY1iL̃iν̃R1Hu + h.c.

)

+m̃2ν̃†
R1

ν̃R1 . (1.134)

This soft SUSY Lagrangian and the superpotential that involves the lightest
RH neutrino, N1,

W = M1N1N1 + Y1iLiN1Hu (1.135)

give rise to the following interactions

− LA = ν̃R1(M1Y
∗
1iℓ̃

∗
i H

∗
u + Y1iH̃uℓi

L + AY1i ℓ̃iHu) + h.c. , (1.136)

and mass terms (to leading order in soft SUSY breaking terms),

− LM = (M2
1 ν̃†

R1
ν̃R1 +

1

2
BM1ν̃R1 ν̃R1) + h.c. . (1.137)

Diagonalization of the mass matrix M for the two states ν̃R1 and ν̃†
R1

leads

to eigenstates Ñ+ and Ñ− with masses,

M± ≃ M1

(
1 ±

|B|
2M1

)
, (1.138)

where the leading order term M1 is the F-term contribution from the su-
perpotential (RH neutrino mass term) and the mass difference between the
two mass eigenstates Ñ+ and Ñ− is induced by the SUSY breaking B term.

Grossman,Kashti,Nir,Roulet, 03
D’Ambrosio,Giudice,Raidal, 03
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This soft SUSY Lagrangian and the superpotential that involves the lightest
RH neutrino, N1,
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give rise to the following interactions
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and mass terms (to leading order in soft SUSY breaking terms),
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1 ν̃†
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1

2
BM1ν̃R1 ν̃R1) + h.c. . (1.137)

Diagonalization of the mass matrix M for the two states ν̃R1 and ν̃†
R1

leads

to eigenstates Ñ+ and Ñ− with masses,

M± ≃ M1

(
1 ±

|B|
2M1

)
, (1.138)

where the leading order term M1 is the F-term contribution from the su-
perpotential (RH neutrino mass term) and the mass difference between the
two mass eigenstates Ñ+ and Ñ− is induced by the SUSY breaking B term.

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

TASI 2006 Lectures on Leptogenesis 37

where the Hamiltanian H is given by H = M− i
2A. Here, the off-diagonal

matrix element M12 describes the dispersive part of the transition ampli-
tude, while the element A12 gives the absorptive part of the amplitude.
The physical (mass) eigenstates,

∣∣KL,S

〉
, are given in terms of the flavor

eigenstates,
∣∣K0

〉
and

∣∣K0〉
, as

∣∣KL

〉
= p

∣∣K0
〉

+ q
∣∣K0〉

(1.131)
∣∣KS

〉
= p

∣∣K0
〉
− q

∣∣K0〉
. (1.132)

To have non-vanishing CP violation requires that there exists a mismatch
between the CP eigenstates and the physical eigenstates. This in turn
implies,

∣∣∣∣
q

p
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+m̃2ν̃†
R1
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This soft SUSY Lagrangian and the superpotential that involves the lightest
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W = M1N1N1 + Y1iLiN1Hu (1.135)

give rise to the following interactions

− LA = ν̃R1(M1Y
∗
1iℓ̃

∗
i H

∗
u + Y1iH̃uℓi

L + AY1i ℓ̃iHu) + h.c. , (1.136)

and mass terms (to leading order in soft SUSY breaking terms),

− LM = (M2
1 ν̃†

R1
ν̃R1 +

1

2
BM1ν̃R1 ν̃R1) + h.c. . (1.137)

Diagonalization of the mass matrix M for the two states ν̃R1 and ν̃†
R1

leads

to eigenstates Ñ+ and Ñ− with masses,

M± ≃ M1

(
1 ±

|B|
2M1

)
, (1.138)

where the leading order term M1 is the F-term contribution from the su-
perpotential (RH neutrino mass term) and the mass difference between the
two mass eigenstates Ñ+ and Ñ− is induced by the SUSY breaking B term.
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The time evolution of the ν̃R1 -ν̃
†
R1

system is governed by the Schrödinger
equation,

d

dt

(
ν̃R1

ν̃†
R1

)
= H

(
ν̃R1

ν̃†
R1

)
, (1.139)

where the Hamiltonian is H = M− i
2A with M and A being [42, 43],

M =

(
1 B∗

2M1
B

2M1
1

)

M1 , (1.140)

A =

(
1 A∗

M1
A

M1
1

)

Γ1 . (1.141)

For the decay of the lightest RH sneutrino, ν̃R1 , the total decay width Γ1 is
given by, in the basis where both the charged lepton mass matrix and the
RH neutrino mass matrix are diagonal,

Γ1 =
1

4π
(YνY†

ν)11M1 . (1.142)

The eigenstates of the Hamiltonian H are Ñ ′
± = pÑ ± qÑ †, where |p|2 +

|q|2 = 1. The ratio q/p is given in terms of M and Γ1 as,
(

q

p

)2

=
2M∗

12 − iA∗
12

2M12 − iA12
≃ 1 + Im

(
2Γ1A

BM1

)
, (1.143)

in the limit A12 ≪ M12. Similar to the K0 − K
0

system, the source of
CP violation in the lepton number asymmetry considered here is due to
the CP violation in the mixing which occurs when the two neutral mass
eigenstates (Ñ+, Ñ−), are different from the interaction eigenstates, (Ñ ′

+,

Ñ ′
−). Therefore CP violation in mixing is present as long as the quantity

|q/p| ≠ 1, which requires

Im

(
AΓ1

M1B

)
≠ 0 . (1.144)

For this to occur, SUSY breaking, i.e. non-vanishing A and B, is required.
As the relative phase between the parameters A and B can be rotated away
by an U(1)R-rotation as discussed in Sec. 1.1.5, without loss of generality
we assume from now on that the remaining physical phase is solely coming
from the tri-linear coupling, A.

The total lepton number asymmetry integrated over time, ϵ, is defined
as the ratio of the difference to the sum of the decay widths Γ for ν̃R1 and
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+,
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± = pÑ ± qÑ †, where |p|2 +

|q|2 = 1. The ratio q/p is given in terms of M and Γ1 as,
(

q

p

)2

=
2M∗

12 − iA∗
12

2M12 − iA12
≃ 1 + Im

(
2Γ1A

BM1

)
, (1.143)

in the limit A12 ≪ M12. Similar to the K0 − K
0

system, the source of
CP violation in the lepton number asymmetry considered here is due to
the CP violation in the mixing which occurs when the two neutral mass
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|q/p| ≠ 1, which requires

Im

(
AΓ1

M1B

)
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≠ 0 . (1.144)

For this to occur, SUSY breaking, i.e. non-vanishing A and B, is required.
As the relative phase between the parameters A and B can be rotated away
by an U(1)R-rotation as discussed in Sec. 1.1.5, without loss of generality
we assume from now on that the remaining physical phase is solely coming
from the tri-linear coupling, A.

The total lepton number asymmetry integrated over time, ϵ, is defined
as the ratio of the difference to the sum of the decay widths Γ for ν̃R1 and

February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

38 M.-C. Chen

The time evolution of the ν̃R1 -ν̃
†
R1

system is governed by the Schrödinger
equation,

d

dt

(
ν̃R1

ν̃†
R1

)
= H

(
ν̃R1

ν̃†
R1

)
, (1.139)

where the Hamiltonian is H = M− i
2A with M and A being [42, 43],

M =

(
1 B∗

2M1
B

2M1
1

)

M1 , (1.140)

A =

(
1 A∗

M1
A

M1
1

)

Γ1 . (1.141)

For the decay of the lightest RH sneutrino, ν̃R1 , the total decay width Γ1 is
given by, in the basis where both the charged lepton mass matrix and the
RH neutrino mass matrix are diagonal,

Γ1 =
1

4π
(YνY†

ν)11M1 . (1.142)

The eigenstates of the Hamiltonian H are Ñ ′
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ν̃†
R1

into final states of the slepton doublet L̃ and the Higgs doublet H , or

the lepton doublet L and the Higgsino H̃ or their conjugates,

ϵ =

∑
f

∫ ∞
0 [Γ(ν̃R1 , ν̃

†
R1

→ f) − Γ(ν̃R1 , ν̃
†
R1

→ f)]
∑

f

∫ ∞
0 [Γ(ν̃R1 , ν̃

†
R1

→ f) + Γ(ν̃R1 , ν̃
†
R1

→ f)]
. (1.145)

Here the final states f = (L̃ H), (L H̃) have lepton number +1, and f

denotes their conjugate, (L̃† H†), (L H̃), which have lepton number −1.
After carrying out the time integration, the total CP asymmetry is [42, 43],

ϵ =

(
4Γ1B

Γ2
1 + 4B2

)
Im(A)

M1
δB−F (1.146)

where the additional factor δB−F takes into account the thermal effects
due to the difference between the occupation numbers of bosons and
fermions [44].

The final result for the baryon asymmetry is [42, 43],

nB

s
≃ −cs deνR ϵ κ ,

≃ −1.48 × 10−3ϵ κ ,

≃ −(1.48 × 10−3)

(
Im(A)

M1

)
R δB−F κ , (1.147)

where deνR in the first line is the density of the lightest sneutrino in equi-
librium in units of entropy density, and is given by, deνR = 45ζ(3)/(π4g∗);
the factor cs, which characterizes the amount of B − L asymmetry being
converted into the baryon asymmetry YB, is defined in Eq. 1.57. The pa-
rameter κ is the efficiency factor given in Sec. 1.2.1.2. The resonance factor
R is defined as the following ratio,

R ≡
4Γ1B

Γ2
1 + 4B2

, (1.148)

which gives a value equal to one when the resonance condition, Γ1 = 2|B|,
is satisfied, leading to maximal CP asymmetry. As Γ1 is of the order of
O(0.1 − 1) GeV, to satisfy the resonance condition, a small value for B ≪
m̃ is thus needed. Such a small value of B can be generated by some
dynamical relaxation mechanisms [45] in which B vanishes in the leading
order. A small value of B ∼ m̃2/M1 is then generated by an operator∫

d4θZZ†N2
1 /M2

pl in the Kähler potential, where Z is the SUSY breaking
spurion field, Z = θ2 m̃Mpl [43]. In a specific SO(10) model constructed
in Ref. [46, 47], it has been shown that with the parameter B′ ≡

√
BM1
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Here the final states f = (L̃ H), (L H̃) have lepton number +1, and f

denotes their conjugate, (L̃† H†), (L H̃), which have lepton number −1.
After carrying out the time integration, the total CP asymmetry is [42, 43],

ϵ =

(
4Γ1B

Γ2
1 + 4B2

)
Im(A)

M1
δB−F (1.146)

where the additional factor δB−F takes into account the thermal effects
due to the difference between the occupation numbers of bosons and
fermions [44].

The final result for the baryon asymmetry is [42, 43],

nB

s
≃ −cs deνR ϵ κ ,

≃ −1.48 × 10−3ϵ κ ,

≃ −(1.48 × 10−3)

(
Im(A)

M1

)
R δB−F κ , (1.147)

where deνR in the first line is the density of the lightest sneutrino in equi-
librium in units of entropy density, and is given by, deνR = 45ζ(3)/(π4g∗);
the factor cs, which characterizes the amount of B − L asymmetry being
converted into the baryon asymmetry YB, is defined in Eq. 1.57. The pa-
rameter κ is the efficiency factor given in Sec. 1.2.1.2. The resonance factor
R is defined as the following ratio,

R ≡
4Γ1B

Γ2
1 + 4B2

, (1.148)

which gives a value equal to one when the resonance condition, Γ1 = 2|B|,
is satisfied, leading to maximal CP asymmetry. As Γ1 is of the order of
O(0.1 − 1) GeV, to satisfy the resonance condition, a small value for B ≪
m̃ is thus needed. Such a small value of B can be generated by some
dynamical relaxation mechanisms [45] in which B vanishes in the leading
order. A small value of B ∼ m̃2/M1 is then generated by an operator∫

d4θZZ†N2
1 /M2

pl in the Kähler potential, where Z is the SUSY breaking
spurion field, Z = θ2 m̃Mpl [43]. In a specific SO(10) model constructed
in Ref. [46, 47], it has been shown that with the parameter B′ ≡

√
BM1
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Is Leptogenesis 
Possible without LNV?



Dirac Leptogenesis

• Leptogenesis possible when neutrinos are Dirac particles

• small Dirac mass through suppressed Yukawa coupling

• Characteristics of Sphaleron effects:
• only left-handed fields couple to sphalerons

• sphalerons change (B+L) but not (B-L)
• sphaleron effects in equilibrium for T > Tew

• If L stored in RH fermions can survive below EW phase 
transition, net lepton number can be generated even with L=0 
initially

• for SM quarks and leptons: rapid left-right equilibration through 
large Yukawa

Dick, Lindner, Ratz, Wright, 2000; 
Murayama, Pierce, 2002; ...

no net asymmetry 
if B = L = 0 initially



Dirac Leptogenesis
• LR equilibration for neutrinos:

• neutrino Yukawa coupling 

• rate for conversion

• for LR conversion not to be in equilibrium 

• Thus LR equilibration occur at much later time
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1.2.2. Dirac Leptogenesis

In the standard leptogenesis discussed in the previous section, neutrinos
acquire their masses through the seesaw mechanism. The decays of the
heavy right-handed neutrinos produce a non-zero lepton number asymme-
try, ∆L ̸= 0. The electroweak sphaleron effects then convert ∆L partially
into ∆B. This standard scenario relies crucially on the violation of lepton
number, which is due to the presence of the heavy Majorana masses for the
right-handed neutrinos.

It was pointed out [31] that leptogenesis can be implemented even in the
case when neutrinos are Dirac fermions which acquire small masses through
highly suppressed Yukawa couplings without violating lepton number. The
realization of this depends critically on the following three characteristics
of the sphaleron effects: (i) only the left-handed particles couple to the
sphalerons; (ii) the sphalerons change (B + L) but not (B − L); (iii) the
sphaleron effects are in equilibrium for T ! TEW .

As the sphelarons couple only to the left-handed fermions, one may
speculate that as long as the lepton number stored in the right-handed
fermions can survive below the electroweak phase transition, a net lepton
number may be generated even with L = 0 initially. The Yukawa couplings
of the SM quarks and leptons to the Higgs boson lead to rapid left-right
equilibration so that as the sphaleron effects deplete the left-handed (B+L),
the right-handed (B + L) is converted to fill the void and therefore it is
also depleted. So with B = L = 0 initially, no baryon asymmetry can
be generated for the SM quarks and leptons. For the neutrinos, on the
other hand, the left-right equilibration can occur at a much longer time
scale compared to the electroweak epoch when the sphaleron washout is in
effect. The left-right conversion for the neutrinos involves the Dirac Yukawa
couplings, λℓLHνR, where λ is the Yukawa coupling constant, and the rate
for these conversion processes scales as,

ΓLR ∼ λ2T . (1.116)

For the left-right conversion not to be in equilibrium at temperatures above
some critical temperature Teq, requires that

ΓLR " H , for T > Teq , (1.117)

where the Hubble constant scales as,

H ∼
T 2

MPl

. (1.118)
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Fig. 1.12. With sufficiently small Yukawa couplings, the left-right equilibration occurs
at a much later time, well below the electroweak phase transition temperature. It is
therefore possible to generate a non-zero baryon number even if B = L = 0 initially. For
the SM particles, as shown in the insert for comparison, the left-right equilibration takes
place completely before or during the sphaleron processes. Thus no net baryon number
can be generated if B − L = 0 initially. Figure taken from Ref [31].

Hence the left-right equilibration can occur at a much later time, T !

Teq ≪ TEW , provided,

λ2 !
Teq

MPl

≪
TEW

MPl

. (1.119)

With MPl ∼ 1019 GeV and TEW ∼ 102 GeV, this condition then translates
into

λ < 10−(8∼9) . (1.120)

Thus for neutrino Dirac masses mD < 10 keV, which is consistent with all
experimental observations, the left-right equilibration does not occur until
the temperature of the Universe drops to much below the temperature of
the electroweak phase transition, and the lepton number stored in the right-
handed neutrinos can then survive the wash-out due to the sphalerons [31].

Once we accept this, the Dirac leptogenesis then works as follows. Sup-
pose that some processes initially produce a negative lepton number (∆LL),
which is stored in the left-handed neutrinos, and a positive lepton number
(∆LR), which is stored in the right-handed neutrinos. Because sphalerons
only couple to the left-handed particles, part of the negative lepton number
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the temperature of the Universe drops to much below the temperature of
the electroweak phase transition, and the lepton number stored in the right-
handed neutrinos can then survive the wash-out due to the sphalerons [31].

Once we accept this, the Dirac leptogenesis then works as follows. Sup-
pose that some processes initially produce a negative lepton number (∆LL),
which is stored in the left-handed neutrinos, and a positive lepton number
(∆LR), which is stored in the right-handed neutrinos. Because sphalerons
only couple to the left-handed particles, part of the negative lepton number
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Fig. 1.12. With sufficiently small Yukawa couplings, the left-right equilibration occurs
at a much later time, well below the electroweak phase transition temperature. It is
therefore possible to generate a non-zero baryon number even if B = L = 0 initially. For
the SM particles, as shown in the insert for comparison, the left-right equilibration takes
place completely before or during the sphaleron processes. Thus no net baryon number
can be generated if B − L = 0 initially. Figure taken from Ref [31].

Hence the left-right equilibration can occur at a much later time, T !

Teq ≪ TEW , provided,

λ2 !
Teq

MPl

≪
TEW

MPl

. (1.119)

With MPl ∼ 1019 GeV and TEW ∼ 102 GeV, this condition then translates
into

λ < 10−(8∼9) . (1.120)

Thus for neutrino Dirac masses mD < 10 keV, which is consistent with all
experimental observations, the left-right equilibration does not occur until
the temperature of the Universe drops to much below the temperature of
the electroweak phase transition, and the lepton number stored in the right-
handed neutrinos can then survive the wash-out due to the sphalerons [31].

Once we accept this, the Dirac leptogenesis then works as follows. Sup-
pose that some processes initially produce a negative lepton number (∆LL),
which is stored in the left-handed neutrinos, and a positive lepton number
(∆LR), which is stored in the right-handed neutrinos. Because sphalerons
only couple to the left-handed particles, part of the negative lepton number

Dick, Lindner, Ratz, Wright, 2000



Dirac Leptogenesis

• Leptogenesis possible even when neutrinos 
are Dirac particles (no ∆L = 2 violation)


• Characteristics of Sphaleron effects:

• only left-handed fields couple to 

sphalerons

• sphalerons change (B+L) but not (B-L)

• sphaleron effects in equilibrium                

for T > Tew
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K. Dick, M. Lindner, M. Ratz, D. Wright, 2000; 
H. Murayama, A. Pierce, 2002
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Fig. 1.12. With sufficiently small Yukawa couplings, the left-right equilibration occurs
at a much later time, well below the electroweak phase transition temperature. It is
therefore possible to generate a non-zero baryon number even if B = L = 0 initially. For
the SM particles, as shown in the insert for comparison, the left-right equilibration takes
place completely before or during the sphaleron processes. Thus no net baryon number
can be generated if B − L = 0 initially. Figure taken from Ref [31].

Hence the left-right equilibration can occur at a much later time, T !

Teq ≪ TEW , provided,

λ2 !
Teq

MPl

≪
TEW

MPl

. (1.119)

With MPl ∼ 1019 GeV and TEW ∼ 102 GeV, this condition then translates
into

λ < 10−(8∼9) . (1.120)

Thus for neutrino Dirac masses mD < 10 keV, which is consistent with all
experimental observations, the left-right equilibration does not occur until
the temperature of the Universe drops to much below the temperature of
the electroweak phase transition, and the lepton number stored in the right-
handed neutrinos can then survive the wash-out due to the sphalerons [31].

Once we accept this, the Dirac leptogenesis then works as follows. Sup-
pose that some processes initially produce a negative lepton number (∆LL),
which is stored in the left-handed neutrinos, and a positive lepton number
(∆LR), which is stored in the right-handed neutrinos. Because sphalerons
only couple to the left-handed particles, part of the negative lepton number

Diagram from K. Dick, M. 
Lindner, M. Ratz, D. Wright, 
2000

late time LR equilibration of 
neutrinos making Dirac 

leptogenesis possible with 
primordial ∆L = 0



Connection to Low Energy Observables
• Standard Leptogenesis: seesaw mechanism, Majorana neutrinos 

• Seesaw Lagrangian at high energy (in the presence of RH neutrinos)


• Low energy effective Lagrangian (after integrating out RH neutrinos)


• No model independent connection


• BUT, in certain predictive models, connection can be established
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presence of low energy leptonic CPV
(neutrino oscillation, neutrinoless 

double beta decay)

Leptogenesis ↔ Low Energy Observables

• one flavor approximation

• no model independent connection can exist

real R, complex U: 
     non-vanishing low energy CPV (h)
     vanishing leptogenesis

presence of low energy leptonic 
CPV

(neutrino oscillation, neutrinoless 
double beta decay)

leptogenesis ≠ 0

36Mu-Chun Chen, UC Irvine                                                     LISHEP2011                                                CBPF, Rio de Janeiro, 07/05/2011

leptogenesis ≠ 0

6 mixing angles + 6 physical phases

3 mixing angles + 3 physical phases high energy → low energy:
numbers of mixing angles and 
CP phases reduced by half


