α_s (2019) introduction

 $\alpha_s(2019)$ workshop

ECT* (Trento), 11th -15th Feb. 2019

David d'Enterria (CERN) Stefan Kluth (MPP, MPI)

QCD coupling α_s

- → Determines strength of the strong interaction between quarks & gluons.
- ⇒ Single free parameter in QCD in the $m_a \rightarrow 0$ limit.
- → Determined at a ref. scale (Q= m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{\frac{1}{2}}$, $\Lambda \sim 0.2$ GeV

QCD coupling α_s

- → Determines strength of the strong interaction between quarks & gluons.
- ⇒ Single free parameter in QCD in the $m_a \rightarrow 0$ limit.
- → Determined at a ref. scale (Q= m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{1/2}$, $\Lambda \sim 0.2$ GeV

Least precisely known of all interaction couplings!

$$\delta\alpha$$
 ~10^{\text{-10}} $\ll \delta G_{\text{\tiny F}} \ll ~10^{\text{-7}} \ll \delta G \text{~10}^{\text{-5}} \ll \delta\alpha_{\text{\tiny S}} \text{~~10}^{\text{-3}}$

Key role of the QCD coupling α_s

→ Impacts all QCD x-sections & decays (H), precision top & parametric EWPO:

Process	σ (pb)	$\delta \alpha_s(\%)$	PDF $+\alpha_s(\%)$	Scale(%
ggH	49.87	\pm 3.7	-6.2 +7.4	-2.61 + 0.
ttH	0.611	± 3.0	\pm 8.9	-9.3 +5
Channel	$M_{ m H} [{ m GeV}]$	$\delta \alpha_s(\%)$	Δm_b	Δm_c
$H \to c\bar{c}$	126	\pm 7.1	$\pm~0.1\%$	± 2.3 %
$\mathrm{H} \to \mathrm{gg}$	126	± 4.1	± 0.1%	± 0 %

Msbar mass error budget (from threshold scan)									
$(\delta M_t^{ m SD-low})^{ m exp} ~~ (\delta M_t^{ m SD-l})$		ow)theo	$(\delta \overline{m}_t(\overline{m}_t))^{\mathrm{conver}}$	$\frac{1}{\delta \overline{n}}$	$\left(\!(\delta\overline{m}_t(\overline{m}_t))^{lpha_s} ight)$				
40 MeV	50 MeV		7 – 23 MeV	70	70 MeV				
\Rightarrow improvement in α_s crucial $\delta \alpha_s(M_z) = 0.001$									
Quantity FCC-ee future param.unc. Main source									
Γ_Z [MeV]	0.1	0.1			$\delta lpha_s$				
R_b [10 ⁻⁵]	6	< 1			$\delta lpha_s$				

Sven Heinemeyer - 1st FCC physics workshop, CERN, 17.01.2017

1.3

→ Impacts physics approaching Planck scale: EW vacuum stability, GUT

 R_{ℓ} [10⁻³]

 $\delta \alpha_s$

World α_s determination (PDG 2017)

Determined today by comparing 6 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

Other α_s extractions (not *yet* in world average)

■ There exist at least 8 other classes of observables, computed at lower accuracy (NLO, NNLO*), used to extract the QCD coupling:

PDG 2017 α_s world average (NNLO)

class averages:

$$\alpha_s(M_z) = 0.1192 \pm 0.0018 \ (\pm 1.5\%)$$

$$\alpha_s(M_z) = 0.1184 \pm 0.0012$$
 (±1.0%)

$$\alpha_s(M_z) = 0.1156 \pm 0.0021$$
 (±1.8%)

$$\alpha_s(M_z) = 0.1169 \pm 0.0034 (\pm 2.9\%)$$

$$\alpha_s(M_z) = 0.1196 \pm 0.0030 \ (\pm 2.5\%)$$

$$\alpha_s(M_z) = 0.1151 \pm 0.0028 \ (\pm 2.5\%)$$

unweighted χ^2 average:

$$\alpha_s(M_z) = 0.1181 \pm 0.0011 \ (\pm 0.9\%)$$

Structure of the workshop

- Discuss latest developments & prospects in $\alpha_s(m_7)$ determinations via:
 - (i) Lattice QCD: Mo. afternoon, Tues. morning
 - (ii) Hadronic tau decays: Thurs. morning
 - (iii) DIS & global PDF analyses: Tues. afternoon
 - (iv) Hadronic final states in e⁺e⁻: Wed. morning
 - (v) Hadronic final states at the LHC: Wed. afternoon, Thurs. morning
- → Discuss $α_s(m_7)$ averaging: Friday morning
- → Prepare online proceedings contributions: Thurs. afternoon
- ◆ Each talk has an indicative 30' allocated time, but our goal is to have as lively and direct discussions as possible: questions during presentations are encouraged (in the philosophy of a truly working-discussion meeting).
- ♦ We have ample time at the end of each day, so no strong time constraints will be actually imposed on each talk: EXCEPT that we need to respect scheduled times for lunch (12:30 – 14:00) & coffee breaks (10:30-11:00 and ~15:00-15:30)

"Logistics" organization

1) Remind to sign every morning the 3 reception-desks lists: presence book, dinners, lunches.

- 2) Pick up your certificate of attendance.
- 3) Fill out the survey for evaluation of catering service.

Backup slides