

 $\begin{aligned} \mathcal{J} &= \frac{1}{492} \left(\int_{\mu\nu}^{\alpha} G_{\mu\nu}^{\alpha} + \sum_{j} \overline{g}_{j} \left(i \partial^{\mu} D_{\mu} + m_{j} \right) g_{j} \right) \\ & \text{where } \left(\int_{\mu\nu}^{\alpha} \equiv \partial_{\mu} P_{\nu}^{\alpha} - \partial_{\nu} P_{\mu}^{\alpha} + i f_{be}^{\alpha} P_{\mu}^{b} P_{\mu}^{c} \right) \\ & \text{and } D_{\mu} \equiv \partial_{\mu} + i t^{\alpha} P_{\mu}^{\alpha} \end{aligned}$ $\alpha_{\rm c}(Q^2)$ t decays (N110) Heavy Quarkonia (NUO) o efe jets & shapevines NNLO-0.3 e.w. precision fits (N2LO) ¬ pp → jets (NLO) ▼ pp -> 0 (NNLO) 0.2 0.1 $OCD \alpha_s(M_z) = 0.1181 \pm 0.0011$ Q[GeV] 1000 10 100

Determination of $\alpha_s(m_z)$ from the Z-boson transverse momentum

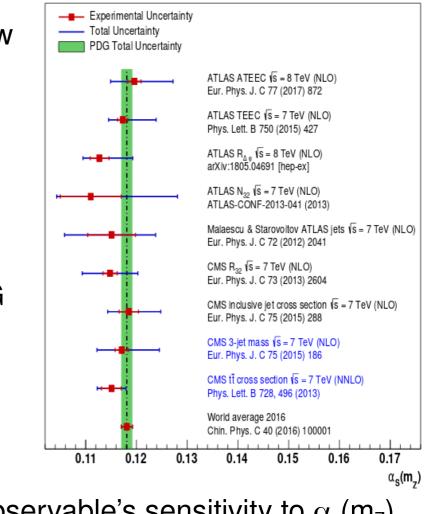
Stefano Camarda

alphas-2019 Trento, Italy 11-15 February 2019

Measure $\alpha_s(m_z)$ at hadron colliders

- $_{\rm s}$ Measurements of $\alpha_{\rm s}$ at hadron colliders allow probing the strong coupling at high q²
- However they generally suffer from large uncertainties, and do not provide a competitive determination of α_s(m_z)
- Only a few of them have the required NNLO accuracy of the predictions to enter the PDG average (tt inclusive cross section, and recently jets, V+jet)
- Can we do better?

Desirable features for a measurement of $\alpha_s(m_z)$ [PDG]

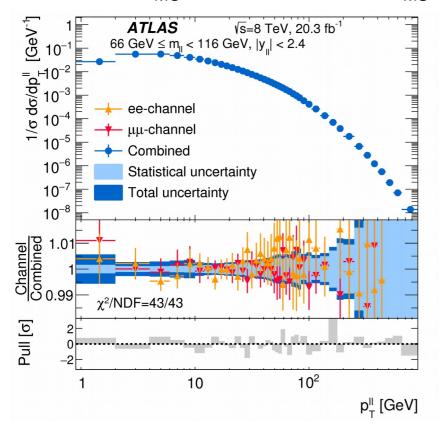


- Large observable's sensitivity to $\alpha_s(m_z)$ compared to the experimental precision
- High accuracy of the theory prediction
- Small size of non-perturbative QCD effects

Stefano Camarda

Measure $\alpha_{s}(m_{z})$ from semi-inclusive DY

- Measuring A_{MS} from semi-inclusive (radiation inhibited) DY cross sections was first proposed in Nucl. Phys. B 349 (1991) 635-654
- Use Monte Carlo parton showers to determine $\Lambda_{\rm MC}$ and convert to $\Lambda_{\rm MS}$



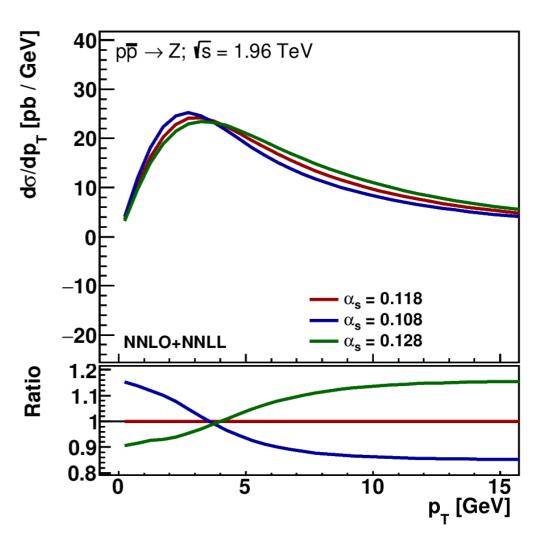
Resummation arguments show that a set of universal QCD corrections can be absorbed in coherent parton showers by applying the Catani-Marchesini-Webber (CMW) rescaling of the MS value of $\Lambda_{_{QCD}}$

$$P(\alpha_{\rm s}, z) = \frac{\alpha_{\rm s}}{2\pi} C_{\rm F} \frac{1+z^2}{1-z} + \left(\frac{\alpha_{\rm s}}{\pi}\right)^2 \frac{A^{(2)}}{1-z}$$
$$\mathbf{\alpha}_{\rm s}^{(\rm MC)} = \alpha_{\rm s}^{(\overline{\rm MS})} \left(1 + K \frac{\alpha_{\rm s}^{(\overline{\rm MS})}}{2\pi}\right)$$

 The Z p_T distribution at small transverse momentum is one of such semi-inclusive observables

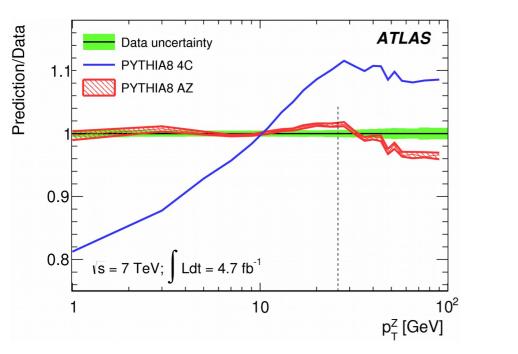
Measure $\alpha_{s}(m_{z})$ from the Z p_{T} distribution

- The recoil of Z bosons produced in hadron collisions is mainly due to QCD initial-state radiation
- The Sudakov factor is responsible for the existence of a Sudakov peak in the Z-boson transversemomentum distribution, at transverse-momentum values of approximately 4 GeV
- The position of the peak is sensitive to the value of the strongcoupling constant



Measure $\alpha_s(m_z)$ with MC parton showers

• ATLAS result on Pythia 8 MC tuning to the Z $\rm p_T$ distribution can be interpreted as a measurement of $\rm \alpha_s(m_z)$



	Pythia8
Tune Name	AZ
Primordial $k_{\rm T}$ [GeV] ISR $\alpha_{\rm S}^{\rm ISR}(m_Z)$	$\begin{array}{c} 1.71 \pm 0.03 \\ 0.1237 \pm 0.0002 \end{array}$
ISR cut-off $[GeV]$	0.59 ± 0.08
$\chi^2_{\rm min}/{ m dof}$	45.4/32

 $a_s^{CMW}(m_z) = 0.124 \rightarrow a_s(m_z) = 0.116$

- Naive result missing important theory uncertainties as PDFs and missing higher order corrections
- However this simple exercise already shows:
 - Great experimental sensitivity (0.2%)
 - Relatively small non-perturbative QCD uncertainties (primordial k_T and shower cut-off are fitted simultaneously with α_s)

Challenges

- Analytic predictions of Z p_T including resummation of large $\log(p_T/m)$ contributions are available since long time \rightarrow desirable to use such analytic predictions to achieve higher accuracy
- Very precise Z p_{τ} measurements (~2% at the Tevatron ~0.5% at the LHC) require high numerical precision of theory predictions
- Large correlations between $\alpha_s(m_z)$ and non the perturbative Sudakov form factor would spoil the measurement
- At the LHC, significant heavy-flavour initiated production (6% of cc → Z and 3% of bb → Z) introduce additional uncertainties

DYTurbo project

Optimised version of DYNNLO, DYqT, DYRes with improvements in

Software	Numerical integration
Code profiling	Quadrature with interpolating functions
Loop vectorisation	Factorisation of integrals
Hoisting	Analytic integration
Loop unrolling	
Multi-threading	

- Achieved significant enhancement in time performance for a given numerical precision
- The main application is the measurement of the W mass at the LHC, Other applications: PDF fits including qt-resummation for crosssection predictions, $\sin^2\theta_w$, $\alpha_s(m_z)$
- Two main modes of operation: Vegas integration and Quadrature rules based on interpolating functions

Drell-Yan cross section

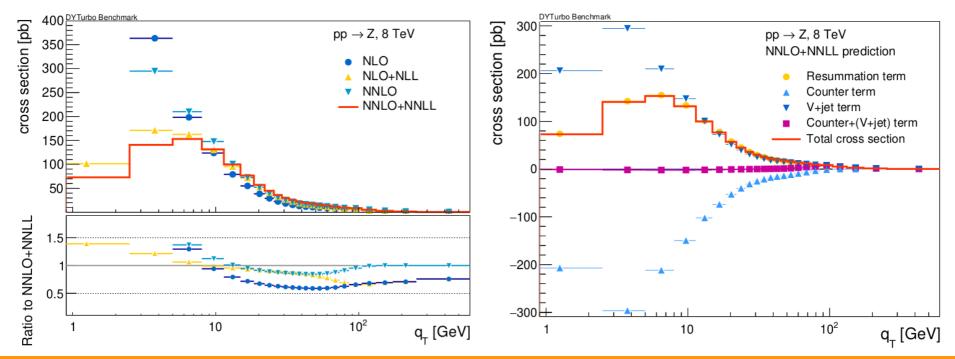
DYTurbo can compute the DY cross section at

Fixed order
with qt-subtraction

$$d\sigma_{(N)NLO}^{V} = d\sigma_{(N)NLO}^{virt} - d\sigma_{(N)LO}^{CT(FO)} + d\sigma_{(N)LO}^{V+jet}$$
Fast predictions already implemented with NNLOJET + APPLfast
Fixed order
+qt-resummation

$$d\sigma_{(N)NLO+(N)NLL}^{V} = d\sigma_{(N)NLL}^{res} - d\sigma_{(N)LO}^{CT(res)} + d\sigma_{(N)LO}^{V+jet}$$
Main motivation for DYTurbo

b-space resummation formalism of Bozzi, Catani, de Florian, Ferrera, Grazzini



Stefano Camarda

Numerical integration improvements

- Fast x-space to Mellin-space integral transform of PDFs based on Gauss-Legendre quadrature
 → coefficients in Mellin space evaluated through ANCONT
- Acceptance corrections evaluated by factorising the integration over lepton-decay angular variables in the LO cross section
 - $\sigma_{LO} = a + b\cos(\theta) + c\cos^2(\theta) \rightarrow a\theta_0 + b\theta_1 + c\theta_2$

$$\begin{cases} \theta_0 = \int \mathrm{d}\Omega \,\Theta_K \,, \theta_1 = \int \mathrm{d}\Omega \,\Theta_K \,\cos\theta_\ell \,, \\ \theta_2 = \int \mathrm{d}\Omega \,\Theta_K \,\cos^2\theta_\ell \end{cases}$$

Analytic integration over q_{τ} of inverse Fourier transform

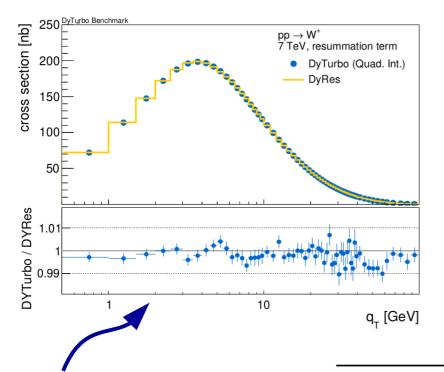
tandard

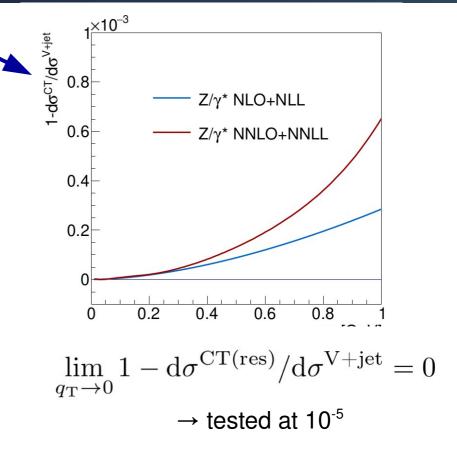
Φ

Re

Closure tests and benchmark

 Matching conditions implies relation between the terms which can be used to test their numerical precision





FEWZ

 3207 ± 2

 2238 ± 1

 504.6 ± 0.1

SHERPA DYNNLO DYTurbo predictions fare benchmarked with $\sigma(pp \to W^+ \to l^+ \nu)$ [pb] 3204 ± 4 3191 ± 7 $\sigma(pp \to W^- \to l^- \nu)$ [pb] 2252 ± 3 2243 ± 6 DYRes at NNLL, and $\sigma(pp \to Z/\gamma \to l^+l^-)$ [pb] 502.0 ± 0.6 502.4 ± 0.4 with other programs at **NNLO**

Small differences between FEWZ and the other predictions are expected due to phase space with $p_{\tau}^{\ \prime}$ symmetric cuts, and different subtraction scheme

Stefano Camarda

DYTurbo

(Quad.)

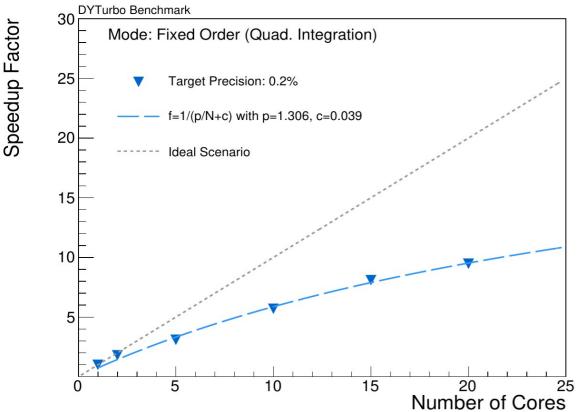
 3196 ± 7

 2248 ± 4

 502.8 ± 1.0

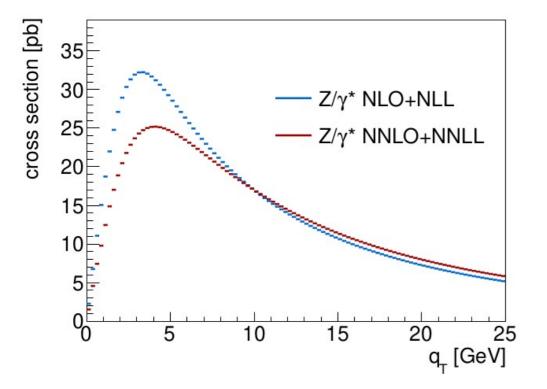
Time performance

Measured the performance of the multi-threading implementation



- Good efficiency (1/p ~ 77%) thanks to small overhead
- c ~ 4% is the nonparallelisable fraction
- Larger gain from multithreading when the required precision is higher

Example calculation



- Example calculation for Z p_T spectrum at 13 TeV
 - No cuts on the leptons
 - Full rapidity range
 - 100 p_{T} bins
 - 20 parallel threads

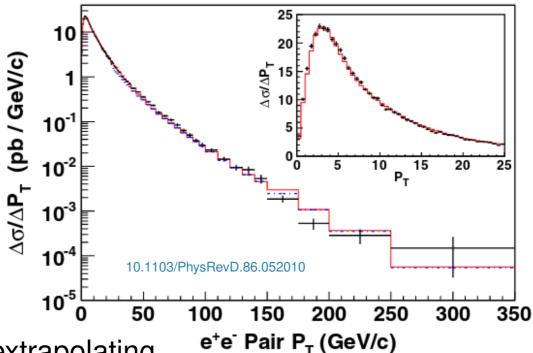
Time required	RES	СТ	V+jet
NLO+NLL	6 s	0.2 s	4 min
NNLO+NNLL	10 s	0.7 s	3.4 h

- The most demanding calculation is V+jet
 - \rightarrow can use APPLgrid/FASTnlo for this term

CDF measurement of Z-boson p₋

- Fast NNLO+NNLL predictions allow measuring of $\alpha_s(m_7)$ from the Sudakov region of the Z-boson p₋ distribution $\rightarrow \langle p_{\tau} \rangle \sim 10 \text{ GeV}$
- The CDF measurement of Z-boson p_{τ} is ideal for testing the extraction of $\alpha_{s}(m_{7})$ with DYTurbo predictions
- Angular coefficients method allows extrapolating the measurement to full-lepton phase space with small theoretical uncertainties $\frac{d\sigma}{dpdq} = \frac{d^{3}\sigma}{dp_{T}dydm} \sum_{i} A_{i}(y, p_{T}, m) P_{i}(\cos\theta, \phi)$
 - \rightarrow allows fast predictions
 - \rightarrow avoid theoretical uncertainties on Z polarisation
- pp collisions
 - \rightarrow reduced contribution from heavy-flavourinitiated production compared to pp collisions

bb → Z: 0.4% $c\overline{c} \rightarrow Z: 1.3\%$



CDF measurement of Z p_{T}

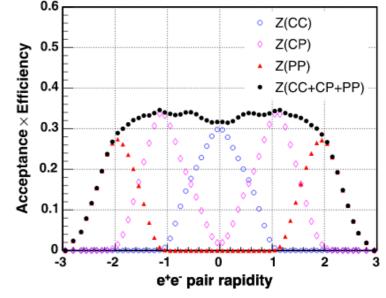
- Measurement performed in the electron channel, with CC, CF, FF
 - \rightarrow small extrapolation to full rapidity range:

$$|\eta^{e}| < 2.8 \rightarrow y_{max} \sim 3.1$$

Low pileup data with good electron resolution

$$\sigma/E = 14\%/\sqrt{E_{\rm T}}$$
 Central $\rightarrow \sigma = 0.9$ GeV at E_T = 45 GeV
 $\sigma/E = 16\%/\sqrt{E} \oplus 1\%$ Forward $\rightarrow \sigma = 1.1$ GeV at E_T = 45 GeV

 \rightarrow allows fine p_T bins (0.5 GeV) with relatively small bin-to-bin correlations



Non-perturbative form factor

• qt-resummed cross section in b-space have the general from:

$$\frac{d\hat{\sigma}_{V}^{(\text{res.})}}{dq_{T}^{2}}(q_{T}, M) = \frac{M^{2}}{\hat{s}} \int_{0}^{\infty} db \frac{b}{2} J_{0}(bq_{T}) \mathcal{W}^{V}(b, M) \qquad \text{perturbative Sudakov form factor} \\ \mathcal{W}_{N}^{V}(b, M) = \mathcal{H}_{N}^{V}(\alpha_{S}) \times \exp\{\mathcal{G}(\alpha_{S}|L)_{N}\}, L = \log(M^{2}b^{2}) \\ \text{Sensitivity to } \alpha_{s}$$

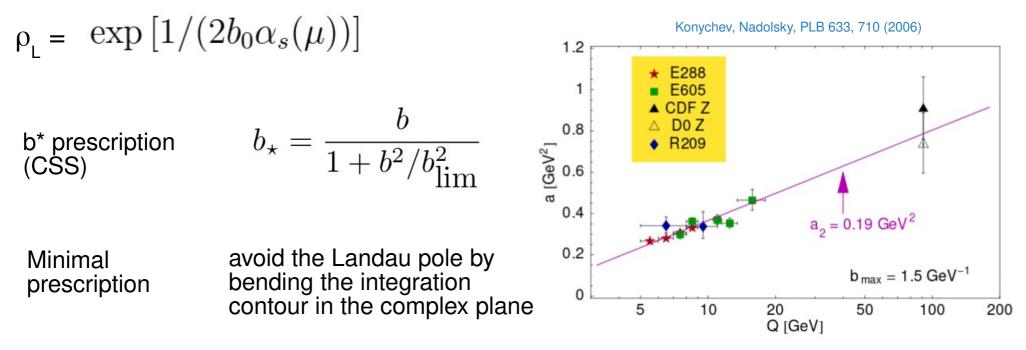
- The Sudakov form factor is modified by including a non-perturbative term: $S(b) \rightarrow S(b) \cdot S_{_{NP}}(b)$
- The general form of S_{NP}(b) is mass and centre-of-mass energy dependent, see for instance the BLNY parameterisation Phys. Rev. D 67, 073016 (2003)

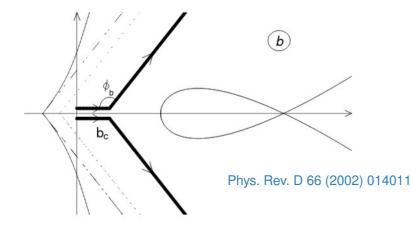
$$S_{NP} = exp[-(g_1 + g_2 ln(Q^2/Q_0^2) + g_3 ln(100x_ax_b))b^2]$$

• At fixed Q = m_z, and for one value of sqrt(s), the form of S_{NP}(b) can be simplified with g = g₁ + g₂ ln(Q²/Q₀²) + g₃ ln(100 x_a x_b)

b-space Landau prescription

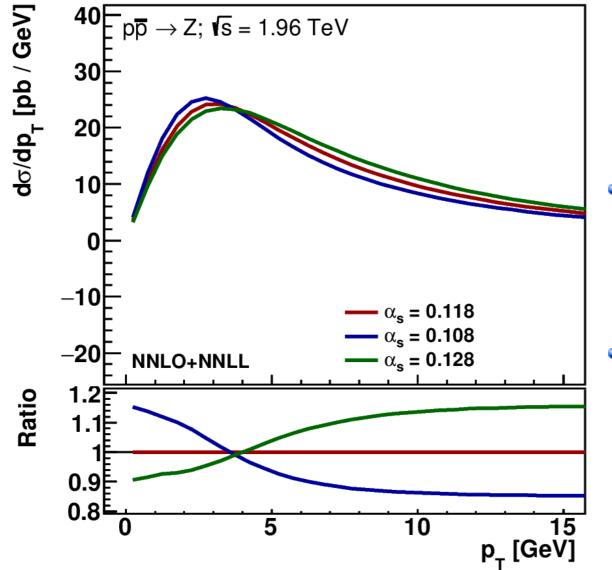
 g is generally determined from the data, its value depends on the chosen prescription to avoid the Landau pole in b-space





- We choose the b* prescription with b_{lim} = $\rho_{\rm L}$ \rightarrow numerically equivalent to the minimal prescription
- We consider also $b_{_{lim}} = \rho_{_L}/2$ as systematic uncertainty

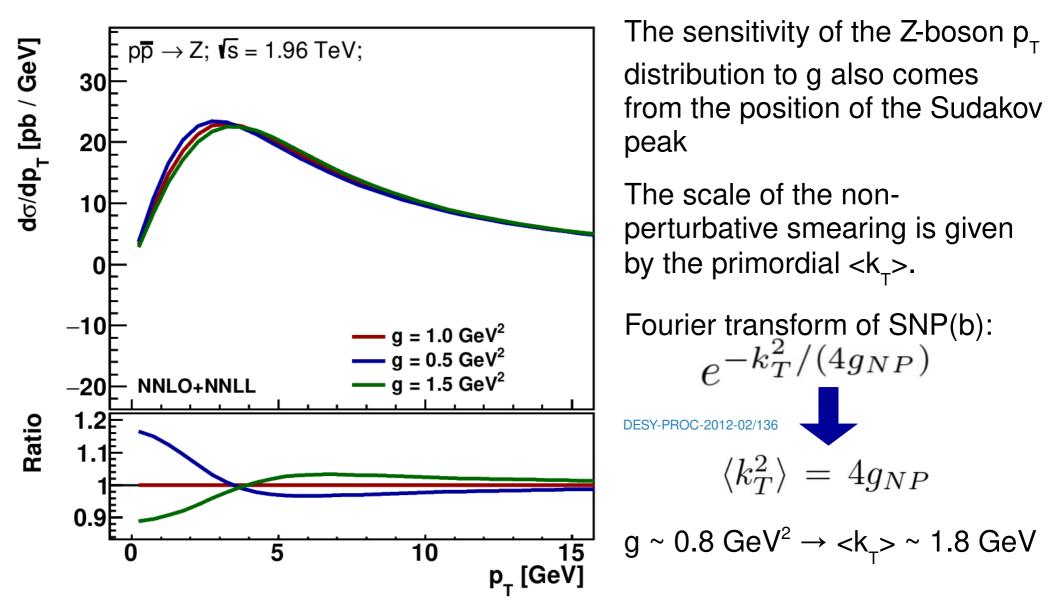
Sensitivity to $\alpha_s(m_7)$



• The sensitivity of the Z-boson p_T distribution to $\alpha_s(m_Z)$ mainly comes from the position of the Sudakov peak

 $< p_{T} > \sim 10 \text{ GeV}$

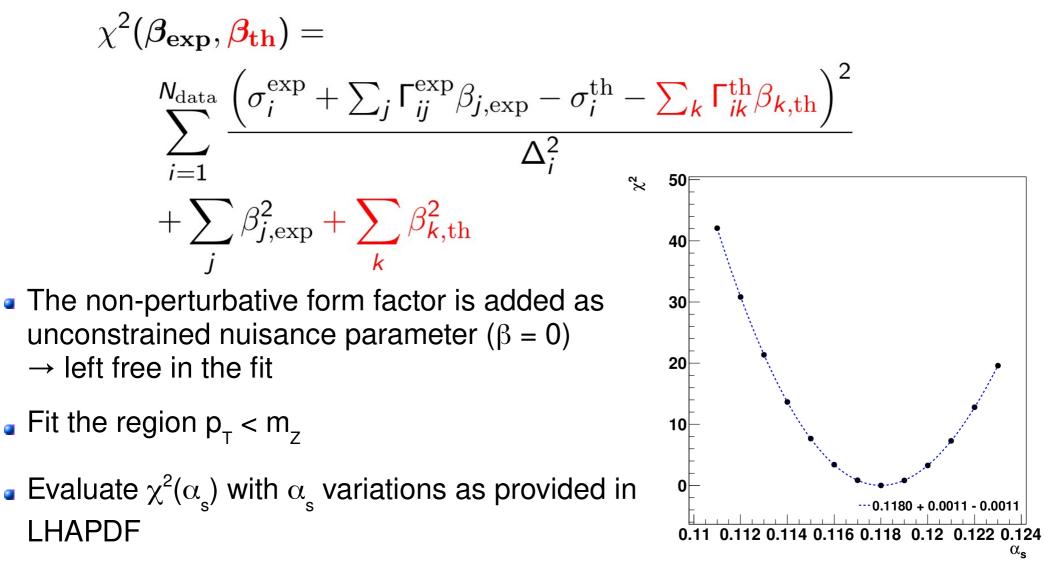
Sensitivity to g



 \rightarrow Possible to disentangle the perturbative Sudakov, governed by α_s , from the non-perturbative one, determined by g, thanks to their different scale

Methodology for the $\alpha_s(m_z)$ determination

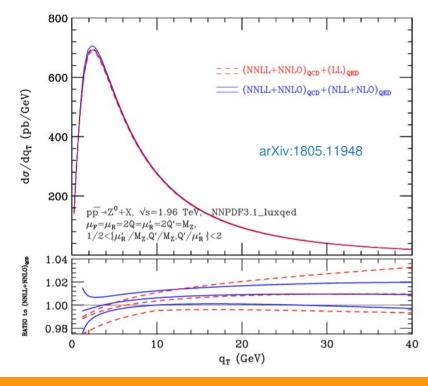
- DYTurbo interfaced to xFitter
- Define a χ^2 with experimental and PDFs theoretical uncertainties

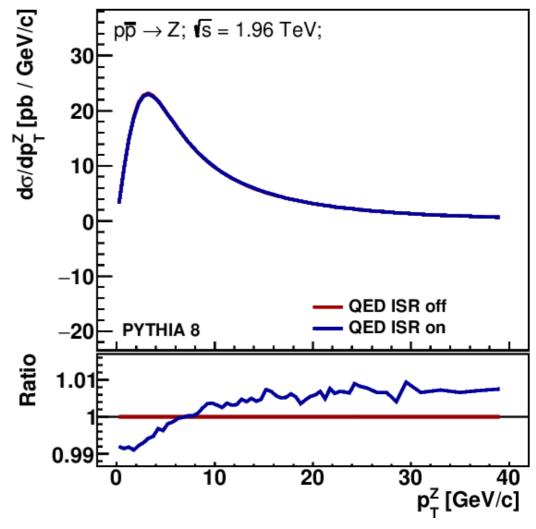


19

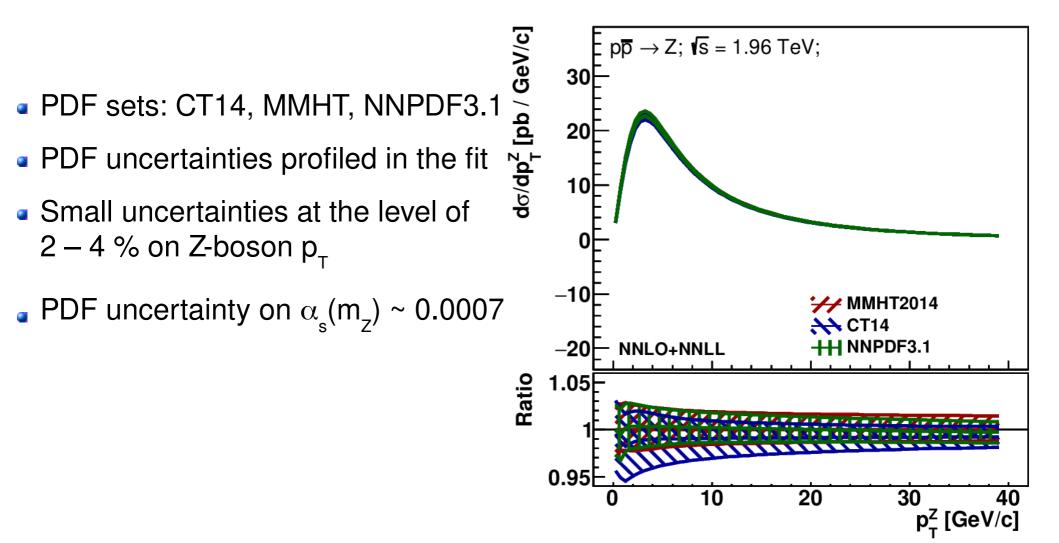
QED ISR correction

- QED ISR estimated with Pythia 8, and applied as a multiplicative correction
- Correction to the Z-boson p_T at the level of 1%
- Effect on $\alpha_s(m_z)$: $\Delta \alpha_s = -0.0004$
- Comparable to corrections obtained with QED qt-resummation

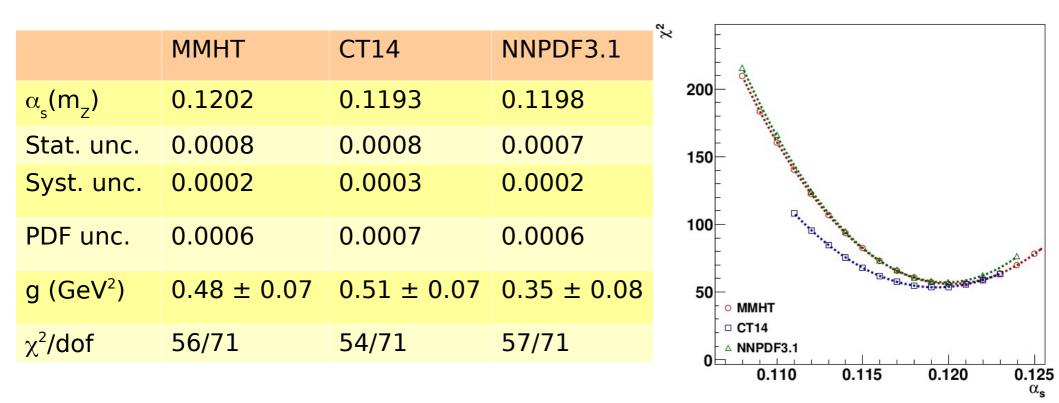




PDF uncertainties



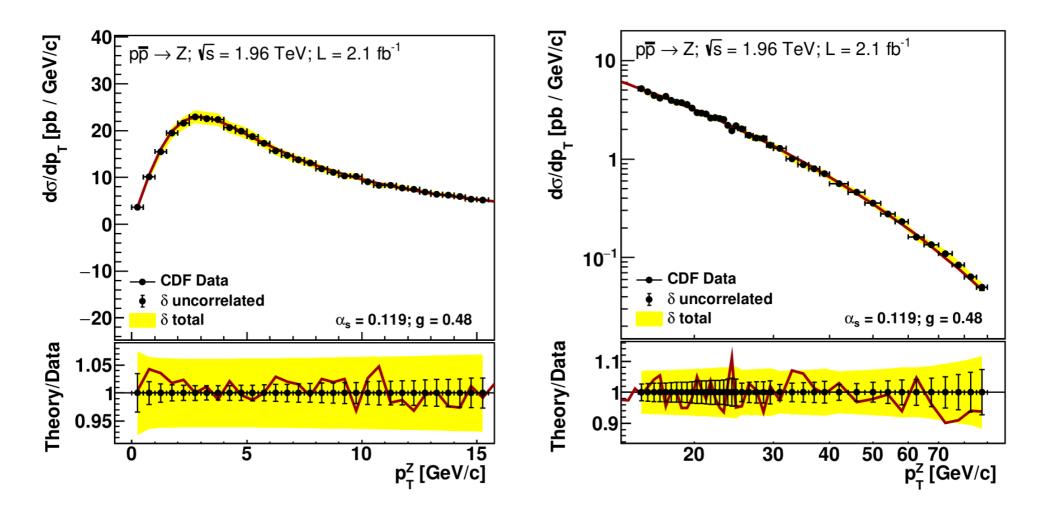
Simultaneous fit of $\alpha_{\rm s}({\rm m_z})$ and g



• CT14 has the smallest χ^2

→ used as central result

Post fit predictions

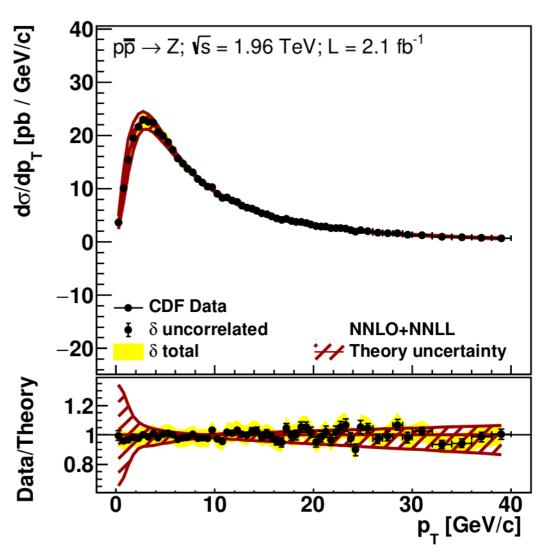


 Very good agreement of postfit predictions with data at low and intermediate p₁

QCD scale variations

 Predictions depend on three QCD scales: renormalisation, factorisation, and resummation scales

- Central value:
 - $\mu_{\rm R}=\mu_{\rm F}=\mu_{\rm RES}=m_{Z}^{\prime}/2$
- Uncertainty from all possible combinations of factor of 2 variations, excluding any factor of 4 variation



QCD scale variations

μ_{R}	$\mu_{_{\text{F}}}$	μ_{RES}	$\alpha_{s}(m_{z})$	g(GeV ²)	χ^2	
0.5	0.5	0.5	0.1193	0.51	53.5	
0.5	0.5	1	0.1122	0.62	150.6	
0.5	0.5	0.25	0.1201	0.60	52.6	
0.5	1	0.5	0.1168	0.61	55.1	
0.5	1	1	0.1195	0.74	54.4	
0.5	0.25	0.5	0.1228	0.23	76.4	E
0.5	0.25	0.25	0.1223	0.53	53.7	
1	0.5	0.5	0.1205	0.51	61.4	λα
1	0.5	1	0.1177	0.55	287.6	(
1	1	0.5	0.1180	0.68	53.3	g
1	1	1	0.1182	0.51	76.1	
0.25	0.5	0.5	0.1171	1.12	55.0	
0.25	0.5	0.25	0.1166	0.71	53.7	
0.25	0.25	0.5	0.1196	1.10	65.0	
0.25	0.25	0.25	0.1186	0.64	54.4	

Envelope:

$$g = 0.51 + 0.61 - 0.28 (GeV^2)$$

QCD scale variations

μ_{R}	μ_{F}	μ_{RES}	$\alpha_{_{s}}(m_{_{Z}})$	g(GeV ²)	χ^2
0.5	0.5	0.5	0.1193	0.51	53.5
0.5	0.5	1	0.1122	0.62	150.6
0.5	0.5	0.25	0.1201	0.60	52.6
0.5	1	0.5	0.1168	0.61	55.1
0.5	1	1	0.1195	0.74	54.4
0.5	0.25	0.5	0.1228	0.23	76.4
0.5	0.25	0.25	0.1223	0.53	53.7
1	0.5	0.5	0.1205	0.51	61.4
1	0.5	1	0.1177	0.55	287.6
1	1	0.5	0.1180	0.68	53.3
1	1	1	0.1182	0.51	76.1
0.25	0.5	0.5	0.1171	1.12	55.0
0.25	0.5	0.25	0.1166	0.71	53.7
0.25	0.25	0.5	0.1196	1.10	65.0
0.25	0.25	0.25	0.1186	0.64	54.4

- Some scale variations have unreasonably large χ²
 → measurement more precise than theory predictions
- Is it possible to use the high accuracy of the data to further constraint the theory uncertainties?
- The same scale choice is used for the full p_T range 0 – 90 GeV.
 Should consider a partial decorrelation of scale variations across the p_T spectrum?

Resummation theoretical uncertainties

 Uncertainty related to the matching between resummation and fixed order prediction

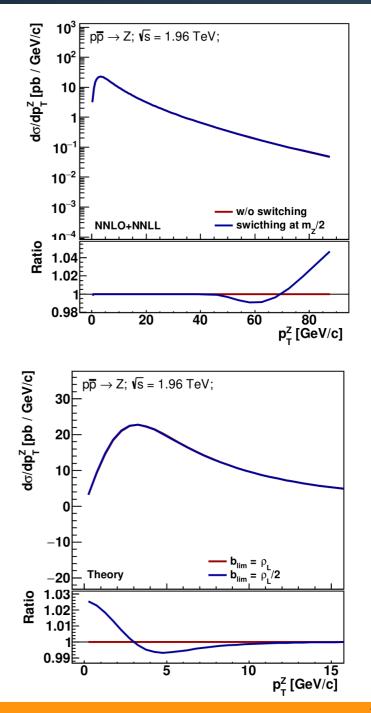
→ switch off resummation contribution above $p_T = m_Z/2$

 $\rightarrow \Delta \alpha_{s} = + 0.0001$

• b-space prescription to avoid the Landau pole: b* with $b_{lim} = \rho_L/2$

 $\rightarrow \Delta \alpha_{s} = -0.0008$

$$\rightarrow \Delta g = + 0.18 (GeV^2)$$

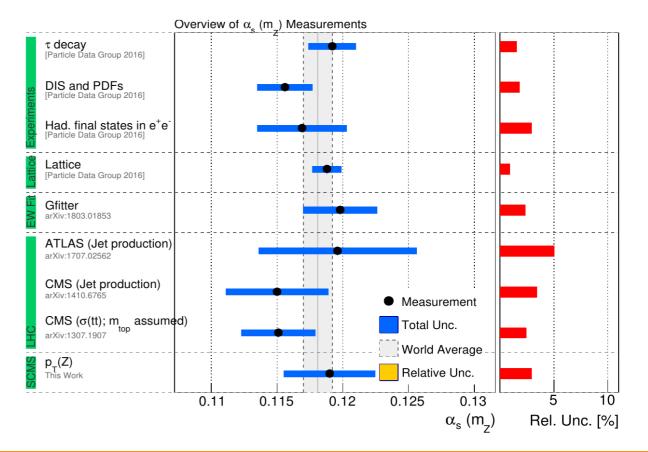


Result

 $\alpha_s = 0.119 + 0.004 - 0.003$ g = 0.51 + 0.64 - 0.34 GeV²

	$\alpha_{s}(m_{z})$	g(GeV ²)
Exp. unc.	0.0009	
PDF unc.	0.0007	0.07
Scale var.	+0.0035 -0.0027	+0.61 -0.28
Res. th. unc.	0.0008	0.18

- Measurement in agreement with the world average
- Uncertainty comparable to other LHC determinations

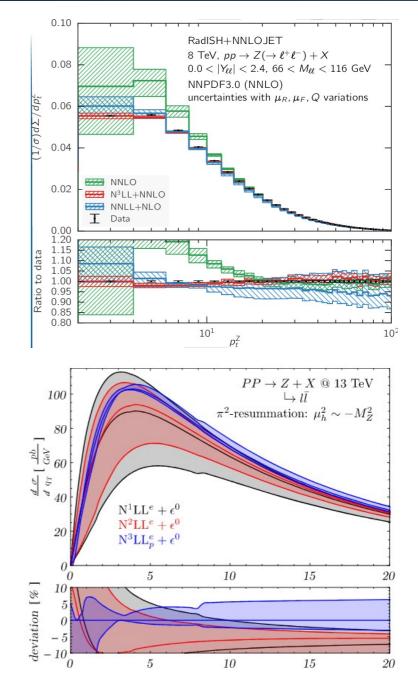


Open questions

- At which scale?
 - The main sensitivity to α_s comes from the perturbative Sudakov form factor, i.e. from the p_T recoil. The dominant scale is related to $<p_T> \sim 10 \text{ GeV}$
- At which order?
 - The NNLO+NNLL prediction is:
 - NNLO accurate for the total cross section
 - $_{\mbox{\scriptsize a}}$ NLO accurate for the $p_{\mbox{\scriptsize T}}$ distribution
 - ${\scriptstyle f a} \, \, lpha_{{\scriptstyle f s}}$ runs at:
 - 3 loops for the $q^2 \sim m_z^2$ dependence
 - 2 loops for the impact-parameter (p_{τ}) dependence

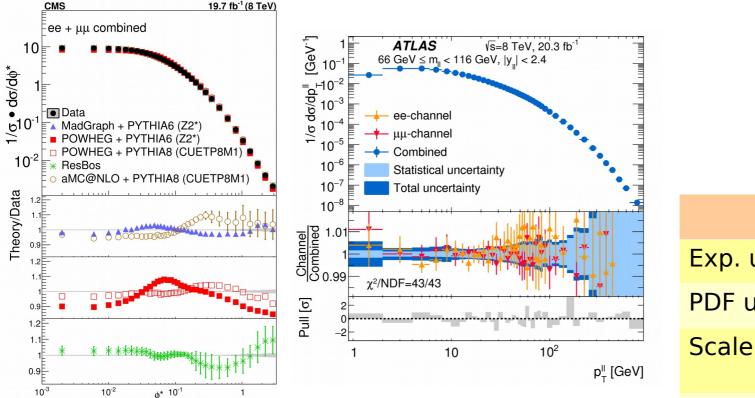
Prospects with NNLO+N³LL predictions

- Result dominated by missing higher order uncertainties (scale variations), at the level of 3%.
- qt-resummation at N³LL is now available (Radish, Cute), and Z pT at NNLO (NNLOJET)
- Expected a factor of 3 5 reduction of scale variations when using such higher order predictions



Prospects with LHC data

- $_{\bullet}$ LHC measurement of Z $p_{_{T}}$ are significantly more precise than Tevatron:
 - $_{\bullet}$ ATLAS 7 TeV data yields 0.2% exp. unc. on $\alpha_{_{\rm s}}$
 - 3 times smaller uncertainties with 8 TeV ATLAS/CMS
 - Likely to reach a few 10⁻⁴ with full Run 2 data sample



For measuring α_{s} at LHC need to address open issues with heavy-flavour-initiated production \rightarrow HF schemes for DY

	$\alpha_{s}^{}(m_{z}^{})$
Exp. unc.	< 0.0001
PDF unc.	0.0005
Scale var.	0.0010
Res. th. unc.	0.0005
Heavy flavour	0.0005 ?
Total expected	0.0013

Summary and conclusions

- Performed a preliminary measurent of $\alpha_s(m_z)$ at NNLO+NNLL by fitting the CDF Z p_T distribution in the Sudakov region p_T < m_Z
- To this end the DYTurbo program was developed, which allows to compute fast and numerically precise Drell-Yan predictions
- Prospects to reach 1% by analyzing LHC data and using higher order predictions
- Need to address the issue of large contribution from heavyflavour initiated production at the LHC

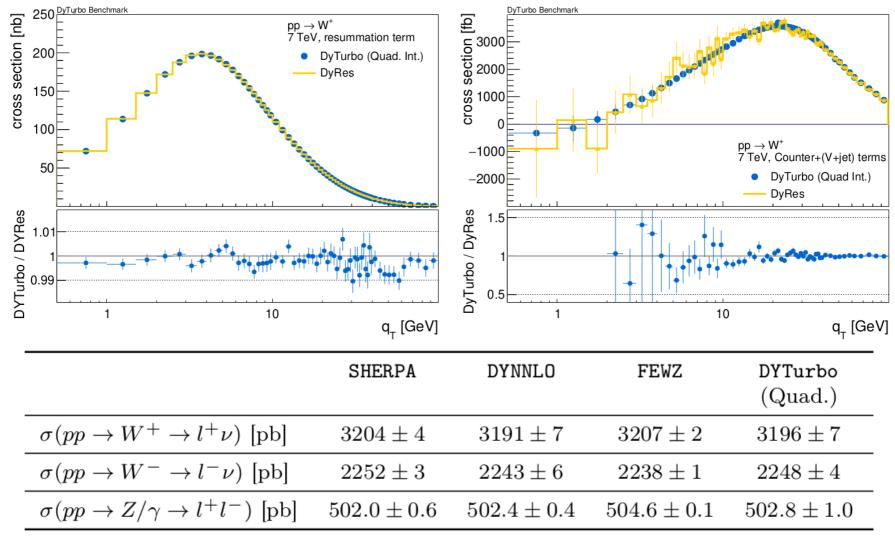
 $\alpha_s(m_z)$ from Z p_T collaborators: M. Schott and A. Glazov

DYTurbo collaborators: M. Boonekamp, G. Bozzi, S. Catani, L. Cieri, J. Cuth, G. Ferrera, D. de Florian, A. Glazov, M. Grazzini, M. G. Vincter, M. Schott

BACKUP

Benchmark results

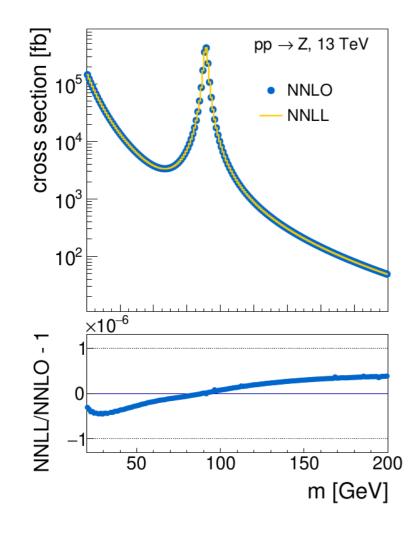
 The predictions from DYTurbo are benchmarked against DYRes for at-resummation. and with other programs for the NNLO



Small differences between FEWZ and the other predictions are expected due to phase space with p_{τ}^{l} symmetric cuts, and different subtraction scheme

Closure tests of numerical precision

 Matching conditions implies relation between the terms which can be used to test their numerical precision



$$\int_0^\infty dq_T \, d\sigma^{\rm res} = d\sigma^{\rm virt}$$
$$\rightarrow \text{tested at } 10^{-6}$$