
The QCD coupling at all scales and the elimination     
of renormalization scale uncertainties
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Figure 11. Predictions for the mtt̄ cumulative asymmetry: pure QCD at NLO and NNLO (as
derived in this work), NLO prediction of Ref. [11] including EW corrections, as well as the PMC
scale-setting prediction of Ref. [11].

range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on

four state-of-the-art pdf sets: CT10, HERA 1.5, MSTW2008 and NNPDF 2.3. We compare

the central pdf members for central scale choice µF = µR = mt.
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e+e− → Z0 → qq̄g + ⋯

S.-Q. Wang, L. Di Giustino, X.-G. Wu, SJB
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Goals
• Test QCD to maximum precision at the LHC 

• Maximize sensitivity to new physics 

• Obtain high precision determination of                      
and other parameters 

• Determine renormalization scales without 
ambiguity 

• Eliminate scheme dependence

Predictions for physical observables cannot depend on theoretical 
conventions, such as the renormalization scheme or the initial scale choice

• Principle of Maximum Conformality (PMC)

αs(Q2)
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The Running Coupling in QED 

- Vertex- and wavefunction renormalization cancel exactly in QED due to the 
Ward-Takahashi identity - the running coupling is physical!

- Independent of the initial renormalization scale

- Obeys renormalization group properties;
renormalization scheme- and scale-invariance, transitivity, etc...

- The argument of the running coupling is the ‘final scale’ that resums all non-
conformal terms; a function of scheme and renormalization scale

{ci}

a(τ, {ci})

τ

A

B

C

D

E F

- Resummed perturbative QED = dressed 
skeleton expansion; 

- the perturbative coefficients are those of the 
would-be conformal theory

- Let’s give this lesson a name so we don’t forget:
The Principal of Maximum Conformality

S.J. Brodsky, X.-G. Wu; Phys.Rev. D86 (2012) 054018, [arxiv:1208.0700]
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On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky
Institute for Advanced Study, Princeton, New Jersey 08540

and Stanford Linear Accelerator Center, Stanford Unioersity, Stanford, California 94305*

G. Peter Lepage
Institute for Aduanced Study, Princeton, New Jersey 08540

and Laboratory ofNuclear Studies, Cornell Unioersity, Ithaca, New York I4853*

Paul B.Mackenzie
Fermilab, Batavia, Illinois 6D51D
(Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the
method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-
constant scale appropriate to a particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and
find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION the for orthopositronium is much

Physics Letters B 279 (1992) 352-358 
North-Holland PHYSICS LETTERS B 

On some possible extensions 
of the Brodsky-Lepage-Mackenzie approach 
beyond the next-to-leading order 
G. Grunberg  
Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 

and 

A.L. Kataev 1 
Randall Laboratory of Physics, University of Michigan. Ann Arbor, M148109-1120, USA 

Received 20 May 1991; revised manuscript received 20 January 1992 

Noting that the choice of  renormalization point advocated by Brodsky, Lepage and Mackenzie ( BLM ) is the flavor independent 
prescription which removes all f-dependence from the next-to-leading order coefficients, we consider the possible generalization 
which requires all higher order coefficients ri to be f-independent constants r,*. We point out that in QCD, setting ri= r,* is always 
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of  the BLM 
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of trtot(e+e - ~hadrons)  in QCD. 
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed. 
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Commensurate scale relations in quantum chromodynamics

Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 9)909

Hung Jung Lu*
Department of Physics, University of Maryland, College Park, Maryland 20742

(Received 4 May 1994)

We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has

Scale setting using the extended renormalization group and the principle of maximum
conformality: The QCD coupling constant at four loops

Stanley J. Brodsky1,* and Xing-Gang Wu1,2,†

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2Department of Physics, Chongqing University, Chongqing 401331, China

(Received 30 November 2011; published 22 February 2012)

A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f!ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe"ðQÞ
up to four loops is presented. By using the world average "MS

s ðMZÞ ¼ 0:1184 & 0:0007, we obtain the

asymptotic scale for the ’t Hooft scheme associated with the MS scheme, !0tH
MS

¼ 245þ9
"10 MeV, and the

asymptotic scale for the conventional MS scheme, !MS ¼ 213þ19
"8 MeV.

DOI: 10.1103/PhysRevD.85.034038 PACS numbers: 12.38.Aw, 11.10.Gh, 11.15.Bt

PHYSICAL REVIEW D 85, 034038 (2012)

Progress in Particle and Nuclear Physics 72 (2013) 44–98
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Review

The renormalization scale-setting problem in QCD
Xing-Gang Wua,⇤, Stanley J. Brodskyb, Matin Mojazab,c

a Department of Physics, Chongqing University, Chongqing 401331, PR China
b SLAC National Accelerator Laboratory, Stanford University, CA 94039, USA
c CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230, Denmark

a r t i c l e i n f o

Keywords:
Renormalization group
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BLM/PMC
QCD

a b s t r a c t

A key problem in making precise perturbative QCD predictions is to set the proper renor-
malization scale of the running coupling. The conventional scale-setting procedure assigns
an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In
fact, this ad hoc procedure gives results which depend on the choice of the renormaliza-
tion scheme, and it is in conflict with the standard scale-setting procedure used in QED.
Predictions for physical results should be independent of the choice of the scheme or other
theoretical conventions. We review current ideas and points of view on how to deal with
the renormalization scale ambiguity and show how to obtain renormalization scheme-
and scale-independent estimates.We begin by introducing the renormalization group (RG)
equation and an extended version, which expresses the invariance of physical observ-
ables under both the renormalization scheme and scale-parameter transformations. The
RG equation provides a convenient way for estimating the scheme- and scale-dependence

Review of past
30 years development

Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD

Matin Mojaza*

CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark
and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley J. Brodsky†

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu‡

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
(Received 13 January 2013; published 10 May 2013)

We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f!ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.

DOI: 10.1103/PhysRevLett.110.192001 PACS numbers: 12.38.Bx, 11.10.Gh, 11.15.Bt, 12.38.Aw

PRL 110, 192001 (2013) P HY S I CA L R EV I EW LE T T E R S
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Recent Breakthrough!
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Principle of Maximum Conformality (PMC)

Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality 

Stanley J. Brodsky (SLAC & Southern Denmark U., CP3-Origins), Leonardo Di Giustino (SLAC).. 
Published in Phys.Rev. D86 (2012) 085026 
S
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Features of BLM/PMC

• Predictions are scheme-independent at every order

• Matches conformal series

• No n! Renormalon growth of pQCD series

• New scale appears at each order; nF determined at each order - matches virtuality of 
quark loops

• Multiple Physical Scales Incorporated (Hoang, Kuhn, Tuebner, sjb)

• Rigorous: Satisfies all Renormalization Group Principles

• Realistic Estimate of Higher-Order Terms

• Reduces to standard QED scale

• GUT: Must use the same scale setting procedure for QED, QCD

• Eliminates unnecessary theory error

• Maximal sensitivity to new physics

• Commensurate Scale Relations between observables: Generalized Crewther Relation   
(Kataev, Lu, Rathsman, sjb)

• Reduces to BLM at NLO:  Example: BFKL intercept (Fadin, Kim, Lipatov, Pivovarov, sjb)

NC ! 0



Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

↵(t) = ↵(0)
1�⇧(t)

↵(t) = ↵(t0)
1�⇧(t,t0)

Gell-Mann--Low Effective Charge
• Dressed Photon Propagator sums all β (vacuum polarization) contributions, 

proper and improper 

⇧(t, t0) =
⇧(t)�⇧(to)

1�⇧(t0)↵(t) =
↵(t0)

1�⇧(t, t0)
• Initial Scale Choice t0 is Arbitrary! 

• Any renormalization scheme can be used ↵(t)! ↵MS(e�
5
3 t)

�9



• No renormalization scale ambiguity!   

• Gauge Invariant.  Dressed photon propagator 

• Sums all vacuum polarization, non-zero beta terms into running 
coupling.   This is the purpose of the running coupling! 

• Two separate physical scales: t, u = photon virtuality 

• If one chooses a different initial scale, one must sum an infinite number 
of graphs -- but always recover same result!   

• Number of active leptons correctly set  

• Analytic: reproduces correct behavior at lepton mass thresholds 

• No renormalization scale ambiguity!    

Electron-Electron Scattering in QED

t u

�10
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Lessons from QED
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Setting the Renormalization Scale in QCD:
The Principle of Maximum Conformality
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A key problem in making precise perturbative QCD predictions is the uncertainty in determining
the renormalization scale µ of the running coupling αs(µ

2). The purpose of the running coupling in
any gauge theory is to sum all terms involving the β function; in fact, when the renormalization scale
is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising from renormaliza-
tion are summed into the running coupling. The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the corresponding theory with β = 0. The resulting
scale-fixed predictions using the “principle of maximum conformality” (PMC) are independent of
the choice of renormalization scheme – a key requirement of renormalization group invariance. The
results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations
between observables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We discuss several methods
for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid
at leading order, can be derived from basic properties of the perturbative QCD cross section. The
elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will
not only increase the precision of QCD tests, but it will also increase the sensitivity of collider
experiments to new physics beyond the Standard Model.

PACS numbers: 11.15.Bt, 12.20.Ds

I. INTRODUCTION

A key difficulty in making precise perturbative QCD predictions is the uncertainty in determining the renormaliza-
tion scale µ of the running coupling αs(µ2). It is common practice to simply guess a physical scale µ = Q of order
of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure
is clearly problematic since the resulting fixed-order pQCD prediction will depend on the choice of renormalization
scheme; it can even predict negative QCD cross sections at next-to-leading-order [1].
The purpose of the running coupling in any gauge theory is to sum all terms involving the β function; in fact,

when the renormalization scale µ is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent “renormalon” series of order
αn
s β

nn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)
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A key problem in making precise perturbative QCD predictions is the uncertainty in determining
the renormalization scale µ of the running coupling αs(µ

2). The purpose of the running coupling in
any gauge theory is to sum all terms involving the β function; in fact, when the renormalization scale
is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising from renormaliza-
tion are summed into the running coupling. The remaining terms in the perturbative series are then
identical to that of a conformal theory; i.e., the corresponding theory with β = 0. The resulting
scale-fixed predictions using the “principle of maximum conformality” (PMC) are independent of
the choice of renormalization scheme – a key requirement of renormalization group invariance. The
results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The
PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations
between observables, and the scale-setting method used in lattice gauge theory. The number of
active flavors nf in the QCD β function is also correctly determined. We discuss several methods
for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid
at leading order, can be derived from basic properties of the perturbative QCD cross section. The
elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will
not only increase the precision of QCD tests, but it will also increase the sensitivity of collider
experiments to new physics beyond the Standard Model.
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I. INTRODUCTION

A key difficulty in making precise perturbative QCD predictions is the uncertainty in determining the renormaliza-
tion scale µ of the running coupling αs(µ2). It is common practice to simply guess a physical scale µ = Q of order
of a typical momentum transfer Q in the process, and then vary the scale over a range Q/2 and 2Q. This procedure
is clearly problematic since the resulting fixed-order pQCD prediction will depend on the choice of renormalization
scheme; it can even predict negative QCD cross sections at next-to-leading-order [1].
The purpose of the running coupling in any gauge theory is to sum all terms involving the β function; in fact,

when the renormalization scale µ is set properly, all non-conformal β ̸= 0 terms in a perturbative expansion arising
from renormalization are summed into the running coupling. The remaining terms in the perturbative series are
then identical to that of a conformal theory; i.e., the theory with β = 0. The divergent “renormalon” series of order
αn
s β

nn! does not appear in the conformal series. Thus as in quantum electrodynamics, the renormalization scale µ is
determined unambiguously by the “Principle of Maximal Conformality (PMC)”. This is also the principle underlying
BLM scale setting [2]
It should be recalled that there is no ambiguity in setting the renormalization scale in QED. In the standard Gell-

Mann–Low scheme for QED, the renormalization scale is simply the virtuality of the virtual photon [3]. For example,
in electron-muon elastic scattering, the renormalization scale is the virtuality of the exchanged photon, spacelike
momentum transfer squared µ2 = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)
(2)

In the (physical) Gell Mann-Low scheme, the momentum scale of the running 
coupling is the virtuality of the exchanged photon; independent of initial scale.

For any other scale choice an infinite set of diagrams must be taken into 
account to obtain the correct result!

In any other scheme, the correct scale displacement must be used

2

sums all vacuum polarization contributions to the dressed photon propagator, both proper and improper. (Here
Π(t) = Π(t, 0) is the sum of proper vacuum polarization insertions, subtracted at t = 0). Formally, one can choose
any initial renormalization scale µ2

0 = t0, since the final result when summed to all orders will be independent
of t0. This is the invariance principle used to derive renormalization group results such as the Callan-Symanzik
equations [4, 5]. However, the formal invariance of physical results under changes in t0 does not imply that there is no
optimal scale. In fact, as seen in QED, the scale choice µ2 = q2, the photon virtuality, immediately sums all vacuum
polarization contributions to all orders exactly in the conventional Gell-Mann-Low scheme. With any other choice of
scale, one will recover the same result, but only after summing an infinite number of vacuum polarization corrections.
Thus, although the initial choice of renormalization scale t0 is arbitrary, the final scale t which sums the vacuum

polarization corrections is unique and unambiguous. The resulting perturbative series is identical to the conformal
series with zero β-function. In the case of muonic atoms, the modified muon-nucleus Coulomb potential is precisely
−Zα(−q⃗ 2)/q⃗ 2; i.e., µ2 = −q⃗2. Again, the renormalization scale is unique.
One can employ other renormalization schemes in QED, such as the MS scheme, but the physical result will be

the same once one allows for the relative displacement of the scales of each scheme. For example, one can start with
the result in the MS scheme for spacelike argument q2 = −Q2, for the standard one-loop charged lepton pair vacuum
polarization contribution to the photon propagator using dimensional regularization:

log
µ2
MS

m2
ℓ

= 6

∫ 1

0
dxx(1 − x) log

m2
ℓ +Q2x(1− x)

m2
ℓ

, (3)

which becomes at large Q2

log
µ2
MS

m2
ℓ

= log
Q2

m2
ℓ

− 5/3; (4)

i.e., µ2
MS

= Q2e−5/3. Thus if Q2 >> 4m2
ℓ , we can identify

αMS(e
−5/3q2) = αGM−L(q

2). (5)

The e−5/3 displacement of renormalization scales between the MS and Gell-Mann–Low schemes is a result of the
convention [6] which was chosen to define the minimal dimensional regularization scheme. One can use another
definition of the renormalization scheme, but the final physical prediction cannot depend on the convention. This
invariance under choice of scheme is a consequence of the transitivity property of the renormalization group [3, 7–9].
The same principle underlying renormalization scale-setting in QED must also hold in QCD since the nf terms

in the QCD β function have the same role as the lepton Nℓ vacuum polarization contributions in QED. QCD and
QED share the same Yang-Mills Lagrangian. In fact, one can show [10] that QCD analytically continues as a

function of NC to Abelian theory when NC → 0 at fixed α = CFαs with CF = N2
C−1
2NC

. For example, at lowest order

βQCD
0 = 1

4π

(

11
3 NC − 2

3nf

)

→ − 1
4π

2
3nf at NC = 0. Thus the same scale-setting procedure must be applicable to all

renormalizable gauge theories.
Thus there is a close correspondence between the QCD renormalization scale and that of the analogous QED process.

For example, in the case of e+e− annihilation to three jets, the PMC/BLM scale is set by the gluon jet virtuality, just
as in the corresponding QED reaction. The specific argument of the running coupling depends on the renormalization
scheme because of their intrinsic definitions; however, the actual numerical prediction is scheme-independent.
The basic procedure for PMC/BLM scale setting is to shift the renormalization scale so that all terms involving

the β function are absorbed into the running coupling. The remaining series is then identical with a conformal theory
with β = 0. Thus, an important feature of the PMC is that its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees with QED in the NC → 0 limit.
The determination of the PMC-scale for exclusive processes is often straightforward. For example, consider the

process e+e− → cc̄ → cc̄g∗ → cc̄bb̄, where all the flavors and momenta of the final-state quarks are identified. The nf

terms at NLO come from the quark loop in the gluon propagator. Thus the PMC scale for the differential cross section
in the MS scheme is given simply by the MS scheme displacement of the gluon virtuality: µ2

PMC = e−5/3(pb + pb̄)
2.

In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2
0 to identify

all of the β-dependent nonconformal contributions. At lowest order β0 = 1
4π (11/3NC − 2/3nf). Thus at NLO one can

simply use the dependence on the number of flavors nf which arises from the quark loops associated with ultraviolet
renormalization as a marker for β0.
In QCD, the nf terms also arise from the renormalization of the three-gluon and four-gluon vertices as well as from

gluon wavefunction renormalization.
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`�! log
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m2
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3
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sums all vacuum polarization contributions to the dressed photon propagator, both proper and improper. (Here
Π(t) = Π(t, 0) is the sum of proper vacuum polarization insertions, subtracted at t = 0). Formally, one can choose
any initial renormalization scale µ2
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µ2
MS

m2
ℓ

= 6

∫ 1

0
dxx(1 − x) log

m2
ℓ +Q2x(1− x)

m2
ℓ

, (3)
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log
µ2
MS

m2
ℓ

= log
Q2

m2
ℓ

− 5/3; (4)

i.e., µ2
MS

= Q2e−5/3. Thus if Q2 >> 4m2
ℓ , we can identify

αMS(e
−5/3q2) = αGM−L(q

2). (5)
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in the QCD β function have the same role as the lepton Nℓ vacuum polarization contributions in QED. QCD and
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2NC
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For example, in the case of e+e− annihilation to three jets, the PMC/BLM scale is set by the gluon jet virtuality, just
as in the corresponding QED reaction. The specific argument of the running coupling depends on the renormalization
scheme because of their intrinsic definitions; however, the actual numerical prediction is scheme-independent.
The basic procedure for PMC/BLM scale setting is to shift the renormalization scale so that all terms involving

the β function are absorbed into the running coupling. The remaining series is then identical with a conformal theory
with β = 0. Thus, an important feature of the PMC is that its QCD predictions are independent of the choice of
renormalization scheme. The PMC procedure also agrees with QED in the NC → 0 limit.
The determination of the PMC-scale for exclusive processes is often straightforward. For example, consider the

process e+e− → cc̄ → cc̄g∗ → cc̄bb̄, where all the flavors and momenta of the final-state quarks are identified. The nf

terms at NLO come from the quark loop in the gluon propagator. Thus the PMC scale for the differential cross section
in the MS scheme is given simply by the MS scheme displacement of the gluon virtuality: µ2

PMC = e−5/3(pb + pb̄)
2.

In practice, one can identify the PMC/BLM scale for QCD by varying the initial renormalization scale µ2
0 to identify

all of the β-dependent nonconformal contributions. At lowest order β0 = 1
4π (11/3NC − 2/3nf). Thus at NLO one can

simply use the dependence on the number of flavors nf which arises from the quark loops associated with ultraviolet
renormalization as a marker for β0.
In QCD, the nf terms also arise from the renormalization of the three-gluon and four-gluon vertices as well as from

gluon wavefunction renormalization.

Mee!ee =
8⇡s

t
↵(t) +

8⇡s

u
↵(u) �q2 = u�q2 = t

Two separate scales; 
one for each skeleton graph.

Example: ee-scattering
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1�⇧(t,t0)
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↵(t) = ↵(0)
1�⇧(t)

↵(t) = ↵(t0)
1�⇧(t,t0)
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+

+ · · ·+

↵(t) = ↵(0)
1�⇧(t)

↵(t) = ↵(t0)
1�⇧(t,t0)

All-orders lepton-loop corrections to dressed photon propagator

This is very important!

This is very important!

This is very important!

This is very important!

+

↵(t) = ↵(0)
1�⇧(t)

↵(t) = ↵(t0)
1�⇧(t,t0)

⇧�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

�(t, t0) = �(t)��(t0)
1��(t0)

t = �Q2 < 0

�(Q2) =

QED Running Coupling
��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

��

< 0|Gµ⇤(x)G⌅⇧(0)|0 >

Gµ⇤ =  µA⇤ �  ⇤Aµ + ig[Aµ, A⇤]

�

�(t) = �(0)
1��(t)

�(t) = �(t0)
1��(t,t0)

Initial scale  t0  is arbitrary -- Variation gives RGE Equations 
Physical renormalization scale  t  not arbitrary! 



New renormalization scale at each order of pQED

Electron-Electron Scattering in QED

Renormalization scheme independent at each order

Independent of initial scale μ0

Abelian theory is the analytic limit QCD at Nc = 0 

Each “skeleton” graph has its own renormalization scale
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Lessons from QED
• No Renormalization Scale Ambiguity 

• Dressed Photon Propagator sums all β terms 

• New Scale at Every Order, Every Skeleton 
Graph 

• effective number of flavors nf  determined  

• Predictions are  scheme independent 

• QCD  becomes Abelian QED in Zero Color 
Limit NC ! 0

Can use MS scheme in QED; answers are scheme independent 
Analytic extension: coupling is complex for time-like argument



limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

QCD ⇥ Abelian Gauge Theory

limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD 
must be applicable to QED

CF =
N2

C � 1
2NC

All β (vacuum polarization) terms summed by the running 
coupling α(Q2)



BLM-PMC Scale Setting

Use skeleton expansion:
Gardi, Grunberg, Rathsman, sjb

nf  dependent 
coefficient identifies 

quark loop VP 
contribution 

Conformal coefficient - independent of  � = d
d logQ2g(Q2) < 0

� = d
d logQ2g(Q2) > 0

� = d
d logQ2g(Q2) < 0

� = d
d logQ2g(Q2) > 0

This is very important!

This is very important!

�0 = 11� 2
3nf



36 

BLM/PMC: Set Scales

How do we identify the β terms at all orders?

BLM: Use nf dependence of β0 and β1

a(Q) ⌘ ↵s(Q)
⇡
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med
Q2
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p2
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p2
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s

e+e� ⇤ �⇥ ⇤ 4jets
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R ⌅

Q2
minQ2

med
Q2

max

µ2
R ⌅

p2
minp2

med
p2
max

xµ = µR⇧
s

e+e� ⇤ �⇥ ⇤ 4jets

Q

Q̄

µ2
R ⌅

Q2
minQ2

med
Q2

max

µ2
R ⌅

p2
minp2

med
p2
max

xµ = µR⇧
s

e+e� ⇤ �⇥ ⇤ 4jets

Q

Q̄

Example of Multiple BLM Scales

 Angular distributions of massive quarks close to threshold.

Hoang, Kuhn, Teubner, sjb

Need QCD coupling at small scales at low 
relative velocity v

F1 + F2 =
⇥
1� 2

↵s(se3/4/4)
⇡

⇤
⇥

⇥
1 +

⇡↵s(sv2)
4v

⇤

small 
scale



Principle of Maximum Conformality (PMC)

• Subtract extra constant δ in dimensional regularization. 
Defines new scheme Rδ

• Coefficients of δ identify β terms !

• Shift β terms to argument of running coupling              at 
each order n (analogous to all-orders vacuum polarization 
summation in QED)

• Resulting PQCD series matches β= 0 conformal series! 

• scheme-independent predictions at each computed order!

• almost independent of initial scale μ0

log 4⇡ � �E � � MS : � = 0

↵s(Q2
n)

M. Mojaza, L. di Giustino, Xing-Gang Wu, sjb

(δ: Arbitrary constant!)
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Exposing the Renormalization Scheme Dependence
Observable in the      -scheme:

⇢�(Q
2) =r0 + r1a(µ) + [r2 + �0r1�]a(µ)

2 + [r3 + �1r1� + 2�0r2� + �2
0r1�

2]a(µ)3 + · · ·

R0 = MS , Rln 4⇡��E = MS µ2 = µ2
MS

exp(ln 4⇡ � �E) , µ2
�2 = µ2

�1 exp(�2 � �1)

Note the divergent ‘renormalon series’ n!�n↵n
s

⇢�(Q
2) =r0 + r1a1(µ1) + (r2 + �0r1�1)a2(µ2)

2 + [r3 + �1r1�1 + 2�0r2�2 + �2
0r1�

2
1 ]a3(µ3)

3

The �pka
n-term indicates the term associated to a diagram with 1/✏n�k di-

vergence for any p. Grouping the di↵erent �k-terms, one recovers in the Nc ! 0
Abelian limit the dressed skeleton expansion.

R�

Exercise: 
Use the scale displacement relation to derive these expressions

Renormalization Scheme Equation
d⇢

d�
= ��(a)

d⇢

da
!
= 0 �! PMC

M. Mojaza, Xing-Gang Wu, sjb
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Shift scale of αs to µPMC
R to eliminate {βR

i }− terms

Conformal Series

Choose renormalization scheme; e.g. αR
s (µ

init
R )

Choose µinit
R ; arbitrary initial renormalization scale

Identify {βR
i }− terms using nf − terms

through the PMC −BLM correspondence principle

Result is independent of µinit
R and scheme at fixed order

Xing-Gang Wu, Matin Mojaza 
Leonardo  di Giustino, SJB

No renormalization scale ambiguity! 

Result is independent of  
Renormalization scheme  

and initial scale! 

QED Scale Setting at NC=0 

Eliminates unnecessary  
systematic uncertainty

PMC/BLM

Set multiple renormalization scales -- 
Lensing, DGLAP, ERBL Evolution ...

δ-Scheme automatically             
identifies β-terms!

Scale fixed at each order

Principle of Maximum Conformality

δ

order by order

 21

A robot can compute the PMC scales



Reanalysis of the Higher Order Perturbative QCD corrections to Hadronic Z Decays
using the Principle of Maximum Conformality

S-Q Wang, X-G Wu, sjb P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, and J. Rittinger,
Phys. Rev. Lett. 108, 222003 (2012).

�22

PMC

�(Z ! hadrons)



2

X-GW: As I have discussed before, this conclusion must
be demonstrated, which can be derived by applying the LO
BLM/PMC procedure. A simple demonstration by using the
e↵ective coupling has been done by Stan and Hungjung al-
ready.

MM: As I have also discussed, this is not LO and it has
nothing to do with commensurate scale relations! It is a re-
definition of the µ scale in Eq.(1) and is per definition exact.
Please also see my previous comments that I have provide a
couple of times now and also do recall how the MS and MS
schemes are defined.

i.e.

µ�2 = µ�1e
�1��2

2 . (9)

In particular:

µMS = µMS e(ln 4⇡��E)/2, (10)

µ� = µMS e��/2 . (11)

Since all R�’s are connected by scale-displacements,
the �-functions of aR� defined in Eq. (3) are the same in
any R�. The index � on aR� is thus redundant and we
denote it instead as aR. In this work we are only con-
cerned with R� and will therefore simply denote aR ⌘ a,
unless it appears in an ambiguous context.

We can find a power series solution in 1/ ln(µ/⇤) for
a by solving the renormalization group equation per-
turbatively. It is simplest to use the extended renor-
malization group prescription where one works with the
rescaled coupling â = �1

�0
a and rescaled logarithm L� =

�
2
0

�1
ln(µ�/⇤). The solution up to O(1/L5

�
) reads:

â(µ�) =
1

L�

+
1

L2
�

(C � lnL�) +
1

L3
�

⇥
C
2 + C + c2 � (2C � lnL� + 1) lnL� � 1

⇤
+

1

L4
�

⇢
C

✓
C
2 +

5

2
C + 3c2 � 2

◆

�
1� c3

2
�


3C2 + 5C + 3c2 � 2�

✓
3C � lnL� +

5

2

◆
lnL�

�
lnL�

�
+O

✓
1

L5
�

◆
, (12)

where C is an arbitrary integration constant which in R�

is set to C = ln�2
0/�1 to reproduce the standard ⇤MS

scale. Note that we take the asymptotic scale ⇤ = ⇤MS
to be the same for any R�. Alternatively, one can take
the scale µ to be the same for any R�, while instead
having di↵erent asymptotic scales ⇤�.

II. OBSERVABLES IN R�

Consider an observable computed using perturbation
theory and in a scheme which we put as the references
scheme R0 (this will be the MS for most computed quan-
tities) with the following expansion:

⇢0(Q
2) =

1X

i=0

ri(Q
2/µ2

0)a(µ0)
i , (13)

where µ0 stands for some initial renormalization scale
and Q is the scale at which the observable is measured.
The most general expansion with an extra factor an in
front of the sum for any n (i.e. the tree level ↵s powers)
can readily be derived and does not change the following
conclusions.

Since results in any R� are related by scale displace-
ments, we can derive the general expression for ⇢ in R�

by using the displacement relation:

a(µ0) = a(µ�) +
1X

n=0

1

n!

dna(µ)

(d lnµ2)n
|µ=µ� �n , (14)

where we used that � = lnµ2
0/µ

2
�
. The expression for ⇢ is

straightforwardly computed to any order, and in partic-
ular to order a4 it reads:

⇢�(Q
2) =r0 + r1a(µ�) + [r2 � �0r1�]a(µ�)

2

+ [r3 + �2
0�

2r1 � � (2�0r2 + �1r1)]a(µ�)
3

+ [r4 � � (3�0r3 + 2�1r2 + �2r1)� �3
0�

3r1

+ �2(3�2
0r2 +

5

2
�1�0r1)]a(µ�)

4 +O(a5) , (15)

where ri are generally functions of lnQ2/µ2
�
and �, since

lnQ2/µ2
0 = lnQ2/µ2

�
� �.

Since ⇢ is a physical observable, it must be independent
of the arbitrary renormalization scheme and scale. That
is,

@⇢�
@µ�

= 0 ,
@⇢�
@�

= 0 , (16)

for any �. However, the argument does no longer hold
when the infinite perturbative series has been truncated
to any finite order. This is known as the renormalization
scale ambiguity and the renormalon problem of pertur-
bative QCD. Note that the ambiguity resides in choosing

3

a value for the arbitrary initial scale µ�, or correspond-
ingly fixing the arbitrary scheme, R�. The � dependency
of the coe�cients is not small and since this is an implicit
µ� dependency it is simply wrong to state that the coef-
ficients only depend logarithmically on the scale. This is
intimately connected to the renormalon problem.

X-GW: Here, I have cut o↵ unimportant discussions.

MM: Ok.

Now, it is obvious that in a conformal theory, where
{�i} = {0}, the � dependency vanishes in Eq.(15). That
is, the result is the same in anyR�. Therefore, by absorb-
ing all {�i} dependency into a redefinition of the scales
at each order, we obtain a final result independent of the
initial choice of scale and scheme. Using R� we can make
this statement even more rigorous. From the explicit ex-
pression in Eq. (15) it is easy to confirm that

d⇢�(s)

d�
= �(a)

d⇢�
da

. (17)

We see that to obtain a scheme-invariant and confor-
mal result, we must set the scales such that all {�i}-
functions equal to zero, which further leads to

�(a) = 0 . (18)

Notice that this holds at any order in perturbation the-
ory and is a theoretical requirement, di↵erent from the
physical fact that the all-orders expression for ⇢ must be
renormalization scale and scheme invariant. It should be
emphasized that this is not a fixed point expression for
a but is a fully conformal requirement, that is, the beta
function vanishes identically. This proves the principle
of maximal conformality (PMC) at any order.

X-GW: I think the above demonstration is not complete
or misleading. It is right that if the right side of Eq.(17) is
satisfied by a proper PMC procedure, then the left side can be
satisfied naturally.

MM: This is all I had in mind, in other words Eq.(18) is
the ’proof-of-concept’ of the PMC scale setting - as you say, it
demonstrates that if one sets the scale such that all {�i} are
absorbed, the final result is renormalization scheme invariant
and this is the principal of maximal conformality.

X-GW: However if the left side of Eq.(18) is satisfied we
can only obtain �(a) = 0, but we can not obtain the conclusion
that all the terms involving {�i}-functions are equal to zero,
that is we can not eliminate all {�i}-series. It only happens
when all {�i}-terms are combined into functions of �(a) that
is only a lottery.

MM: There are two ways of obtaining �(a) = 0: either
{�i} = 0 or a(µ) = a⇤, where a⇤ is a constant - the fixed point
value, �(a⇤) = 0. As I emphasize above, the latter is not what
we are considering. Let me elaborate. The fixed point theory
is a conformal field theory (CFT) - the coupling does not run.
In a CFT it does not make sense to set the scale, since the
theory is scale-invariant (a = a⇤ on all scales). Moreover, the
CFT is not asymptotically free, so we cannot even consider
observables computed in perturbation theory - it has no well-
defined perturbative limit. So, to me it does not make sense
to consider nor discuss this case in the context of the scale

setting problem. Therefore, �(a) = 0 can only mean {�i} = 0
in the context we are considering.

In fact, by setting � = 0 directly, we must demonstrate the
{�i}-terms in the coe�cient functions ri are eliminated simul-
taneously. This point has also been discussed in my previous
letters, but it has not been discussed so far.

MM: I do not understand this last comment?

III. SETTING THE PMC SCALES

The expression in Eq. (15) explicitly shows the pattern
of �i terms appearing in the coe�cients at each order.
That is, if we forget about any reference scheme, the
expression for ⇢ in any scheme will take the form:

⇢(Q2) =r0,0 + r1,0a(Q) + [r2,0 + �0r2,1]a(Q)2

+ [r3,0 + �1r2,1 + 2�0r3,1 + �2
0r3,2]a(Q)3

+ [r4,0 + �2r2,1 + 2�1r3,1 +
5

2
�1�0r3,2 + 3�0r4,1

+ 3�2
0r4,2 + �3

0r4,3]a(Q)4 +O(a5) (19)

where ri,0 are the conformal part of the coe�cients.
MM: Note that I in this expression have assumed/inferred

some relations between the coe�cients e.g. the �0a(Q)2 co-
e�cient and the �1a(Q)3 are equal etc... It follows from Eq.
(15) and I have checked that it is indeed correct for Re+e�!h.
I think this holds for any observable?
We have as before for simplicity of the expression set

µ = Q, but this is not the final expression. We must
set the scale at each order in such a way to absorb all �i

dependencies into the running coupling. The problem is
now to understand which terms should be absorbed into
which scales. We can use R� to provide the solution. In
deriving Eq. (15) we made an equal scale displacement
of each running coupling. To see from where each � ap-
peared, we put a dummy index on the displacement of
each coupling to track its origin. The result is:

⇢�(Q
2) =r0 + r1a1(Q) + (r2 � �0r1�1)a2(Q)2

+ [r3 � �1r1�1 � 2�0r2�2 + �2
0r1�

2
1 ]a3(Q)3

+ [r4 � �2r1�1 � 2�1r2�2 � 3�0r3�3 + 3�2
0r2�

2
2

� �3
0r1�

3
1 +

5

2
�1�0r1�

2
1 ]a(Q)4 +O(a5) (20)

This immediately shows us which terms should be ab-
sorbed into which running coupling, e.g. we must resum
all �1 dependency into a1 etc.. In the end one can remove
the dummy index on the couplings since they were put
only to display the correct resummation pattern.

MM: I must emphasize here that the BLM procedure is
only and approximation to PMC as can be seen above, i.e.
besides the fact that ri,0 depend explicitly on Nf one can also
now observe that e.g. there is an N2

f term coming from �1�0

at order a4 which must be absorbed into a1 - If I have un-
derstood BLM correctly, at this order you absorb only all N3

f

dependency into a1, right?

Shows the general way nonconformal terms  
enter an observable and the scheme dependence

Generalization: use �n at n-loops.

initial
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Special Degeneracy in PQCD

There is nothing special about a particular value for � , thus for any �

⇢(Q2) =r0,0 + r1,0a(Q) + [r2,0 + �0r2,1]a(Q)2 + [r3,0 + �1r2,1 + 2�0r3,1 + �2
0r3,2]a(Q)3

+ [r4,0 + �2r2,1 + 2�1r3,1 +
5

2
�1�0r3,2 + 3�0r4,1 + 3�2

0r4,2 + �3
0r4,3]a(Q)4

According to the principal of maximum conformality we must set the scales 
such to absorb all ‘renormalon-terms’, i.e. non-conformal terms

⇢(Q2) = r0,0 + r1,0a(Q) + (�0a(Q)2 + �1a(Q)3 + �2a(Q)4 + · · · )r2,1

+ (�2
0a(Q)3 +

5

2
�1�0a(Q)4 + · · · )r3,2 + (�3

0 + · · · )r4,3

+ r2,0a(Q)2 + 2a(Q)(�0a(Q)2 + �1a(Q)3 + · · · )r3,1
+ · · ·

r2,0a(Q2)
2 = r2,0a(Q)2 � 2a(Q)�(a)r3,1 + · · ·

r1,0a(Q1) = r1,0a(Q)� �(a)r2,1 +
1

2
�(a)

@�

@a
r3,2 + · · ·+ (�1)n

n!

dn�1�

(d lnµ2)n�1
rn+1,n

General pattern of pQCD

PMC Scales Q1 Q2
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MM: I now show how to set the PMC scales - given Eq.(19)
is correct, this is the exact way to do it, di↵erently from the
approximative way we considered and discussed earlier. The
scales naturally depend on the coupling through the beta func-
tion.

Let’s take a look back at Eq. (19). It is easy to see
that we can resum all ri,1 terms, which come with a lin-
ear factor of �j , to all orders by setting the scales (for
simplicity, we treat the higher order �j terms later):

r1,0a(Q1) = r1,0a(Q)� �(a)r2,1

r2,0a(Q2)
2 = r2,0a(Q)2 � 2a(Q)�(a)r3,1

r3,0a(Q2)
3 = r3,0a(Q)3 � 3a(Q)2�(a)r4,1

...

rk,0a(Qk)
k = rk,0a(Q)2 � k a(Q)k�1�(a)rk+1,1 (21)

From the scale displacement equation (14) for a it is
straightforward to see that:

a(Qk)
k = a(Q)k + ka(Q)k�1�(a) ln

Q2
k

Q2
+ (22)

+


k

2
�
@�

@a
a(Q)k�1 + k(k � 1)a(Q)k�2�(a)2

�
ln2

Q2
k

Q2
+ · · ·

It follows that to absorb all linear �j terms, the scales

Qk must satisfy:

�
rk+1,1

rk,0
= ln

Q2
k

Q2
+


1

2

@�

@a
+ (k � 1)

�

a

�
ln2

Q2
k

Q2
+ · · ·

(23)

This leads to the self-consistency equation for Qk:

ln
Q2

k

Q2
=

�rk+1/rk,0

1 +
h
1
2
@�

@a
+ (k � 1)�

a

i
ln

Q2
k

Q2 + · · ·

(24)

To leading order (LO) we have:

ln
Q2

k,LO

Q2
= �

rk+1

rk,0
. (25)

This resums all linear �j terms, but introduces higher
order �j terms as well beyond the order ak+1. Say, we
are computing an observable to order an. The scales Qk

must resum all �jrk+1,1 terms without introducing higher
order ones up to order an. This means that Qk must be
computed to Nn�(k+1)LO. Let us explicitly perform the
resummation up to a4, that is, up to NNLO. The general
expression for the NLO scale reads:

ln
Q2

k,NLO

Q2
=

�rk+1/rk,0

1 +
h
1
2
@�

@a
+ (k � 1)�

a

i ⇣
�

rk+1

rk,0

⌘ . (26)

To find the NNLO scale, we first write the self-
consistency equation:

ln
Q2

k

Q2
=

�rk+1,1/rk,0

1 +
h
1
2
@�

@a
+ (k � 1)�

a

i
ln

Q2
k

Q2 +


1
3!

✓
� @2�

@a2 +
⇣

@�

@a

⌘2
◆
+ k�1

2
�

a

@�

@a
+ (k � 1)(k � 2)�

2

a2

�
ln2

Q2
k

Q2 + · · ·

(27)

Then we expand the NLO scale to first order

ln
Q2

k,NLO

Q2
= �

rk+1,1

rk,0

✓
1 +


1

2

@�

@a
+ (k � 1)

�

a

�
rk+1,1

rk,0
+ · · ·

◆
, (28)

and replace ln Q
2
k

Q2 in the denominator with this NLO expansion, while the ln2 Q
2
k

Q2 is replaced with the LO expansion.
We the get:

ln
Q2

k,NNLO

Q2
=

�rk+1,1/rk,0

1 +
h
1
2
@�

@a
+ (k � 1)�

a

i ⇣
�

rk+1,1

rk,0

⌘
+


1
3!

✓
� @2�

@a2 �
1
2

⇣
@�

@a

⌘2
◆
�

k�1
2

�

a

@�

@a
� (k � 1)�

2

a2

�⇣
rk+1,1

rk,0

⌘2
. (29)

So far, we kept k general and thus these expressions
for Qk,LO, Qk,NLO and Qk,NNLO hold for a perturbative
expansion to any order. In the particular case, where we
are considering ⇢ to order a4, we have that:

ln
Q2

1

Q2
=

�r2,1/r1,0

1� 1
2
@�

@a

r2,1

r1,0
+ 1

3!


� @2�

@a2 �
1
2

⇣
@�

@a

⌘2
�⇣

r2,1

r1,0

⌘2
.

(30)
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a value for the arbitrary initial scale µ�, or correspond-
ingly fixing the arbitrary scheme, R�. The � dependency
of the coe�cients is not small and since this is an implicit
µ� dependency it is simply wrong to state that the coef-
ficients only depend logarithmically on the scale. This is
intimately connected to the renormalon problem.

X-GW: Here, I have cut o↵ unimportant discussions.

MM: Ok.

Now, it is obvious that in a conformal theory, where
{�i} = {0}, the � dependency vanishes in Eq.(15). That
is, the result is the same in anyR�. Therefore, by absorb-
ing all {�i} dependency into a redefinition of the scales
at each order, we obtain a final result independent of the
initial choice of scale and scheme. Using R� we can make
this statement even more rigorous. From the explicit ex-
pression in Eq. (15) it is easy to confirm that

d⇢�(s)

d�
= �(a)

d⇢�
da

. (17)

We see that to obtain a scheme-invariant and confor-
mal result, we must set the scales such that all {�i}-
functions equal to zero, which further leads to

�(a) = 0 . (18)

Notice that this holds at any order in perturbation the-
ory and is a theoretical requirement, di↵erent from the
physical fact that the all-orders expression for ⇢ must be
renormalization scale and scheme invariant. It should be
emphasized that this is not a fixed point expression for
a but is a fully conformal requirement, that is, the beta
function vanishes identically. This proves the principle
of maximal conformality (PMC) at any order.

X-GW: I think the above demonstration is not complete
or misleading. It is right that if the right side of Eq.(17) is
satisfied by a proper PMC procedure, then the left side can be
satisfied naturally.

MM: This is all I had in mind, in other words Eq.(18) is
the ’proof-of-concept’ of the PMC scale setting - as you say, it
demonstrates that if one sets the scale such that all {�i} are
absorbed, the final result is renormalization scheme invariant
and this is the principal of maximal conformality.

X-GW: However if the left side of Eq.(18) is satisfied we
can only obtain �(a) = 0, but we can not obtain the conclusion
that all the terms involving {�i}-functions are equal to zero,
that is we can not eliminate all {�i}-series. It only happens
when all {�i}-terms are combined into functions of �(a) that
is only a lottery.

MM: There are two ways of obtaining �(a) = 0: either
{�i} = 0 or a(µ) = a⇤, where a⇤ is a constant - the fixed point
value, �(a⇤) = 0. As I emphasize above, the latter is not what
we are considering. Let me elaborate. The fixed point theory
is a conformal field theory (CFT) - the coupling does not run.
In a CFT it does not make sense to set the scale, since the
theory is scale-invariant (a = a⇤ on all scales). Moreover, the
CFT is not asymptotically free, so we cannot even consider
observables computed in perturbation theory - it has no well-
defined perturbative limit. So, to me it does not make sense
to consider nor discuss this case in the context of the scale

setting problem. Therefore, �(a) = 0 can only mean {�i} = 0
in the context we are considering.

In fact, by setting � = 0 directly, we must demonstrate the
{�i}-terms in the coe�cient functions ri are eliminated simul-
taneously. This point has also been discussed in my previous
letters, but it has not been discussed so far.

MM: I do not understand this last comment?

III. SETTING THE PMC SCALES

The expression in Eq. (15) explicitly shows the pattern
of �i terms appearing in the coe�cients at each order.
That is, if we forget about any reference scheme, the
expression for ⇢ in any scheme will take the form:

⇢(Q2) =r0,0 + r1,0a(Q) + [r2,0 + �0r2,1]a(Q)2

+ [r3,0 + �1r2,1 + 2�0r3,1 + �2
0r3,2]a(Q)3

+ [r4,0 + �2r2,1 + 2�1r3,1 +
5

2
�1�0r3,2 + 3�0r4,1

+ 3�2
0r4,2 + �3

0r4,3]a(Q)4 +O(a5) (19)

where ri,0 are the conformal part of the coe�cients.
MM: Note that I in this expression have assumed/inferred

some relations between the coe�cients e.g. the �0a(Q)2 co-
e�cient and the �1a(Q)3 are equal etc... It follows from Eq.
(15) and I have checked that it is indeed correct for Re+e�!h.
I think this holds for any observable?
We have as before for simplicity of the expression set

µ = Q, but this is not the final expression. We must
set the scale at each order in such a way to absorb all �i

dependencies into the running coupling. The problem is
now to understand which terms should be absorbed into
which scales. We can use R� to provide the solution. In
deriving Eq. (15) we made an equal scale displacement
of each running coupling. To see from where each � ap-
peared, we put a dummy index on the displacement of
each coupling to track its origin. The result is:

⇢�(Q
2) =r0 + r1a1(Q) + (r2 � �0r1�1)a2(Q)2

+ [r3 � �1r1�1 � 2�0r2�2 + �2
0r1�

2
1 ]a3(Q)3

+ [r4 � �2r1�1 � 2�1r2�2 � 3�0r3�3 + 3�2
0r2�

2
2

� �3
0r1�

3
1 +

5

2
�1�0r1�

2
1 ]a(Q)4 +O(a5) (20)

This immediately shows us which terms should be ab-
sorbed into which running coupling, e.g. we must resum
all �1 dependency into a1 etc.. In the end one can remove
the dummy index on the couplings since they were put
only to display the correct resummation pattern.

MM: I must emphasize here that the BLM procedure is
only and approximation to PMC as can be seen above, i.e.
besides the fact that ri,0 depend explicitly on Nf one can also
now observe that e.g. there is an N2

f term coming from �1�0

at order a4 which must be absorbed into a1 - If I have un-
derstood BLM correctly, at this order you absorb only all N3

f

dependency into a1, right?

General result for an observable in any R� renormalization scheme:

PMC scales thus satisfy

M. Mojaza, Xing-Gang Wu, sjb

3

number of flavors nf depends on Qk



Features of BLM/PMC

• Predictions are scheme-independent at every order

• Matches conformal series

• No n! Renormalon growth of pQCD series

• New scale appears at each order; nF determined at each order - matches virtuality of 
quark loops!

• Multiple Physical Scales Incorporated (Hoang, Kuhn, Tuebner, sjb)

• Rigorous: Satisfies all Renormalization Group Principles

• Realistic Estimate of Higher-Order Terms

• Reduces to standard QED scale

• GUT: Must use the same scale setting procedure for QED, QCD

• Eliminates unnecessary theory error

• Maximal sensitivity to new physics

• Commensurate Scale Relations between observables: Generalized Crewther Relation   
(Kataev, Lu, Rathsman, sjb)

• PMC Reduces to BLM at NLO:  Example: BFKL intercept (Fadin, Kim, Lipatov, Pivovarov, sjb)

NC ! 0
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To set the BLM scales up to NNLO, the starting point
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sfree of a
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standard procedures for PMC

first

second
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final

LO NLO NNLO

Coefficients

At least three-effective scales

standard procedures for PMC
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Application of the Principle of Maximum Conformality to the Hadroproduction of the
Higgs Boson at the LHC
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We present improved pQCD predictions for Higgs boson hadroproduction at the Large Hadronic
Collider (LHC) by applying the Principle of Maximum Conformality (PMC), a procedure which re-
sums the pQCD series using the renormalization group (RG), thereby eliminating the dependence of
the predictions on the choice of the renormalization scheme while minimizing sensitivity to the initial
choice of the renormalization scale. In previous pQCD predictions for Higgs boson hadroproduction,
it has been conventional to assume that the renormalization scale µr of the QCD coupling αs(µr) is
the Higgs mass, and then to vary this choice over the range 1/2mH < µr < 2mH in order to estimate
the theory uncertainty. However, this error estimate is only sensitive to the non-conformal β terms
in the pQCD series, and thus it fails to correctly estimate the theory uncertainty in cases where
pQCD series has large higher order contributions, as is the case for Higgs boson hadroproduction.
Furthermore, this ad hoc choice of scale and range gives pQCD predictions which depend on the
renormalization scheme being used, in contradiction to basic RG principles. In contrast, after apply-
ing the PMC, we obtain next-to-next-to-leading order RG resummed pQCD predictions for Higgs
boson hadroproduction which are renormalization-scheme independent and have minimal sensitiv-
ity to the choice of the initial renormalization scale. Taking mH = 125 GeV, the PMC predictions
for the pp → HX Higgs inclusive hadroproduction cross-sections for various LHC center-of-mass
energies are: σIncl|7TeV = 21.21+1.36

−1.32 pb, σIncl|8 TeV = 27.37+1.65
−1.59 pb, and σIncl|13 TeV = 65.72+3.46

−3.01

pb, respectively. We also predict the fiducial cross section σfid(pp → H → γγ): σfid|7TeV = 30.1+2.3
−2.2

fb, σfid|8 TeV = 38.3+2.9
−2.8 fb, and σfid|13 TeV = 85.8+5.7

−5.3 fb. The error limits in these predictions in-
clude the small residual high-order renormalization-scale dependence, plus the uncertainty from the
factorization-scale. The PMC predictions show better agreement with the ATLAS measurements
than the LHC-XS predictions which are based on conventional renormalization scale-setting.

PACS numbers: 14.80.Bn, 12.38.Bx, 13.85.-t

I. INTRODUCTION

The Higgs boson predicted by the Standard Model
(SM) was discovered by ATLAS and CMS Collabora-
tions at the Run I stage of the Large Hadron Collider
(LHC) [1, 2]. This remarkable discovery initiated a new
era of precision studies of Higgs phenomenology. The
specific properties of the Higgs boson are now being
probed in LHC Run II. The comparison of SM predic-
tions with the new data will test the electroweak symme-
try breaking mechanism and probe possible new physics
beyond the SM, as discussed by the LHC Higgs Cross
Section Working Group (the LHC-XS group) [3]. The
details of the hadronic production of the Higgs plays an
important role for understanding this fundamental phe-
nomenology. Experimentally, the first measurements of
the total and differential cross sections for the inclusive

∗email:sqwang@cqu.edu.cn
†email:wuxg@cqu.edu.cn
‡email:sjbth@slac.stanford.edu
§email:mojaza@nordita.org

pp → HX production channel, followed by the decays
H → γγ or H → ZZ∗ → 4l, have been reported by
the ATLAS Collaboration at proton-proton CM colli-
sion energies

√
s = 7 TeV, 8 TeV and 13 TeV [4, 5].

Theoretically, the Higgs hadroproduction cross section
has been calculated up to next-to-next-to-leading order
(NNLO) [6–9]. A state-of-the-art, next-to-next-to-next-
leading order (NNNLO) analysis of the dominant gluon-
fusion production channel has recently been performed in
Ref.[10]. These calculations provide the basis for highly
precise tests of pQCD predictions.

A key requirement of the renormalization group (RG)
is that the prediction for a physical observable must be
independent of the choice of renormalization scheme as
well as the initial choice of the renormalization scale. The
higher-order pQCD predictions for Higgs hadroproduc-
tion are currently based on conventional scale-setting [6–
10], where one assumes the Higgs mass (mH) itself is the
renormalization scale and then varies it over an arbitrary
range – typically [mH/2, 2mH] – in order to ascertain
the scale uncertainty. However, this conventional scale-
setting procedure leads to a dependence on the renor-
malization scheme and scale which cannot be repaired
by computing to higher orders. Furthermore, the con-
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We present improved pQCD predictions for Higgs boson hadroproduction at the Large Hadronic
Collider (LHC) by applying the Principle of Maximum Conformality (PMC), a procedure which re-
sums the pQCD series using the renormalization group (RG), thereby eliminating the dependence of
the predictions on the choice of the renormalization scheme while minimizing sensitivity to the initial
choice of the renormalization scale. In previous pQCD predictions for Higgs boson hadroproduction,
it has been conventional to assume that the renormalization scale µr of the QCD coupling αs(µr) is
the Higgs mass, and then to vary this choice over the range 1/2mH < µr < 2mH in order to estimate
the theory uncertainty. However, this error estimate is only sensitive to the non-conformal β terms
in the pQCD series, and thus it fails to correctly estimate the theory uncertainty in cases where
pQCD series has large higher order contributions, as is the case for Higgs boson hadroproduction.
Furthermore, this ad hoc choice of scale and range gives pQCD predictions which depend on the
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clude the small residual high-order renormalization-scale dependence, plus the uncertainty from the
factorization-scale. The PMC predictions show better agreement with the ATLAS measurements
than the LHC-XS predictions which are based on conventional renormalization scale-setting.
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I. INTRODUCTION

The Higgs boson predicted by the Standard Model
(SM) was discovered by ATLAS and CMS Collabora-
tions at the Run I stage of the Large Hadron Collider
(LHC) [1, 2]. This remarkable discovery initiated a new
era of precision studies of Higgs phenomenology. The
specific properties of the Higgs boson are now being
probed in LHC Run II. The comparison of SM predic-
tions with the new data will test the electroweak symme-
try breaking mechanism and probe possible new physics
beyond the SM, as discussed by the LHC Higgs Cross
Section Working Group (the LHC-XS group) [3]. The
details of the hadronic production of the Higgs plays an
important role for understanding this fundamental phe-
nomenology. Experimentally, the first measurements of
the total and differential cross sections for the inclusive
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H → γγ or H → ZZ∗ → 4l, have been reported by
the ATLAS Collaboration at proton-proton CM colli-
sion energies

√
s = 7 TeV, 8 TeV and 13 TeV [4, 5].

Theoretically, the Higgs hadroproduction cross section
has been calculated up to next-to-next-to-leading order
(NNLO) [6–9]. A state-of-the-art, next-to-next-to-next-
leading order (NNNLO) analysis of the dominant gluon-
fusion production channel has recently been performed in
Ref.[10]. These calculations provide the basis for highly
precise tests of pQCD predictions.

A key requirement of the renormalization group (RG)
is that the prediction for a physical observable must be
independent of the choice of renormalization scheme as
well as the initial choice of the renormalization scale. The
higher-order pQCD predictions for Higgs hadroproduc-
tion are currently based on conventional scale-setting [6–
10], where one assumes the Higgs mass (mH) itself is the
renormalization scale and then varies it over an arbitrary
range – typically [mH/2, 2mH] – in order to ascertain
the scale uncertainty. However, this conventional scale-
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draw definite conclusion on the SM predictions. For the
ATLAS data at 8TeV, which is relatively of less experi-
mental uncertainty, it is found that the PMC prediction
show a much better agreement with the data.

F. An estimation of the fiducial cross section
σfid(pp → H → γγ)

With the integrated luminosity 4.5fb−1 for
√
S = 7

TeV, 20.3fb−1 for
√
S = 8 TeV, and 3.2fb−1 for

√
S =

13 TeV, the ATLAS group gives their prediction for the
fiducial cross sections (σfid) for the process pp → H →
γγ at different collision energies [48]. The fiducial cross-
section σfid can be written as

σfid(pp → H → γγ) = σInclBH→γγA, (20)

where A is the acceptance factor, whose values for dif-
ferent collision energies are [48], A|7TeV = 0.620± 0.007,
A|8TeV = 0.611±0.012 and A|13TeV = 0.570±0.006. The
BH→γγ is the branching ratio of H → γγ. By using the
Γ(H → γγ) under conventional scale-setting, the LHC-
XS group predicts BH→γγ = 0.00228 ± 0.00011 [3]. A
detailed PMC analysis for Γ(H → γγ) up to three-loop
levels have been given in Ref.[49]. Using the formulas
given there, we obtain Γ(H → γγ)|PMC = 9.34 × 10−3

MeV for MH = 125 GeV. Using this value together with
Higgs total decay width ΓTotal = (4.07 ± 0.16) × 10−3

GeV [3], we get BH→γγ |PMC = 0.00229± 0.00009. Thus
the main differences for the fiducial cross-section σfid is
from the differences of inclusive cross-section σIncl men-
tioned in the last subsection.

σfid(pp → H → γγ) 7 TeV 8 TeV 13 TeV

ATLAS data [48] 49± 18 42.5+10.3
−10.2 52+40

−37

LHC-XS [3] 24.7± 2.6 31.0± 3.2 66.1+6.8
−6.6

PMC prediction 30.1+2.3
−2.2 38.4+2.9

−2.8 85.8+5.7
−5.3

TABLE V: The fiducial cross section σfid(pp → H → γγ) (in
unit: fb) at the LHC with the collision energies

√
S =7, 8 and

13 TeV, respectively.

We put the PMC predictions for the fiducial cross sec-
tion σfid(pp → H → γγ) at the LHC with the collision
energies

√
S =7 TeV, 8 TeV and 13 TeV in Table V,

where the ATLAS measurements [48] and the LHC-XS
predictions [3] are presented. The PMC fiducial cross-
sections are larger than the LHC-XS ones by ∼ 22%,
∼ 24% and ∼ 30% for

√
S =7 TeV, 8 TeV and 13 TeV,

respectively. Table V shows no significant differences be-
tween the measured fiducial cross sections and the SM
predictions are observed within the current experimental
uncertainties. However, a better agreement of PMC pre-
dictions with the measurements at

√
S = 7 TeV and 8

TeV are observed. This performance can be more clearly
shown by Fig.(6), which presents the comparison of PMC
predictions for σfid(pp → H → γγ) with the ATLAS mea-
surements at various collision energies.
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IV. SUMMARY

We have studied the Higgs boson hadroproduction
cross-sections by using the PMC scale-setting. The PMC
provides a systematic way to set the renormalization scale
of high-energy process, which has a solid theoretical foun-
dation and satisfies renormalization group invariance.
After applying the PMC scale-setting, the large renor-
malization scale uncertainties for the Higgs total and sep-
arate production cross-sections are eliminated simultane-
ously, and the scheme-and-scale ambiguities under con-
ventional scale-setting are cured. Taking the dominant
gluon-fusion channel as an example, Table II shows un-

der the conventional scale-setting, σ(gg)
Total = 18.76+12.69%

−11.41%

pb for [mH/2, 2mH ] and σ(gg)
Total = 21.14+11.45%

−11.26% pb for
[mH/4,mH ]. While, after applying the PMC, we get the

NNLO prediction σ(gg)
Total

∼= 23.61 pb for µr[mH/4, 2mH ].
Such renormalization scale-independence is reasonable,
since the αs running behavior, or equivalently the renor-
malization scale, at each perturbative order are precisely
fixed by using the RG-equation.

By combining relevant Higgs boson production modes
and the electroweak corrections into consideration, a
more precise predictions for inclusive pp → H produc-
tion cross-sections are obtained by using the PMC. The
inclusive cross-section increases with the increment of
the hadron collision energy. To compare with the LHC-
XS predictions with a guessing scale µr = mH , our
PMC predictions are increased by about 21%, 23% and
29% for

√
S =7 TeV, 8 TeV and 13 TeV, respectively,

which shows a better agreement with the latest LHC
ATLAS measurements, especially for the measurements
at

√
S =7 TeV and 8 TeV. A comparison with fidu-

cial cross sections has been presented in Table V, which
shows no significant differences between the measured
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draw definite conclusion on the SM predictions. For the
ATLAS data at 8TeV, which is relatively of less experi-
mental uncertainty, it is found that the PMC prediction
show a much better agreement with the data.

F. An estimation of the fiducial cross section
σfid(pp → H → γγ)

With the integrated luminosity 4.5fb−1 for
√
S = 7

TeV, 20.3fb−1 for
√
S = 8 TeV, and 3.2fb−1 for

√
S =

13 TeV, the ATLAS group gives their prediction for the
fiducial cross sections (σfid) for the process pp → H →
γγ at different collision energies [48]. The fiducial cross-
section σfid can be written as

σfid(pp → H → γγ) = σInclBH→γγA, (20)

where A is the acceptance factor, whose values for dif-
ferent collision energies are [48], A|7TeV = 0.620± 0.007,
A|8TeV = 0.611±0.012 and A|13TeV = 0.570±0.006. The
BH→γγ is the branching ratio of H → γγ. By using the
Γ(H → γγ) under conventional scale-setting, the LHC-
XS group predicts BH→γγ = 0.00228 ± 0.00011 [3]. A
detailed PMC analysis for Γ(H → γγ) up to three-loop
levels have been given in Ref.[49]. Using the formulas
given there, we obtain Γ(H → γγ)|PMC = 9.34 × 10−3

MeV for MH = 125 GeV. Using this value together with
Higgs total decay width ΓTotal = (4.07 ± 0.16) × 10−3

GeV [3], we get BH→γγ |PMC = 0.00229± 0.00009. Thus
the main differences for the fiducial cross-section σfid is
from the differences of inclusive cross-section σIncl men-
tioned in the last subsection.

σfid(pp → H → γγ) 7 TeV 8 TeV 13 TeV

ATLAS data [48] 49± 18 42.5+10.3
−10.2 52+40

−37

LHC-XS [3] 24.7± 2.6 31.0± 3.2 66.1+6.8
−6.6

PMC prediction 30.1+2.3
−2.2 38.4+2.9

−2.8 85.8+5.7
−5.3

TABLE V: The fiducial cross section σfid(pp → H → γγ) (in
unit: fb) at the LHC with the collision energies

√
S =7, 8 and

13 TeV, respectively.

We put the PMC predictions for the fiducial cross sec-
tion σfid(pp → H → γγ) at the LHC with the collision
energies

√
S =7 TeV, 8 TeV and 13 TeV in Table V,

where the ATLAS measurements [48] and the LHC-XS
predictions [3] are presented. The PMC fiducial cross-
sections are larger than the LHC-XS ones by ∼ 22%,
∼ 24% and ∼ 30% for

√
S =7 TeV, 8 TeV and 13 TeV,

respectively. Table V shows no significant differences be-
tween the measured fiducial cross sections and the SM
predictions are observed within the current experimental
uncertainties. However, a better agreement of PMC pre-
dictions with the measurements at

√
S = 7 TeV and 8

TeV are observed. This performance can be more clearly
shown by Fig.(6), which presents the comparison of PMC
predictions for σfid(pp → H → γγ) with the ATLAS mea-
surements at various collision energies.

0

10

20

30

40

50

60

70

80

90

100

110

σ
fi
d
(p

p
→

H
→

γ
γ
)

(f
b
)

 

 

LHC-XS

PMC

7TeV

8TeV

13TeV

FIG. 6: Comparison of the PMC predictions for the fiducial
cross section σfid(pp → H → γγ) with the ATLAS measure-
ments at various collision energies [48]. The LHC-XS predic-
tions [3] are presented as a comparison.

IV. SUMMARY

We have studied the Higgs boson hadroproduction
cross-sections by using the PMC scale-setting. The PMC
provides a systematic way to set the renormalization scale
of high-energy process, which has a solid theoretical foun-
dation and satisfies renormalization group invariance.
After applying the PMC scale-setting, the large renor-
malization scale uncertainties for the Higgs total and sep-
arate production cross-sections are eliminated simultane-
ously, and the scheme-and-scale ambiguities under con-
ventional scale-setting are cured. Taking the dominant
gluon-fusion channel as an example, Table II shows un-

der the conventional scale-setting, σ(gg)
Total = 18.76+12.69%

−11.41%

pb for [mH/2, 2mH ] and σ(gg)
Total = 21.14+11.45%

−11.26% pb for
[mH/4,mH ]. While, after applying the PMC, we get the

NNLO prediction σ(gg)
Total

∼= 23.61 pb for µr[mH/4, 2mH ].
Such renormalization scale-independence is reasonable,
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range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on

four state-of-the-art pdf sets: CT10, HERA 1.5, MSTW2008 and NNPDF 2.3. We compare

the central pdf members for central scale choice µF = µR = mt.
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We present a comprehensive and self-consistent analysis for the thrust distribution by using the
Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running
coupling using PMC via renormalization group equation, the scale in the running coupling shows
the correct physical behavior and the correct number of active flavors is determined. The resulting
PMC predictions agree with the precise measurements for both the thrust differential distributions
and the thrust mean values. Moreover, we provide a new remarkable way to determine the running
of the coupling constant αs(Q

2) from the measurement of the jet distributions in electron-positron
annihilation at a single given value of the center-of-mass energy

√
s.

PACS numbers: 12.38.Bx, 13.66.Bc, 13.66.Jn, 13.87.-a

The event shape observables in electron-positron an-
nihilation play a crucial role in understanding Quantum
Chromodynamics (QCD). In the last three decades, the
event shape observables have been extensively studied ex-
perimentally and theoretically. In particular, the three-
jet production at the lowest order is directly proportional
to the QCD strong coupling constant, and thus the rele-
vant event shape observables have been used to determine
the coupling constant (see e.g. [1] for a review).

Due to the simple initial leptonic state, the three-jet
event shape observables can be measured with a high pre-
cision, especially at LEP [2–5]. The precision of experi-
mental measurements calls for an equally precise theoret-
ical prediction for three-jet event shapes. The next-to-
leading order (NLO) QCD calculations are known since
1980 [6–11], and the next-to-next-to-leading order (NN-
LO) calculations have been carried out in Refs.[12–16].
Despite the significant progress made in the last years
for both the pQCD calculations [17, 18] and the resum-
mation of large logarithms (see e.g. [19, 20]), the main
obstruction to achieve an accurate value of αs is not the
lack of precise experimental data but the dominant un-
certainties of the theoretical calculations, mainly due to
the choice of the renormalization scale µr.

It is well known that using the conventional scale set-
ting, the renormalization scale is simply set at the center-
of-mass energy µr =

√
s, and the uncertainties are evalu-

ated by varying the scale within an arbitrary range, e.g.
µr ∈ [

√
s/2, 2

√
s]. The three-jet event shape distribu-

tions using the conventional scale setting do not match
the experimental data, and the extracted values of αs in
general deviate from the world average [21].

The conventional procedure of setting the renormal-
ization scale introduces an inherent scheme-and-scale de-
pendence for the pQCD predictions. The scheme de-
pendence of the pQCD violates the fundamental prin-

ciple of the renormalization group invariance. The con-
ventional procedure gives wrong predictions for the A-
belian theory–Quantum Electrodynamics (QED), where
the scale of the coupling constant α can be set unam-
biguously by using the Gell-Mann-Low procedure [22].
The resulting perturbative series is in general factorially
divergent at large orders like n!βn

0 α
n
s –the “renormalon”

problem [23]. It has always been discussed whether the
inclusion of higher-order terms would suppress the scale
uncertainty; however, by simply varying the scale within
a given range of values fixed a priori, the estimation of
unknown higher-order terms is unreliable, and one can-
not judge whether the poor pQCD convergence is the
intrinsic property of pQCD series, or is due to improper
choice of scale.

The Principle of Maximum Conformality (PMC) [24–
28] provides a systematic way to eliminate renormaliza-
tion scheme-and-scale ambiguities. Since the PMC pre-
dictions do not depend on the choice of the renormal-
ization scheme, PMC scale setting satisfies the principles
of renormalization group invariance [29, 30]. The PMC
procedure reduces in the Abelian limit, NC → 0 [31], to
the standard Gell-Mann-Low method. The PMC deter-
mines the renormalization scale by absorbing the β terms
that govern the behavior of the running coupling via the
renormalization group equation. The divergent renor-
malon terms disappear and the convergence of pQCD
series can be thus greatly improved.

The thrust (T ) variable [32, 33] is one of the most fre-
quently studied three-jet event shape observables, which
is defined as

T =

max
n⃗

∑
i
|p⃗i · n⃗|

∑
i
|p⃗i|

, (1)

where the sum runs over all particles in the hadronic
final state, and the p⃗i denotes the three-momentum of

e+e− → Z0 → qq̄g + ⋯
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We present a comprehensive and self-consistent analysis for the thrust distribution by using the
Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running
coupling using PMC via renormalization group equation, the scale in the running coupling shows
the correct physical behavior and the correct number of active flavors is determined. The resulting
PMC predictions agree with the precise measurements for both the thrust differential distributions
and the thrust mean values. Moreover, we provide a new remarkable way to determine the running
of the coupling constant αs(Q

2) from the measurement of the jet distributions in electron-positron
annihilation at a single given value of the center-of-mass energy
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The event shape observables in electron-positron an-
nihilation play a crucial role in understanding Quantum
Chromodynamics (QCD). In the last three decades, the
event shape observables have been extensively studied ex-
perimentally and theoretically. In particular, the three-
jet production at the lowest order is directly proportional
to the QCD strong coupling constant, and thus the rele-
vant event shape observables have been used to determine
the coupling constant (see e.g. [1] for a review).

Due to the simple initial leptonic state, the three-jet
event shape observables can be measured with a high pre-
cision, especially at LEP [2–5]. The precision of experi-
mental measurements calls for an equally precise theoret-
ical prediction for three-jet event shapes. The next-to-
leading order (NLO) QCD calculations are known since
1980 [6–11], and the next-to-next-to-leading order (NN-
LO) calculations have been carried out in Refs.[12–16].
Despite the significant progress made in the last years
for both the pQCD calculations [17, 18] and the resum-
mation of large logarithms (see e.g. [19, 20]), the main
obstruction to achieve an accurate value of αs is not the
lack of precise experimental data but the dominant un-
certainties of the theoretical calculations, mainly due to
the choice of the renormalization scale µr.

It is well known that using the conventional scale set-
ting, the renormalization scale is simply set at the center-
of-mass energy µr =

√
s, and the uncertainties are evalu-

ated by varying the scale within an arbitrary range, e.g.
µr ∈ [

√
s/2, 2

√
s]. The three-jet event shape distribu-

tions using the conventional scale setting do not match
the experimental data, and the extracted values of αs in
general deviate from the world average [21].

The conventional procedure of setting the renormal-
ization scale introduces an inherent scheme-and-scale de-
pendence for the pQCD predictions. The scheme de-
pendence of the pQCD violates the fundamental prin-

ciple of the renormalization group invariance. The con-
ventional procedure gives wrong predictions for the A-
belian theory–Quantum Electrodynamics (QED), where
the scale of the coupling constant α can be set unam-
biguously by using the Gell-Mann-Low procedure [22].
The resulting perturbative series is in general factorially
divergent at large orders like n!βn

0 α
n
s –the “renormalon”

problem [23]. It has always been discussed whether the
inclusion of higher-order terms would suppress the scale
uncertainty; however, by simply varying the scale within
a given range of values fixed a priori, the estimation of
unknown higher-order terms is unreliable, and one can-
not judge whether the poor pQCD convergence is the
intrinsic property of pQCD series, or is due to improper
choice of scale.

The Principle of Maximum Conformality (PMC) [24–
28] provides a systematic way to eliminate renormaliza-
tion scheme-and-scale ambiguities. Since the PMC pre-
dictions do not depend on the choice of the renormal-
ization scheme, PMC scale setting satisfies the principles
of renormalization group invariance [29, 30]. The PMC
procedure reduces in the Abelian limit, NC → 0 [31], to
the standard Gell-Mann-Low method. The PMC deter-
mines the renormalization scale by absorbing the β terms
that govern the behavior of the running coupling via the
renormalization group equation. The divergent renor-
malon terms disappear and the convergence of pQCD
series can be thus greatly improved.

The thrust (T ) variable [32, 33] is one of the most fre-
quently studied three-jet event shape observables, which
is defined as

T =

max
n⃗

∑
i
|p⃗i · n⃗|

∑
i
|p⃗i|

, (1)

where the sum runs over all particles in the hadronic
final state, and the p⃗i denotes the three-momentum of

αs(Q2) in MS scheme
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FIG. 2. The thrust (1 − T ) differential distributions using
the conventional (Conv.) and PMC scale settings. The dot-
dashed, dashed and dotted lines are the conventional results
at LO, NLO and NNLO, respectively. The solid line is the
PMC result. The bands for the theoretical predictions are
obtained by varying µr ∈ [MZ/2, 2MZ ]. The PMC prediction
eliminates the scale µr uncertainty. The experimental data
points are taken from the ALEPH [2], DELPH [3], OPAL [4],
L3 [5] and SLD [38] experiments.

QCD corrections by varying the µr ∈ [
√
s/2, 2

√
s]

is unreliable, i.e., the NLO calculation do not over-
lap with LO prediction; the NNLO calculation also
almost do not overlap with NLO prediction.

• The conventional predictions are plagued by scale
µr uncertainty, and even up to NNLO QCD cor-
rections the conventional predictions do not match
the precise experimental data.

• By fitting the conventional predictions to the ex-
perimental data, the extracted coupling constants
are deviated from the world average, and are also
plagued by significant µr uncertainty [39].

Due to the kinematical constraints, the domain of the
thrust (1− T ) differential distribution at LO and of the
PMC scale is restricted to the range of 0 ≤ (1−T ) ≤ 1/3.
After applying the PMC scale setting, in addition to
the small values and the monotonically increasing be-
havior of the PMC scale, the magnitude of the conformal
coefficients are small and its behavior is very different
from that of the conventional scale setting. The result-
ing PMC predictions are in agreement with the experi-
mental data with high precision over the (1− T ) region,
while they show a slight deviation near the two-jet and
multi-jet regions. Based on the conventional scale set-
ting, Refs.[12, 13] have also found that near the two-jet
and multi-jet regions (0.04 ≤ (1−T ) ≤ 0.33), the pQCD
predictions are unreliable. Thus, near the two-jet and
multi-jet regions, the higher pQCD calculations may be
needed for the PMC analysis in order to improve the
predictions. In addition, as we have already mentioned

above, the non-perturbative effects should be taken into
account in order to obtain a reliable predictions in the
two-jet region.

In addition to the differential distribution, the mean
value of event shape observables have also been exten-
sively measured and studied. Since the calculation of the
mean value involves an integration over the full phase s-
pace, it provides an important platform to complement
the differential distribution that afflict the event shape
observables especially in the two-jet region and to deter-
minate the coupling constant.

The mean value ⟨τ⟩ (τ = (1− T )) of thrust variable is
defined by

⟨τ⟩ =
∫ τ0

0

τ

σh

dσ

dτ
dτ, (8)

where τ0 is the kinematical upper limit for the thrust
(1− T ) variable.

The electron-positron colliders have collected large
numbers of experimental data for the thrust mean value
⟨1 − T ⟩ over a wide range of center-of-mass energy (14
GeV ≤

√
s ≤ 206 GeV) [2–5, 40–45]. However, the pQCD

predictions based on the conventional scale setting sub-
stantially deviate from the experimental data. Currently,
the most common way is to split the mean value into the
perturbative and non-perturbative contributions, which
has been studied extensively in the literature (see e.g. [48]
for a review). However, some artificial parameters and
theoretical models are introduced in order to match the
theoretical predictions with the experimental data. It is
noted that the analysis of Ref.[2] obtains a large value of
αs and suggests that a better description for the mean
value can be in general obtained by setting the renormal-
ization scale µr ≪

√
s.

The pQCD calculations for the mean value variables
based on the conventional scale setting have been given
in Refs. [14, 46, 47]. After applying the PMC scale setting
to the thrust mean value ⟨1− T ⟩, we obtain the optimal
PMC scale,

µpmc
r |⟨1−T ⟩ = 0.0695

√
s. (9)

The PMC scale µpmc
r |⟨1−T ⟩ monotonously increases with√

s, and is 0.0695 times the conventional choice µr =
√
s

and thus µpmc
r |⟨1−T ⟩ ≪

√
s. We notice that by taking√

s = MZ = 91.1876 GeV, the PMC scale µpmc
r |⟨1−T ⟩ =

6.3 GeV. This is reasonable, since we have shown in
Fig.(1) that the PMC scales of thrust differential distri-
bution are also very small in wide region of (1− T ). By
excluding some results in multi-jet regions, the average of
the PMC scale ⟨µpmc

r ⟩ of thrust differential distribution
is also close to the µpmc

r |⟨1−T ⟩. This shows that the PMC
scale setting is self-consistent.

We present the thrust mean value ⟨1 − T ⟩ versus the
center-of-mass energy

√
s using the conventional and

PMC scale settings in Fig.(3). In the case of the con-
ventional scale setting, the perturbative series shows a
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We present a comprehensive and self-consistent analysis for the thrust distribution by using the
Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running
coupling using PMC via renormalization group equation, the scale in the running coupling shows
the correct physical behavior and the correct number of active flavors is determined. The resulting
PMC predictions agree with the precise measurements for both the thrust differential distributions
and the thrust mean values. Moreover, we provide a new remarkable way to determine the running
of the coupling constant αs(Q

2) from the measurement of the jet distributions in electron-positron
annihilation at a single given value of the center-of-mass energy

√
s.

PACS numbers: 12.38.Bx, 13.66.Bc, 13.66.Jn, 13.87.-a

The event shape observables in electron-positron an-
nihilation play a crucial role in understanding Quantum
Chromodynamics (QCD). In the last three decades, the
event shape observables have been extensively studied ex-
perimentally and theoretically. In particular, the three-
jet production at the lowest order is directly proportional
to the QCD strong coupling constant, and thus the rele-
vant event shape observables have been used to determine
the coupling constant (see e.g. [1] for a review).

Due to the simple initial leptonic state, the three-jet
event shape observables can be measured with a high pre-
cision, especially at LEP [2–5]. The precision of experi-
mental measurements calls for an equally precise theoret-
ical prediction for three-jet event shapes. The next-to-
leading order (NLO) QCD calculations are known since
1980 [6–11], and the next-to-next-to-leading order (NN-
LO) calculations have been carried out in Refs.[12–16].
Despite the significant progress made in the last years
for both the pQCD calculations [17, 18] and the resum-
mation of large logarithms (see e.g. [19, 20]), the main
obstruction to achieve an accurate value of αs is not the
lack of precise experimental data but the dominant un-
certainties of the theoretical calculations, mainly due to
the choice of the renormalization scale µr.

It is well known that using the conventional scale set-
ting, the renormalization scale is simply set at the center-
of-mass energy µr =

√
s, and the uncertainties are evalu-

ated by varying the scale within an arbitrary range, e.g.
µr ∈ [

√
s/2, 2

√
s]. The three-jet event shape distribu-

tions using the conventional scale setting do not match
the experimental data, and the extracted values of αs in
general deviate from the world average [21].

The conventional procedure of setting the renormal-
ization scale introduces an inherent scheme-and-scale de-
pendence for the pQCD predictions. The scheme de-
pendence of the pQCD violates the fundamental prin-

ciple of the renormalization group invariance. The con-
ventional procedure gives wrong predictions for the A-
belian theory–Quantum Electrodynamics (QED), where
the scale of the coupling constant α can be set unam-
biguously by using the Gell-Mann-Low procedure [22].
The resulting perturbative series is in general factorially
divergent at large orders like n!βn

0 α
n
s –the “renormalon”

problem [23]. It has always been discussed whether the
inclusion of higher-order terms would suppress the scale
uncertainty; however, by simply varying the scale within
a given range of values fixed a priori, the estimation of
unknown higher-order terms is unreliable, and one can-
not judge whether the poor pQCD convergence is the
intrinsic property of pQCD series, or is due to improper
choice of scale.

The Principle of Maximum Conformality (PMC) [24–
28] provides a systematic way to eliminate renormaliza-
tion scheme-and-scale ambiguities. Since the PMC pre-
dictions do not depend on the choice of the renormal-
ization scheme, PMC scale setting satisfies the principles
of renormalization group invariance [29, 30]. The PMC
procedure reduces in the Abelian limit, NC → 0 [31], to
the standard Gell-Mann-Low method. The PMC deter-
mines the renormalization scale by absorbing the β terms
that govern the behavior of the running coupling via the
renormalization group equation. The divergent renor-
malon terms disappear and the convergence of pQCD
series can be thus greatly improved.

The thrust (T ) variable [32, 33] is one of the most fre-
quently studied three-jet event shape observables, which
is defined as

T =

max
n⃗

∑
i
|p⃗i · n⃗|

∑
i
|p⃗i|

, (1)

where the sum runs over all particles in the hadronic
final state, and the p⃗i denotes the three-momentum of
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Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running
coupling using PMC via renormalization group equation, the scale in the running coupling shows
the correct physical behavior and the correct number of active flavors is determined. The resulting
PMC predictions agree with the precise measurements for both the thrust differential distributions
and the thrust mean values. Moreover, we provide a new remarkable way to determine the running
of the coupling constant αs(Q
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The event shape observables in electron-positron an-
nihilation play a crucial role in understanding Quantum
Chromodynamics (QCD). In the last three decades, the
event shape observables have been extensively studied ex-
perimentally and theoretically. In particular, the three-
jet production at the lowest order is directly proportional
to the QCD strong coupling constant, and thus the rele-
vant event shape observables have been used to determine
the coupling constant (see e.g. [1] for a review).

Due to the simple initial leptonic state, the three-jet
event shape observables can be measured with a high pre-
cision, especially at LEP [2–5]. The precision of experi-
mental measurements calls for an equally precise theoret-
ical prediction for three-jet event shapes. The next-to-
leading order (NLO) QCD calculations are known since
1980 [6–11], and the next-to-next-to-leading order (NN-
LO) calculations have been carried out in Refs.[12–16].
Despite the significant progress made in the last years
for both the pQCD calculations [17, 18] and the resum-
mation of large logarithms (see e.g. [19, 20]), the main
obstruction to achieve an accurate value of αs is not the
lack of precise experimental data but the dominant un-
certainties of the theoretical calculations, mainly due to
the choice of the renormalization scale µr.

It is well known that using the conventional scale set-
ting, the renormalization scale is simply set at the center-
of-mass energy µr =

√
s, and the uncertainties are evalu-

ated by varying the scale within an arbitrary range, e.g.
µr ∈ [

√
s/2, 2

√
s]. The three-jet event shape distribu-

tions using the conventional scale setting do not match
the experimental data, and the extracted values of αs in
general deviate from the world average [21].

The conventional procedure of setting the renormal-
ization scale introduces an inherent scheme-and-scale de-
pendence for the pQCD predictions. The scheme de-
pendence of the pQCD violates the fundamental prin-

ciple of the renormalization group invariance. The con-
ventional procedure gives wrong predictions for the A-
belian theory–Quantum Electrodynamics (QED), where
the scale of the coupling constant α can be set unam-
biguously by using the Gell-Mann-Low procedure [22].
The resulting perturbative series is in general factorially
divergent at large orders like n!βn

0 α
n
s –the “renormalon”

problem [23]. It has always been discussed whether the
inclusion of higher-order terms would suppress the scale
uncertainty; however, by simply varying the scale within
a given range of values fixed a priori, the estimation of
unknown higher-order terms is unreliable, and one can-
not judge whether the poor pQCD convergence is the
intrinsic property of pQCD series, or is due to improper
choice of scale.

The Principle of Maximum Conformality (PMC) [24–
28] provides a systematic way to eliminate renormaliza-
tion scheme-and-scale ambiguities. Since the PMC pre-
dictions do not depend on the choice of the renormal-
ization scheme, PMC scale setting satisfies the principles
of renormalization group invariance [29, 30]. The PMC
procedure reduces in the Abelian limit, NC → 0 [31], to
the standard Gell-Mann-Low method. The PMC deter-
mines the renormalization scale by absorbing the β terms
that govern the behavior of the running coupling via the
renormalization group equation. The divergent renor-
malon terms disappear and the convergence of pQCD
series can be thus greatly improved.

The thrust (T ) variable [32, 33] is one of the most fre-
quently studied three-jet event shape observables, which
is defined as

T =

max
n⃗

∑
i
|p⃗i · n⃗|

∑
i
|p⃗i|

, (1)

where the sum runs over all particles in the hadronic
final state, and the p⃗i denotes the three-momentum of
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Problems with traditional scale setting

• Predictions are scheme-dependent!  At every order!  This fundamental flaw 
does not get repaired at high orders

• Fails to satisfy Renormalization Group Principles

• Guessing the renormalization scale and its range is heuristic

• Gives wrong predictions for QED  

• GUT: Must use the same scale-setting procedure for QED, QCD

• n! Renormalon growth — no convergence of pQCD

• Uses the same scale at each order.  

• guessed value for nf does not  correctly reflect quark loop virtuality

• Multiple Physical Scales cannot be Incorporated

• Unrealistic Estimate of Higher-Order Terms: Only β-terms exposed by scale 
variation

• Introduces an unnecessary theory error!

• Can give wrong predictions for pQCD observables

• Obscures sensitivity to new physics



Features of BLM/PMC

• Predictions are scheme-independent

• Matches conformal series

• Commensurate Scale Relations between 
observables: Generalized Crewther Relation  

• No n! Renormalon growth

• New scale at each order; nF determined at each order

• Multiple Physical Scales Incorporated

• Rigorous: Satisfies all Renormalization Group 
Principles

• Abelian Limit: Gell-Mann-Low pQED

• Realistic Estimate of Higher-Order Terms



Essential Points

• Physical Results cannot depend on choice of Scheme

• Different PMC scales at each order

• No scale ambiguity!

• Series identical to conformal theory

• Relation between observables scheme independent, 
transitive

• Choice of initial scale irrelevant even at finite order

• Identify β terms using Rδ method  



PMC + PadèRe+e−(s) Computed

Padè
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Extending the Predictive Power of pQCD

Scale Ambiguity, Scheme Dependence,                
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Profound Questions for Hadron Physics

• Color Confinement 

• Origin of QCD Mass Scale 

• Spectroscopy:  Tetraquarks, Pentaquarks, Gluonium, Exotic 
States 

• Universal Regge Slopes: n, L,  both Mesons and Baryons 

• Massless Pion: Bound State 

• Dynamics and Spectroscopy 

• QCD Coupling at all Scales 

• QCD Vacuum —Do Condensates Exist?
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contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 
Also shown is the Regge trajectory for mesons with J = L+S.

M2[GeV2]

E. Klempt and B. Ch. Metsch

Mesons and Baryons: Same Regge Slope M2 / J !
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Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q2)� gen
1 (x,Q2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡
]



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

e�(z) = e+2z2



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative
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Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD 
(Quark Confinement)

All-Scale QCD Coupling

e�
Q2

42

Deur, de Tèramond, sjbm⇢ =
p

2
mp = 2

� ⌘ 2

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV

MS schemeReverse Dimensional Transmutation!

Use Q0 for starting 
DGLAP  and ERBL 

Evolution

Experiment:
⇤MS = 0.332± 0.017 GeV

5-Loop � Prediction:
⇤MS = 0.339± 0.019 GeV



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS

Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit
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0.6
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1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



The QCD coupling at all scales and the elimination of 
renormalization scale uncertainties 

 Stan Brodsky
ECT* αs
Workshop

Supersymmetry in QCD

• A hidden symmetry of Color SU(3)C in hadron 
physics

• QCD: No squarks or gluinos!

• Emerges from Light-Front Holography and 
Super-Conformal Algebra

• Color Confinement

• Massless Pion in Chiral Limit



The QCD coupling at all scales and the elimination of 
renormalization scale uncertainties 

 Stan Brodsky
ECT* αs
Workshop

Light-Front Holography:  First Approximation to QCD

• Color Confinement, Analytic form of confinement potential 

• Retains underlying conformal properties of QCD despite mass scale                          
(DeAlfaro-Fubini-Furlan Principle) 

• Massless quark-antiquark pion bound state in chiral limit, GMOR 

• QCD coupling at all scales 

• Connection of perturbative and nonperturbative mass scales 

• Poincarè Invariant 

• Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L 

• Supersymmetric 4-Plet:  Meson-Baryon -Tetraquark Symmetry 

• Light-Front Wavefunctions 

• Form Factors, Structure Functions, Hadronic Observables 

• OPE: Constituent Counting Rules 

• Hadronization at the Amplitude Level:  Many Phenomenological Tests 

• Systematically improvable:  Basis LF Quantization (BLFQ)



The QCD coupling at all scales and the elimination of 
renormalization scale uncertainties

Stan Brodsky  

The Principle of Maximum Conformality (PMC) 

PP
-
 → tt

-
+X

A
F
B
(
m
t
t-
 
>
 
m
c
u
t

t
t-
 
)

m
cut
tt
- [GeV]

Conv. (Wang etal)
PMC

NNLO QCD
NLO QCD
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Figure 11. Predictions for the mtt̄ cumulative asymmetry: pure QCD at NLO and NNLO (as
derived in this work), NLO prediction of Ref. [11] including EW corrections, as well as the PMC
scale-setting prediction of Ref. [11].

range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on

four state-of-the-art pdf sets: CT10, HERA 1.5, MSTW2008 and NNPDF 2.3. We compare

the central pdf members for central scale choice µF = µR = mt.

– 24 –

PMC

Conv.

AFB(pp̄! tt̄X)

Czakon, Fiedler, Heymes, Mitov

mtt̄ > mcut
tt̄

PMC: Leonardo di Giustino,  
Xing-Gang Wu  
Matin Mojaza 

ECT*  
February 12, 2018

BLM: G. Peter Lepage 
Paul Mackenzie

αs Workshop



P+, ↵P+

xiP
+, xi

↵P⇤+ ↵k⇤i

ẑ

↵L = ↵R⇥ ↵P

↵Li = (xi
↵R⇤+↵b⇤i)⇥ ↵P

↵⇧i = ↵b⇤i ⇥ ↵k⇤i

↵⇧i = ↵Li � xi
↵R⇤ ⇥ ↵P = ↵b⇤i ⇥ ↵P

A(⇤,�⇤) = 1
2⇥

�
d�e

i
2⇤�M(�,�⇤)

P+, P⇤

xiP
+, xi

P⇤+ k⇤i

� = Q2

2p·q

ẑ

L = R⇥ P

Li = (xi
R⇤+b⇤i)⇥ P

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x =
k+

P+
=

k0 + k3

P 0 + P 3

`
`0

Measurements of hadron LF 
wavefunction are at fixed LF time

Like a flash photograph xbj = x =
k+

P+

 n(xi,~k?i ,�i)

Invariant under boosts!  Independent of Pμ 

Dirac: Front Form



General remarks about orbital angular mo-
mentum

⌃R�

xi
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�n
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� = Q2
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ẑ

L = R⇥ P

Li = (xi
R⇤+b⇤i)⇥ P

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Causal, Frame-independent.  Creation Operators on Simple Vacuum, 
Current Matrix Elements are Overlaps of LFWFS

|p, Jz >=
X

n=3

 n(xi,~k?i,�i)|n;xi,~k?i,�i >

Invariant under boosts!  Independent of Pμ 

Eigenstate of LF Hamiltonian 

 n(xi,~k?i ,�i)

HQCD
LF |�h >= M2

h|�h >



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Sivers, T-odd from lensing

Light-Front Wavefunctions
underly hadronic observables

DGLAP, ERBL Evolution
Factorization Theorems

Weak transition  
form factors



Advantages of the Dirac’s Front Form for Hadron Physics

• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function measured at an e p collider and the 
proton rest frame 

• No dependence of hadron structure on observer’s frame 

• Jz Conservation, bounds on ΔLz    Chiu, sjb

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no vacuum condensates! 

Physics Independent of Observer’s Motion

Poincare’ Invariant

Roberts, Shrock, Tandy, sjb

Penrose, Terrell, Weisskopf



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN " " 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $" " 1

!n
$

%$
!
$!"

b!
$"

(k $
&
, #$

&
)d!

$"M
(k $

&N
, #$

&N
)!0" , (3.30)
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

H
int
LF

LFWFs: Off-shell in P- and invariant mass

|p, Jz >=
X

n=3

 n(xi,~k?i,�i)|n;xi,~k?i,�i >



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT, the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian

 (xi,~k?i,�i)

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

LF Wavefunction: off-shell in invariant mass

x =
k+

P+
=

k0 + k3

P 0 + P 3



-

graviton

Vanishing Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

Terayev, Okun: B(0) Must vanish because of  
Equivalence Theorem 

P. Lowdon, K. Chiu, Dae Sung Hwang, Bo-Qiang Ma, Ivan Schmidt, sjb

LF Proof 



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

Semiclassical first approximation to QCD  

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

AdS/QCD:

�2 = x(1� x)b2
�

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)
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z
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⇥ = d�s(Q2)
d lnQ2 < 0

u

Sums an infinite # diagrams

LQCD

Eliminate higher Fock states              
and retarded interactions

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

mq = 0
Single variable Equation!



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.5 GeV

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici: 

e'(z) = e+2z2

Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

GeV units external to QCD: Only Ratios of Masses Determined
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The QCD coupling at all scales and the elimination of 
renormalization scale uncertainties 

 Stan Brodsky
ECT* αs
Workshop

•Soft-wall dilaton profile breaks 
conformal invariance

•Color Confinement in z

•Introduces confinement scale κ

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/


AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5 

Identical to Single-Variable Light-Front Bound State Equation in ζ! 

U(z) = �4z2 + 2�2(L + S � 1)

• de Teramond, sjbPositive-sign dilaton
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Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 

~⇣2 = ~b2?x(1� x)
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Figure 1: Comparison of the light-front holographic prediction [1] M
2(n, L, S) =

4�(n+ L+ S/2) for the orbital L and radial n excitations of the meson spectrum with
experiment. See Ref. [2]

1 Introduction

A remarkable empirical feature of the hadronic spectrum is the near equality of the

slopes of meson and baryon Regge trajectories. The square of the masses of hadrons

composed of light quarks is linearly proportional not only to L, the orbital angular

momentum, but also to the principal quantum number n, the number of radial nodes in

the hadronic wavefunction as seen in Fig. 1. The Regge slopes in n and L are equal, as in

the meson formula M
2
M
(n, L, S) = 4�(n+L+S/2 from light front holographic QCD [1],

but even more surprising, they are observed to be equal for both the meson and baryon

trajectories, as shown in Fig. 2. The mean value for all of the slopes is  =
p
� = 0.523

GeV. See Fig. 3.

4

Equal Slope in n and LM2(n,L, S) = 42(n + L + S/2)
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S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!



Uniqueness of Dilaton

pion is massless in chiral limit iff 
p=2!

p

m2
⇡/2

'p(z) = pzp

e'(z) = e+2z2

• Dosch, de Tèramond, sjb



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



• “History” : Compute any subgraph only once since the LFPth 
numerator does not depend on the process — only the 
denominator changes!

• Wick Theorem applies, but few amplitudes since all k+ > 0.

• Jz Conservation at every vertex

• Unitarity is explicit

• Loop Integrals are 3-dimensional

• hadronization: coalesce comoving quarks and gluons to 
hadrons using light-front wavefunctions

Light-Front Perturbation Theory for pQCD

Z 1

0
dx

Z
d2k?

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

at order gn|
X

initial

Sz �
X

final

Sz |  n

K. Chiu, sjb

T = HI +HI
1

M2
initial �M2

intermediate + i✏
HI + cdots



General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

0.20.40.60.8
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1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV)

�(x, k�)

• Light Front Wavefunctions:                                   

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

“Hadronization at the Amplitude Level”

o↵-shell in P� and invariant massM2
qq̄

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

Boost-invariant LFWF connects confined quarks and gluons to hadrons

x,~k?

1� x,�~k?



A.P.  Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks
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Pion Form Factor from AdS/QCD and Light-Front Holography



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2 = h |
X

a

m2
a/xa| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�m2
q

x +
m2

q
1�x

�
e�

1
2� ⇣2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S = M2

K± + 4�
✓

n +
J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

mu = md = 46 MeV, ms = 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb

from LF Higgs mechanism

Effective mass from m(p2) Tandy, Roberts, et al



The QCD coupling at all scales and the elimination of 
renormalization scale uncertainties 

 Stan Brodsky
ECT* αs
Workshop

Remarkable Features of  
Light-Front Schrödinger Equation

•Relativistic, frame-independent

•QCD scale appears - unique LF potential

•Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter

•Zero-mass pion for zero mass quarks!

•Regge slope same for n and L  -- not usual HO

•Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry

•Phenomenology: LFWFs, Form factors, electroproduction

•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)

Dynamics + Spectroscopy! 



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!

Unique confinement potential!

QCD does not know what MeV units mean! 
Only Ratios of Masses Determined



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d

2

dx2
+

g

x2
+

4uw � v
2

4
x

2
�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term

(dAFF)



fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes

Retains conformal invariance of action despite mass scale! 



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q
+} = 2H, {S, S

+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  +[�@x +
f

x
], Q+ =  [@x +

f

x
], S =  +x, S+ =  x

Haag, Lopuszanski, Sohnius (1974)

Superconformal Quantum Mechanics 

Q '
p

H, S '
p

K



Consider Rw = Q + wS; w: dimensions of mass squared

Superconformal Quantum Mechanics 

Retains Conformal Invariance of Action

G11 =
�
� @2

x + w2x2 + 2wf � w +
4(f + 1

2 )2 � 1
4x2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R
+
w} = 2H + 2w2

K + 2wfI � 2wB

G22 =
�
� @2

x + w2x2 + 2wf + w +
4(f � 1

2 )2 � 1
4x2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2(n,L) = 42(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2

Q '
p

H, S '
p

K

� = 2



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM )

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Superconformal  
Quantum Mechanics 

Same   !
S=0, P=+

� = 2



Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.
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Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2
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⇢�� superpartner trajectories

Dosch, de Teramond, sjb L (Orbital Angular Momentum)
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Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2)
Deur

� = 2 de Tèramond, Dosch, Lorce’, sjb



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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Using SU(6) flavor symmetry and normalization to static quantities
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•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q2)� gen
1 (x,Q2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡
]



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb

e�(z) = e+2z2
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Deur, de Tèramond, sjbm⇢ =
p

2
mp = 2

� ⌘ 2

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV

MS schemeReverse Dimensional Transmutation!

Use Q0 for starting 
DGLAP  and ERBL 

Evolution

Experiment:
⇤MS = 0.332± 0.017 GeV

5-Loop � Prediction:
⇤MS = 0.339± 0.019 GeV



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point
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M. Nielsen, 
sjbNew Organization of the Hadron Spectrum

Baryon        TetraquarkMeson



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry



a


a

Superpartners for states with one c quark

predictions             beautiful agreement!M. Nielsen, sjb



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry



Regge slope for heavy-light mesons, baryons:  
increases with heavy quark mass

R(GeV)
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SELEX (3520± 1 MeV ) JP = 1
2

� |[cd]c >
Two decay channels: ⌅+

cc ! ⇤+
c K
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The QCD coupling at all scales and the elimination of 
renormalization scale uncertainties 

 Stan Brodsky
ECT* αs
Workshop

Production of a Double-Charm Baryon

X

SELEX  high xF < xF >= 0.33

pp ⌅ p + H + p

H, Z0, �b

b⌃ ⇤ 1/Q

Must have �Lz = ±1 to have nonzero F2

Use charge radius R2 = �6F ⇧1(0)

and anomalous moment ⇥ = F2(0)



Groote, Koshkarev, sjb:  SELEX& LHCb could both be correct!

Very different production kinematics:  
LHCb (central region)  

SELEX (Forward, High xF ) where Λc  , Λb were discovered  

Radiative Decay:

LHCb(3621) ! SELEX(3520) + �
strongly suppressed: [

100 MeV
Mc

]
7

Also: Different diquark structure possible for LHCb:

NA3: Double J/ψ Hadroproduction measured at High xF

SELEX (3520± 1 MeV ) JP = 1
2

� |[cd]c >
Two decay channels: ⌅+

cc ! ⇤+
c K

�⇡+, pD+K�

⌅++
cc ! ⇤+

c K
�⇡+⇡+

|(cc)u >

LHCb (3621± 1 MeV ) JP
=

1
2

�
or

3
2

� |(cu)c >

Karliner and Rosner
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Underlying Principles

• Poincarè Invariance: Independent of the observer’s Lorentz frame  

• Quantization at Fixed Light-Front Time 

• Causality: Information within causal horizon 

• Light-Front Holography: AdS5 = LF (3+1) 

• Single fundamental hadronic mass scale κ: but retains the 
Conformal Invariance of the Action (dAFF)!  

• Unique dilaton and color-confining LF Potential! 

• Superconformal Algebra:  Mass Degenerate 4-Plet:

U(⇣2) = 4⇣2

Meson qq̄ $ Baryon q[qq] $ Tetraquark [qq][q̄q̄]

z $ ⇣ where ⇣2 = b2?x(1� x)

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

�2 = x(1� x)b2
�

⌧

e+2z2
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Light-Front Holography:  First Approximation to QCD

• Color Confinement, Analytic form of confinement potential 

• Retains underlying conformal properties of QCD despite mass scale                          
(DeAlfaro-Fubini-Furlan Principle) 

• Massless quark-antiquark pion bound state in chiral limit, GMOR 

• QCD coupling at all scales 

• Connection of perturbative and nonperturbative mass scales 

• Poincarè Invariant 

• Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L 

• Supersymmetric 4-Plet:  Meson-Baryon -Tetraquark Symmetry 

• Light-Front Wavefunctions 

• Form Factors, Structure Functions, Hadronic Observables 

• OPE: Constituent Counting Rules 

• Hadronization at the Amplitude Level:  Many Phenomenological Tests 

• Systematically improvable:  Basis LF Quantization (BLFQ)
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Invariance Principles of Quantum Field Theory

• Polncarè Invariance:  Physical predictions must be 
independent of the observer’s Lorentz frame:  Front Form 

• Causality: Information within causal horizon:  Front Form 

• Gauge Invariance: Physical predictions of gauge theories 
must be independent of the choice of gauge 

• Scheme-Independence: Physical predictions of 
renormalizable theories must be independent of the 
choice of the renormalization scheme —               
Principle of Maximum Conformality (PMC) 

• Mass-Scale Invariance:                                     
Conformal Invariance of the Action (DAFF) 

https://indico.cern.ch/event/628450/
https://indico.cern.ch/event/628450/
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The Principle of Maximum Conformality (PMC) 

PP
-
 → tt

-
+X

A
F
B
(
m
t
t-
 
>
 
m
c
u
t

t
t-
 
)

m
cut
tt
- [GeV]

Conv. (Wang etal)
PMC

NNLO QCD
NLO QCD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 350  400  450  500  550  600  650  700  750  800

Figure 11. Predictions for the mtt̄ cumulative asymmetry: pure QCD at NLO and NNLO (as
derived in this work), NLO prediction of Ref. [11] including EW corrections, as well as the PMC
scale-setting prediction of Ref. [11].

range of mtt̄ used for the calculation of the NNLO result, fixed and dynamic scales would lead

to consistent predictions within scale errors (see also recent discussion for the LHC [92]).

We conclude that the two scale-setting approaches produce very di↵erent predictions for

the mtt̄ cumulative ÂFB and it should be easy to distinguish between the two with data,

especially in the region around mtt̄ ⇠ 500GeV. We would also like to point out that the

NNLO prediction based on conventional scale-setting with µR = mt exhibits the “increasing-

decreasing” behaviour pointed out in Ref. [11], albeit much less pronounced than in the PMC

scale-setting approach.

5 Comparisons between di↵erent pdf sets

An alternative way of assessing the pdf dependence in theory predictions is to compare calcu-

lations with di↵erent pdf sets. In this section we compare NNLO QCD predictions based on

four state-of-the-art pdf sets: CT10, HERA 1.5, MSTW2008 and NNPDF 2.3. We compare

the central pdf members for central scale choice µF = µR = mt.
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