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Introduction

The strong coupling αS is a fundamental parameter of the Standard Model and must be
measured precisely

Obtained from fits of theory to measured data

High precision measurements demand highly accurate theoretical predictions

One option: three-jet event shapes in electron-positron annihilation

• extensively measured by multiple experiments
• the Born contribution is already proportional to αS

• state-of-the-art theory: NNLO fixed order + NNLL resummation (N3LL for thrust
and C-parameter)
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αS world average
With the exception of lattice results, most results

within their subclass are strongly correlated, however
to an unknown degree, as they largely use similar data
sets and/or theoretical predictions. The large scatter
between many of these measurements, sometimes with
only marginal or no agreement within the given errors,
indicate the presence of additional systematic uncer-
tainties from theory or caused by details of the anal-
yses. Therefor the unweighted average of all selected
results is taken as pre-average value for each subclass,
and the unweighted average of the quoted uncertainties
is assigned to be the respective overall error of this pre-
average.

For the subclasses of hadron collider results and elec-
troweak precision fits, only one result each is available
in full NNLO, so that these measurements alone define
the average value for their subclass. Note that more
measurements of top-quark pair production at LHC are
meanwhile available, indicating that - on average - a
larger value of αs(M2

Z) is likely to emerge in the future;
see also [17] and the presentation of T. Klijnsma at this
conference [18]. The resulting subclass averages are in-
dicated in figure 1, and are summarized in table 1.

Table 1: Pre-average values of subclasses of measurements of
αs(M2

Z).

Subclass αs(M2
Z)

τ-decays 0.1192 ± 0.0018
lattice QCD 0.1188 ± 0.0011
structure functions 0.1156 ± 0.0021
e+e− [jets & shps] 0.1169 ± 0.0034
hadron collider 0.1151 + 0.0028

− 0.0027
ew precision fits 0.1196 ± 0.0030

Assuming that the resulting pre-averages are largely
independent of each other, the final world average
value is determined as the weighted average of the pre-
averaged values. An initial uncertainty of the central
value is calculated treating the uncertainties of all in-
put values as being uncorrelated and of Gaussian nature,
and the overall χ2 to the central value is determined. If
the initial χ2 is smaller than the number of degrees of
freedom, an overall, a-priori unknown correlation co-
efficient is introduced and adjusted such that the total
χ2/d.o.f. equals unity. Applying this procedure to the
values listed in table 1 results in the new world average
of

αs(M2
Z) = 0.1181 ± 0.0011 .

This value is in good agreement with that from

Figure 1: Summary of determinations of αs. The light-shaded bands
and long-dashed vertical lines indicate the pre-average values as ex-
plained in the text and as listed in table 1; the dark-shaded band and
short-dashed line represent the new overall world average of αs.

S. Bethke / Nuclear and Particle Physics Proceedings 282–284 (2017) 149–152150

[S. Bethke, Nucl. Part. Phys. Proc. 282-284 (2017) 149]

Determinations from e+e− annihilation
based on
• jet rates (see A. Verbytskyi’s talk)
• event shapes describing global event

topology (thrust, C-parameter, heavy
jet mass, etc.)

• longstanding problem of low αS(MZ )
from NNLO+N3LL event shapes (using
analytic hadronization models)

Can also revisit old event shapes as well as
examine new ones
• energy-energy correlation (old)
• groomed event shapes (new)
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An old observable: energy-energy correlation
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Energy-energy correlation

Energy-energy correlation (EEC): energy weighted distribution of angles χ between
particles, one of the oldest event shapes [Basham, Brown, Ellis, Love 1978]

1
σt

dΣ(χ)
d cosχ

≡
1
σtot

∫ ∑
i,j

Ei Ej

Q2 dσe+e−→ ij+X δ(cosχ− cos θij )

• Particles in the same jet:
forward region, peak near small χ

• Particles in different jets:
back-to-back region, peak near χ ' π

EEC alphaS NNLO+NNLL 3

EEC observable
Energy weighted distribution of angles c between particles

1/sdS(c)/dcosc = 1/s Ú ∑
i,j
 E

i
E

j
/Q2 ds(e+e- ij+X) � d(cosc – cosq

ij
)

Particles in same jet:
Forward region
Peak near small c 
Non-perturbative

Particles in different jets:
Back-to-back region
Peak near c ª p 
Resummation

Was measured extensively at LEP and predecessors (but no measurements beyond LEP1)

Accurate theory predictions available

• NNLO fixed order from CoLoRFulNNLO [Del Duca, Duhr, Kardos, GS, Trócsányi 2016]

• NNLL resummation in back-to-back region [de Florian, Grazzini 2005]

Potential for precision αS(MZ ) measurement 5



EEC predictions: fixed-order

The fixed-order prediction to NNLO accuracy reads (note: here χ = π − θij)[ 1
σ0

dΣ(χ)
d cosχ

]
(f.o.)

=
αS
2π

dA(χ)
d cosχ

+
(
αS
2π

)2 dB(χ)
d cosχ

+
(
αS
2π

)3 dC(χ)
d cosχ

+O(α4
S)

• NLO correction is large as judged
by scale variation ⇒ must go to
NNLO

• Higher order predictions improve
agreement with data

• Fixed order prediction diverges in
the forward and back-to-back
regions ⇒ resummation is required

• Sizeable deviations from data even
at NNLO ⇒ must take into
account hadronization corrections
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Resummation

Fixed order diverges in the back-to-back limit as ∼ αn
S ln2n−1 y where y = cos2(χ/2), the

fixed-order coefficients at n-th order include terms {lnk y}2n−1
k=1 .

For small y the logarithms become large, αn
S ln2n−1 y ∼ 1, invalidating the use of

fixed-order perturbation theory.

The logarithmically enhanced terms must be resummed to all orders to obtain a
description appropriate in the y → 0 limit.

• resummation can be systematically improved by resumming more towers of
logarithms: leading logs (LL), next-to-leading logs (NLL), etc.

1
σt

dΣ
d cosχ

∼
1
y

{
αS

[
log y + 1

]
LO

1
σt

dΣ
d cosχ

+ α2
S

[
log3 y + log2 y + log y + 1

]
NLO

1
σt

dΣ
d cosχ

+ α3
S

[
log5 y + log4 y + log3 y + log2 y . . .

]}
NNLO

...
LL NLL NNLL
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EEC predictions: resummation

Resummation in the back-to-back region known up to NNLL accuracy (and N3LL is on
the way using SCET) [de Florian, Grazzini 2005; Moult, Zhu 2018]

[ 1
σt

dΣ(χ)
d cosχ

]
(res.)

=
Q2

8
H(αS)

∫ ∞
0

db J0(b Q√y)S(Q, b)

The logarithmically enhanced terms are collected in the Sudakov form factor

S(Q, b) = exp

{
−
∫ Q2

b2
0/b2

dq2

q2

[
A(αS(q2)) ln

Q2

q2 + B(αS(q2))
]}

The A(αS), B(αS) and H(αS) functions can be computed perturbatively

A(αS) =
∞∑

n=1

(
αS
4π

)n
A(n) , B(αS) =

∞∑
n=1

(
αS
4π

)n
B(n) , H(αS) = 1 +

∞∑
n=1

(
αS
4π

)n
H(n)

Unitarity constraint (vanishing of the distribution at kinematical limit y = 1)

A(n) → A(n)(1− y)p and B(n) → B(n)(1− y)p , p = 1, 2
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EEC predictions: resummation

Resummation in the back-to-back region known up to NNLL accuracy (and N3LL is on
the way using SCET) [de Florian, Grazzini 2005; Moult, Zhu 2018]

[ 1
σt

dΣ(χ)
d cosχ

]
(res.)

=
Q2

8
H(αS)

∫ ∞
0

db J0(b Q√y)S(Q, b)

• pure resummed results capture the
general behaviour of data for small
y (note: here χ = π − θij so small y
corresponds to small angles)

• Sizeable deviations from data even
for moderate angles
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Combining fixed-order and resummed predictions

Fixed-order and resummed calculations are complementary to each other: they describe
data over different kinematical ranges

In order to obtain predictions over a wide kinematical range, the two computations must
be combined without double counting (“matching”)

Matched predictions at NNLO+NNLL:

• all terms from first three rows (NNLO)
• in addition, first three terms from all rows (NNLL)
• must take care to count the first three terms of the first three rows only once

1
σt

dΣ
d cosχ

∼
1
y

{
αS

[
log y + 1

]
LO

1
σt

dΣ
d cosχ

+ α2
S

[
log3 y + log2 y + log y + 1

]
NLO

1
σt

dΣ
d cosχ

+ α3
S

[
log5 y + log4 y + log3 y + log2 y . . .

]}
NNLO

...
LL NLL NNLL
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log-R matching

Standard additive matching (naive R matching)

1
σt

dΣ
d cosχ

?=
[ 1
σt

dΣ(χ)
d cosχ

]
(res.)

+
[ 1
σt

dΣ(χ)
d cosχ

]
(f.o.)

−
{[ 1

σt

dΣ(χ)
d cosχ

]
(res.)

}∣∣∣∣
(f.o.)

• cannot be used, because the order of the logarithmic approximation is not high
enough (i.e., the fixed order expansion of the resummed expression does not predict
all logarithmically enhanced terms correctly at NNLO)

• N3LL accuracy required

Use log-R matching instead

• in the log-R scheme, matching is performed at the level of the cumulant
• the fixed order expansion of EEC diverges for both small and large angles making

the determination of a simple cumulant unreliable
• use a linear combination of moments to suppress the singularity in the forward region
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log-R matching

Prescription for log-R matching

• consider the combination of moments

1
σt

Σ̃(χ) ≡
1
σt

∫ χ

0
dχ′(1 + cosχ′)

dΣ
dχ′

• this has the fixed order expansion[ 1
σt

Σ̃(χ)
]

(f.o.)
= 1 +

αS
2π
Ā(χ) +

(
αS
2π

)2
B̄(χ) +

(
αS
2π

)3
C̄(χ) +O(α4

S)

• NNLO+NNLL matched expression

ln
[ 1
σt

Σ̃
]

= ln
{

1
H(αS)

[ 1
σt

Σ̃
]

(res.)

}
− ln

{
1

H(αS)

[ 1
σt

Σ̃
]

(res.)

}∣∣∣∣
(f.o.)

+
αS
2π
Ā+

(
αS
2π

)2 (
B̄ −

1
2
Ā2
)

+
(
αS
2π

)3 (
C̄ − ĀB̄ +

1
3
Ā3
)

• original observable
1
σt

Σ(χ) =
1

1 + cosχ
d

dχ

[ 1
σt

Σ̃(χ)
]
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Finite b-quark mass corrections

At low energies, the assumption of vanishing quark masses is not entirely justified

• include mass effects directly at the level of matched distributions

1
σt

dΣ
d cosχ

= (1− rb(Q))
[ 1
σt

dΣ
d cosχ

]
massless

+ rb(Q)
[ 1
σt

dΣ
d cosχ

]NNLO∗

massive

• the complete NNLO correction to the massive distribution is unknown, so
supplement the massive NLO prediction with the NNLO coefficient of the massless
calculation

• massive predictions computed with Zbb4 [P. Nason, C. Oleari 1997]

• rb(Q) is the fraction of b-quark events

rb(Q) =
σmassive(e+e− → bb̄)

σmassive(e+e− → hadrons)

• to assess the uncertainty associated to the modeling of b-quark mass corrections,
investigated different prescriptions for including the massive corrections (e.g., do not
supplement massive NLO prediction with massless NNLO coefficients)
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Hadronization corrections

Effects associated with the parton-to-hadron transition cannot be computed in
perturbation theory and must be estimated by other means

Analytic modeling

• Non-perturbative, power-behaved
corrections in dispersive approach

[Y.L. Dokshitzer, G. Marchesini,
B.R. Webber 1999]

• Multiply Sudakov form factor with
non-perturbative correction
SNP = e−

1
2 a1b(1− 2a2b)

• a1 and a2 are related to moments of
αS at low energy

• Analytic model cannot fully account
for hadronization corrections away
from back-to-back limit

MC based approach

• Point-by-point multiplicative
correction factors using modern MC
tools

• Hadronization corrections are ratios
of hadron to parton level
distributions in the MCs

• Systematics from comparing
multiple hadronization models

• See A. Verbytskyi’s talk for details
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Fits to data: MC based hadronization corrections

Fits to data of NNLO+NNLL and NLO+NNLL predictions
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[Kardos, Kluth, GS, Tulipánt, Verbytskyi
Eur. Phys. J. C 78 (2018) no.6, 498]
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Result

Main result from global fit at NNLO+NNLL

αS(MZ ) = 0.11750± 0.00018(exp.)± 0.00102(hadr .)± 0.00257(ren.)± 0.00078(res.)
αS(MZ ) = 0.11750± 0.00287(comb.)

See A. Verbytskyi’s talk for description of uncertainty
Note using NLO+NNLL only (i.e., no NNLO), we find

αS(MZ ) = 0.12200± 0.00023(exp.)± 0.00113(hadr .)± 0.00433(ren.)± 0.00293(res.)
αS(MZ ) = 0.12200± 0.00535(comb.)

Inclusion of NNLO corrections crucial in reducing uncertainty: factor of 1/2!

The result is consistent with the world average (αS(MZ ) = 0.1175± 0.0029 vs.
0.1181± 0.0011) and competitive with other precision event shapes
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New observables: soft-drop event shapes
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How to improve precision?

Main source of uncertainty

• renormalization scale uncertainty (truncation of perturbative series)
• hadronization uncertainty

How to improve

• Can we go beyond NNLO for three-jet event shapes? No.1
• What can be done with the non-perturbative effects?

Find observables with

• increased perturbative stability (smaller scale uncertainty)
• decreased non-perturbative corrections (a large uncertainty on a small correction is a

small overall uncertainty)

One interesting prospect: groomed event shapes, designed to reduce contamination from
non-perturbative effects.
Pertinent criticism: grooming results in decreased yield. Are we dropping useful events?
Statistics an issue?

1But note that the two jet rate R2 can be computed to N3LO, see A. Verbytskyi’s talk. 16



Aside: jet cone energy fraction

Jet cone energy fraction (JCEF): a “particularly simple and excellent observable for the
determination of αS”, since hadronization, detector and perturbative corrections are small

[DELPHI Collaboration Eur. Phys. J. C14 (2000) 557]

JCEF(χ) =
1

σhad

∑
i

∫
Ei
Q

dσe+e−→i+X δ

(
cosχ−

~pi · ~nT
|~pi |

)
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Soft-drop grooming

Idea: obtain observables with reduced non-perturbative corrections by removing soft and
large-angle radiation from the jet
Soft-drop grooming is defined for Cambridge-Aachen jets of radius R as follows

1. undo the last step of clustering for jet J and split into two subjets
2. check if subjets pass the soft drop condition, for e+e− collisions

min{Ei ,Ej}
Ei + Ej

> zcut

(1− cos θij

1− cos R

)β/2
or zcut(1− cos θij )β/2

for hemisphere jets, where Ei , Ej are subjet energies, θij is their angle
3. if the splitting fails this condition, the softer subjet is discarded and the groomer

continues to the next step in the clustering
4. if the splitting passes the procedure ends and J is the soft-drop jet

Grooming parameters:

• zcut is an energy threshold, zcut → 0 corresponds to no grooming
• β controls how strongly wide-angle emissions are discarded, β →∞ corresponds to

no grooming
18



Soft-drop thrust

Soft-drop thrust: first perform a special kind of grooming on the event, then compute
event shape from groomed event

[Baron, Marzani, Theeuwes JHEP08 (2018) 105]

(a) compute the thrust axis, ~nT , divide event into two hemispheres
(b) apply soft-drop grooming to each hemisphere
(c’) the set of particles left in the two hemispheres after the soft-drop constitute the

soft-drop hemispheres HL
SD and HR

SD, on which the soft-drop thrust T ′SD is defined

T ′SD =

∑
i∈HL

SD
|~nL · ~pi |∑

i∈ESD
|~pi |

+

∑
i∈HR

SD
|~nR · ~pi |∑

i∈ESD
|~pi |

where ~nL and ~nR are the jet axes of the left and right hemisphere and ESD is the
soft-drop event, ESD = HL

SD ∪H
R
SD

Soft-drop event shapes depend on the grooming parameters zcut and β, which can be
used to optimize the behavior of the observable (e.g., yield vs. perturbative stability)
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Impact of soft-drop on hadronization corrections

zcut dependence
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Plots show [Baron, Marzani, Theeuwes
JHEP08 (2018) 105]

• top: soft-drop thrust
distribution in Pythia

• bottom: hadron/parton ratios
• left: β fixed, zcut varies
• right: zcut fixed, β varies

Effects of grooming
• non-perturbative corrections

remain moderate over an
extended kinematical range

• validity of perturbation theory
extended towards smaller τ ′SD
values (τ ′SD = 1− T ′SD)

• smaller non-perturbative
corrections ⇒ better
perturbative convergence?
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Impact of soft-drop on hadronization corrections

zcut dependence
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• top: soft-drop thrust
distribution in Pythia

• bottom: hadron/parton ratios
• left: β fixed, zcut varies
• right: zcut fixed, β varies

Effects of grooming
• non-perturbative corrections

remain moderate over an
extended kinematical range

• validity of perturbation theory
extended towards smaller τ ′SD
values (τ ′SD = 1− T ′SD)

• smaller non-perturbative
corrections ⇒ better
perturbative convergence?
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Impact of soft-drop on hadronization corrections

zcut dependence
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• top: soft-drop thrust
distribution in Pythia

• bottom: hadron/parton ratios
• left: β fixed, zcut varies
• right: zcut fixed, β varies

Effects of grooming
• non-perturbative corrections

remain moderate over an
extended kinematical range

• validity of perturbation theory
extended towards smaller τ ′SD
values (τ ′SD = 1− T ′SD)

• smaller non-perturbative
corrections ⇒ better
perturbative convergence?
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Soft-drop thrust at NNLO

Thrust τ (left) vs. soft-drop thrust τ ′SD (right) with zcut = 0.1, β = 0, bottom panel
shows ratio to LO
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[Kardos, GS, Trócsányi 2018]

• Much improved perturbative stability, as expected
• Smaller dependence on renormalization scale
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Dependence on grooming parameters

Soft-drop thrust τ ′SD for different (zcut, β) pairs [Kardos, GS, Trócsányi 2018]
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Perturbative stability: K -factors

K-factors defined as ratios of consecutive orders: “ratio test” for convergence of
perturbative series

KNLO(µ) =
dσNLO(µ)

dO

/dσLO(Q)
dO

, KNNLO(µ) =
dσNNLO(µ)

dO

/dσNLO(Q)
dO
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[Kardos, GS, Trócsányi 2018]

• Perturbatively most stable prediction for strongest grooming: zcut = 0.1, β = 0
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Soft-drop thrust: prospects

Groomed event shapes: an interesting prospect

Soft-drop
• can help reduce non-perturbative corrections

for thrust
• leads to more stable perturbative predictions
• NNLO accuracy in fixed-order
• NNLL accuracy in resummation for small τ ′SD 0.00
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Issues
• grooming reduces yield, statistics an issue?
• all order description of the transition between

groomed and ungroomed regime challenging
• detailed understanding of the τ ′SD ∼ zcut

region needed for meaningful matching of
fixed order to NNLL resummation
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[Baron, Marzani, Theeuwes JHEP08 (2018) 105]
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Summary

New measurement of αS(MZ ) from global fit of EEC in e+e− annihilation to
NNLO+NNLL predictions

αS(MZ ) = 0.11750± 0.00287

• value consistent with world average (αS(MZ ) = 0.1181± 0.0011)
• uncertainty competitive with other precision event shapes

Impact of NNLO corrections:

• better modelling of the shape of the distribution
• non-negligible shift of extracted αS(MZ ) towards lower values
• reduced theoretical uncertainties (factor of 1/2)

Latest progress on the theory side:

• analytic computation at NLO [Dixon, Luo, Shtabovenko, Yang, Zhu 2018]

• factorisation formula for N3LL resummation [Moult, Zhu 2018]
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Summary

Groomed event shapes provide an interesting class of new observables

• designed to reduce contamination from non-perturbative effects
• extend the validity of the perturbative description
• better perturbative stability

Example: soft-drop thrust

• can be computed to NNLO accuracy in fixed order
• grooming parameters can be used to optimize the observable
• NNLL resummation known, but transition region must be better understood

We should exploit these new observables!
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Thank you for your attention!
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Backup slides
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EEC predictions: fixed-order + resummation

Matched predictions at NNLL+NLO and NNLL+NNLO
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[Tulipánt, Kardos, GS 2017]
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More soft-drop event shapes

Can define other soft-drop event shapes in a similar manner to soft-drop thrust: use the
groomed event to compute the hemisphere jet mass e(2)

2 and narrow jet mass ρ
Hemisphere jet mass:

• cluster the event into exactly two jets
• soft-drop jets
• look at the largest value of

e(2)
2 =

m2
J

E2
J

Narrow jet mass:

• use anti-kt clustering with jet radius R
• soft-drop jets
• consider the observable

ρ =
m2

J
2E2

J (1− cos R)
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e(2)
2 : dependence on grooming parameters

Soft-drop hemisphere jet mass e(2)
2 for different (zcut, β) pairs [Kardos, GS, Trócsányi 2018]
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Perturbative stability: K -factors for e(2)
2

K-factors defined as ratios of consecutive orders: “ratio test” for convergence of
perturbative series

KNLO(µ) =
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dO

, KNNLO(µ) =
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[Kardos, GS, Trócsányi 2018]

• Perturbatively most stable prediction for strongest grooming: zcut = 0.1, β = 0
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ρ: dependence on grooming parameters

Soft-drop narrow jet mass ρ for different (zcut, β) pairs [Kardos, GS, Trócsányi 2018]
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Perturbative stability: K -factors for ρ

K-factors defined as ratios of consecutive orders: “ratio test” for convergence of
perturbative series
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[Kardos, GS, Trócsányi 2018]

• Stronger grooming improves perturbative convergence from NLO to NNLO, but the
NLO K-factor grows with more grooming
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