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Introduction




Introduction

The strong coupling as is a fundamental parameter of the Standard Model and must be
measured precisely

Obtained from fits of theory to measured data
High precision measurements demand highly accurate theoretical predictions
One option: three-jet event shapes in electron-positron annihilation

e extensively measured by multiple experiments
e the Born contribution is already proportional to as

o state-of-the-art theory: NNLO fixed order + NNLL resummation (N3LL for thrust
and C-parameter)
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Determinations from ete™ annihilation

based on
e jet rates (see A. Verbytskyi's talk)

e event shapes describing global event
topology (thrust, C-parameter, heavy
jet mass, etc.)

¢ longstanding problem of low as(Mz)
from NNLO-+N3LL event shapes (using
analytic hadronization models)

Can also revisit old event shapes as well as
examine new ones

 energy-energy correlation (old)

» groomed event shapes (new)



An old observable: energy-energy correlation




Energy-energy correlation

Energy-energy correlation (EEC): energy weighted distribution of angles x between

particles, one of the oldest event shapes [Basham, Brown, Ellis, Love 1978]
1 dx(x
= _ . y0(cosx — cosb
ordcosx  Otot Tetem— ij+X ( i)

¢ Particles in the same jet:
forward region, peak near small x

e Particles in different jets:
back-to-back region, peak near y ~

Was measured extensively at LEP and predecessors (but no measurements beyond LEP1)
Accurate theory predictions available

¢ NNLO fixed order from CoLoRFulNNLO [Del Duca, Duhr, Kardos, GS, Trécsényi 2016]

¢ NNLL resummation in back-to-back region [de Florian, Grazzini 2005]

Potential for precision as(Mz) measurement 5



EEC predictions: fixed-order

The fixed-order prediction to NNLO accuracy reads (note: here x = 7 — ;)

[ 1 dz(x)} _ as dA(x) (
— = — +
ogdcosx (o) 2mdcosy

¢ NLO correction is large as judged
by scale variation = must go to
NNLO

e Higher order predictions improve
agreement with data

* Fixed order prediction diverges in
the forward and back-to-back
regions = resummation is required

» Sizeable deviations from data even
at NNLO = must take into
account hadronization corrections

as
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[Tulipant, Kardos, GS 2017]
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Resummation

Fixed order diverges in the back-to-back limit as ~ a2 In>*"~! y where y = cos?(x/2), the
fixed-order coefficients at n-th order include terms {In* y}i":_ll.

For small y the logarithms become large, af In>"~1y ~ 1, invalidating the use of

fixed-order perturbation theory.

The logarithmically enhanced terms must be resummed to all orders to obtain a
description appropriate in the y — 0 limit.

* resummation can be systematically improved by resumming more towers of
logarithms: leading logs (LL), next-to-leading logs (NLL), etc.

1 dx 1
— ~ =< asg logy + 1 LO
ordcosy y

+a§{ log®y + logZy + logy + 1 } NLO

+a§[ log®y + log*y + log®y + log’y }} NNLO

LL NLL NNLL



EEC predictions: resummation

Resummation in the back-to-back region known up to NNLL accuracy (and N3LL is on

the way using SCET) [de Florian, Grazzini 2005; Moult, Zhu 2018]
1 dZ(X)} @ =~
— = —H db Jo(b S5(Q, b
ey, = 5 s [ b aeavS@b)

The logarithmically enhanced terms are collected in the Sudakov form factor

@ 2 2
S(Q,b) =exp {—/ diz {A(as(f)) In % + B(Ofs(éﬁ))} }
bg/bZ q q

The A(as), B(as) and H(as) functions can be computed perturbatively

A(as>=§:(%j)"/4‘"% B(as):i(%i)ns("), H(as) =1+

n=1 n=1 n

(%)" ()
4

Unitarity constraint (vanishing of the distribution at kinematical limit y = 1)

e}

1

A s A1 =y and B 5 BM(1—y)P, p=1,2



EEC predictions: resummation

Resummation in the back-to-back region known up to NNLL accuracy (and N3LL is on
the way using SCET) [de Florian, Grazzini 2005; Moult, Zhu 2018]

o+ dcosx

F di(x)} _ QiH(as)/ db Jo(b Qv/y)S(Q, b)
(res.) 8 0

e pure resummed results capture the 2 ; r r r r
general behaviour of data for small . o]
y (note: here x = — 6 so small y
corresponds to small angles)

---1L

W

» Sizeable deviations from data even
for moderate angles

1/oy dX/dx [1/rad)
g

[Tulipant, Kardos, GS 2017]



Combining fixed-order and resummed predictions

Fixed-order and resummed calculations are complementary to each other: they describe
data over different kinematical ranges

In order to obtain predictions over a wide kinematical range, the two computations must
be combined without double counting (“matching”)

Matched predictions at NNLO-+NNLL:

* all terms from first three rows (NNLO)
 in addition, first three terms from all rows (NNLL)

* must take care to count the first three terms of the first three rows only once

1 dx 1
= ~ =< as logy + 1 LO
ot d cosy y

+a§[ log>y + log2y + logy + 1 } NLO

+a§[ log®y 4+ log*y + log®y + log’y }} NNLO

LL NLL NNLL



log-R matching

Standard additive matching (naive R matching)
1 dx - {i dZ(X)} " {i dZ(X)} _ [i di(x)}
ot d cosx B ot dcosx (res.) or dcosx (f.0.) or deosx (res.)

e cannot be used, because the order of the logarithmic approximation is not high
enough (i.e., the fixed order expansion of the resummed expression does not predict
all logarithmically enhanced terms correctly at NNLO)

(f.0.)

e N3LL accuracy required
Use log-R matching instead

* in the log-R scheme, matching is performed at the level of the cumulant

» the fixed order expansion of EEC diverges for both small and large angles making
the determination of a simple cumulant unreliable

e use a linear combination of moments to suppress the singularity in the forward region

10



log-R matching

Prescription for log-R matching

» consider the combination of moments

1. 1 [x ds
—3(x) = f/ dx'(1+cosx')—=
Ot Ot 0 dX

e this has the fixed order expansion

ot 27 27

0] =1 A+ (3) Bw (8) @+ o

e NNLO+NNLL matched expression

e original observable
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Finite b-quark mass corrections

At low energies, the assumption of vanishing quark masses is not entirely justified

e include mass effects directly at the level of matched distributions

1 dx
o+ d cosy

1 dx

Ot d cos X:| massless

1 b NNLO*
+1(Q) [ J ]

o+ d cosx

(1= n(@) |

massive

e the complete NNLO correction to the massive distribution is unknown, so
supplement the massive NLO prediction with the NNLO coefficient of the massless
calculation

* massive predictions computed with Zbb4 [P. Nason, C. Oleari 1997]
* r,(Q) is the fraction of b-quark events

U!Ilassive(e+57 — bB)

Omassive(€t e~ — hadrons)

(Q) =

* to assess the uncertainty associated to the modeling of b-quark mass corrections,
investigated different prescriptions for including the massive corrections (e.g., do not
supplement massive NLO prediction with massless NNLO coefficients)
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Hadronization corrections

Effects associated with the parton-to-hadron transition cannot be computed in
perturbation theory and must be estimated by other means

Analytic modeling MC based approach

* Non-perturbative, power-behaved * Point-by-point multiplicative
corrections in dispersive approach correction factors using modern MC
[Y.L. Dokshitzer, G. Marchesini, tools

B.R. Webber 1999] L . .
¢ Hadronization corrections are ratios

of hadron to parton level

e Multiply Sudakov form factor with
distributions in the MCs

non—pertuqbative correction
Snp = e 278(1 - 2a5b) + Systematics from comparing

o a; and a, are related to moments of multiple hadronization models

as at low energy * See A. Verbytskyi's talk for details

e Analytic model cannot fully account
for hadronization corrections away
from back-to-back limit



Fits to data: MC based hadronization corrections

Fits to data of NNLO+NNLL and NLO+NNLL predictions
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Main result from global fit at NNLO+NNLL

as(Mz) = 0.11750 + 0.00018(exp.) + 0.00102(hadr.) + 0.00257(ren.) £ 0.00078(res.)
as(Mz) = 0.11750 £ 0.00287(comb.)

See A. Verbytskyi's talk for description of uncertainty
Note using NLO-+NNLL only (i.e., no NNLO), we find

as(Mz) = 0.12200 = 0.00023(exp.) % 0.00113(hadr.) & 0.00433(ren.) & 0.00293(res.)
as(Mz) = 0.12200 = 0.00535(comb.)

Inclusion of NNLO corrections crucial in reducing uncertainty: factor of 1/2!

The result is consistent with the world average (as(Mz) = 0.1175 + 0.0029 vs.
0.1181 4 0.0011) and competitive with other precision event shapes
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New observables: soft-drop event shapes

15



How to improve precision?

Main source of uncertainty

 renormalization scale uncertainty (truncation of perturbative series)

e hadronization uncertainty
How to improve

e Can we go beyond NNLO for three-jet event shapes? No.!

¢ What can be done with the non-perturbative effects?
Find observables with

 increased perturbative stability (smaller scale uncertainty)

 decreased non-perturbative corrections (a large uncertainty on a small correction is a
small overall uncertainty)

One interesting prospect: groomed event shapes, designed to reduce contamination from
non-perturbative effects.

Pertinent criticism: grooming results in decreased yield. Are we dropping useful events?
Statistics an issue?

!But note that the two jet rate Ry can be computed to N3LO, see A. Verbytskyi's talk. 16



Aside: jet cone energy fraction

Jet cone energy fraction (JCEF): a “particularly simple and excellent observable for the
determination of as”, since hadronization, detector and perturbative corrections are small

[DELPHI Collaboration Eur. Phys. J. C14 (2000) 557]
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[Del Duca, Duhr, Kardos, GS, Sz&r, Trécsanyi, Tulipant 2016]
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Soft-drop grooming

Idea: obtain observables with reduced non-perturbative corrections by removing soft and
large-angle radiation from the jet

Soft-drop grooming is defined for Cambridge-Aachen jets of radius R as follows

1. undo the last step of clustering for jet J and split into two subjets
2. check if subjets pass the soft drop condition, for ete~ collisions

min{E;, E;} ot (17c059,-j
cu

o 5/2
or 1-— 0
Ei+E; 1—cosR ) Zeut( cos0y)

for hemisphere jets, where E;, E; are subjet energies, ¢;; is their angle
3. if the splitting fails this condition, the softer subjet is discarded and the groomer
continues to the next step in the clustering

4. if the splitting passes the procedure ends and J is the soft-drop jet

Grooming parameters:

Zcut 1S an energy threshold, zcyt — 0 corresponds to no grooming

B controls how strongly wide-angle emissions are discarded, 3 — co corresponds to
no grooming

18



Soft-drop thrust

Soft-drop thrust: first perform a special kind of grooming on the event, then compute
event shape from groomed event

(
(

[Baron, Marzani, Theeuwes JHEP08 (2018) 105]

a) compute the thrust axis, fir, divide event into two hemispheres

b) apply soft-drop grooming to each hemisphere

(c') the set of particles left in the two hemispheres after the soft-drop constitute the

R

soft-drop hemispheres HéD and Hg,, on which the soft-drop thrust T¢, is defined

Yicpn Bl D icqr IR Bl
SD SD
— + -
ZIESSD |Bil ZIEESD |Bil

where 7, and fig are the jet axes of the left and right hemisphere and &sp is the
soft-drop event, &sp = H5, UHEL

A
7—SD -

Soft-drop event shapes depend on the grooming parameters z.,; and 3, which can be
used to optimize the behavior of the observable (e.g., yield vs. perturbative stability)

19



Impact of soft-drop on hadronization corrections

Zcut dependence B dependence Plots show [Baron, Marzani, Theeuwes
JHEPO8 (2018) 105]
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Impact of soft-drop on hadronization corrections

Zcut dependence B dependence Plots show [Baron, Marzani, Theeuwes
JHEPO8 (2018) 105]
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Impact of soft-drop on hadronization corrections

zcut dependence

o (ot e s
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[Baron, Marzani, Theeuwes
JHEPO08 (2018) 105]

top: soft-drop thrust
distribution in Pythia

bottom: hadron/parton ratios
left: B fixed, z.ut varies

right: zcu fixed, B varies

Effects of grooming

non-perturbative corrections
remain moderate over an
extended kinematical range

validity of perturbation theory
extended towards smaller 74
values (4, =1— T4p)
smaller non-perturbative
corrections = better
perturbative convergence?
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Soft-drop thrust at NNLO

Thrust 7 (left) vs. soft-drop thrust 74, (right) with zeue = 0.1, 8 =0, bottom panel

shows ratio to LO

T
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[Kardos, GS, Trécsanyi 2018]

Much improved perturbative stability, as expected

* Smaller dependence on renormalization scale
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Dependence on grooming parameters

Soft-drop thrust 7, for different (zcut, 8) pairs
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Perturbative stability: K-factors

K-factors defined as ratios of consecutive orders: “ratio test” for convergence of

perturbative series

Kawo (1) = donLo(u) /dULo(Q)

do do ’

005 )
Q=912 GeV, ag(Q) = 0.118
0.0 1 1 1 1

1073 1072 102 107 107t 10-0%

,
7Sp

Knnpo (i) = dUNNLO(#)/dUNLo(Q)

do do

[Kardos, GS, Trécsanyi 2018]

» Perturbatively most stable prediction for strongest grooming: zcyt = 0.1, 3 =0
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Soft-drop thrust: prospects

Groomed event shapes: an interesting prospect

Soft-drop

can help reduce non-perturbative corrections
for thrust

leads to more stable perturbative predictions
NNLO accuracy in fixed-order

NNLL accuracy in resummation for small 7

Issues

grooming reduces yield, statistics an issue?
all order description of the transition between
groomed and ungroomed regime challenging
detailed understanding of the 74, ~ zcus

region needed for meaningful matching of
fixed order to NNLL resummation
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[Baron, Marzani, Theeuwes JHEP08 (2018) 105]
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New measurement of as(Mz) from global fit of EEC in eTe™ annihilation to
NNLO-+NNLL predictions

as(Mz) = 0.11750 = 0.00287

 value consistent with world average (as(Mz) = 0.1181 4+ 0.0011)

e uncertainty competitive with other precision event shapes

Impact of NNLO corrections:

e better modelling of the shape of the distribution
* non-negligible shift of extracted as(Mz) towards lower values

 reduced theoretical uncertainties (factor of 1/2)

Latest progress on the theory side:

» analytic computation at NLO [Dixon, Luo, Shtabovenko, Yang, Zhu 2018]

o factorisation formula for N3LL resummation [Moult, Zhu 2018]
25



Groomed event shapes provide an interesting class of new observables

» designed to reduce contamination from non-perturbative effects
» extend the validity of the perturbative description
e better perturbative stability

Example: soft-drop thrust

e can be computed to NNLO accuracy in fixed order
e grooming parameters can be used to optimize the observable

¢ NNLL resummation known, but transition region must be better understood

We should exploit these new observables!
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Thank you for your attention!
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Backup slides

28



EEC predictions: fixed-order + resummation

Matched predictions at NNLL+NLO and NNLL+NNLO
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[Tulipant, Kardos, GS 2017]
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More soft-drop event shapes

Can define other soft-drop event shapes in a similar manner to soft-drop thrust: use the
groomed event to compute the hemisphere jet mass egz) and narrow jet mass p

Hemisphere jet mass:
» cluster the event into exactly two jets

» soft-drop jets
e look at the largest value of

2
@_m
2 T B
J
Narrow jet mass:
e use anti-k; clustering with jet radius R
* soft-drop jets
e consider the observable
2
my

r= 2E3(1 — cos R)
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e£2): dependence on grooming parameters

Soft-drop hemisphere jet mass ef) for different (zcut, 8) pairs [Kardos, GS, Trécsanyi 2018]
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Perturbative stability: K-factors for e£2)

K-factors defined as ratios of consecutive orders: “ratio test” for convergence of
perturbative series

Knvo(m) =

Knnpo (i) =

donLo(u) /dULo(Q)

dUNNLO(M)/dUNLo(Q)
do do ’

do do

T T
15 F 2=00573=1 . -

0.15

0.1

0.05

E Q=912GeV, as(@) =0.118
0.0 1 1 1 1 1

0% 107%% 102 107 107t 10700 10°% 107 1072 107 107t 10700

[Kardos, GS, Trécsanyi 2018]
» Perturbatively most stable prediction for strongest grooming: zcyt = 0.1, 3 =0
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p: dependence on grooming parameters

Soft-drop narrow jet mass p for different (zcus, 8) pairs [Kardos, GS, Trécsanyi 2018]
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Perturbative stability: K-factors for p

K-factors defined as ratios of consecutive orders: “ratio test” for convergence of
perturbative series

donpo(u) /doro(Q) donnro(#) /donLo(Q)
Knro(w) = 10 0 KnnLo (1) = 10 10
0.6 T T T
— NNLO R=1,2=018=0 :j E:
F NLO £e 0251 3 -

10 B==

3.0
2.0
1.0 ==

04 |

03 F e

L2do
agdp

3.0
2.0
L0 E=7

K-factor

02 F

3.0
i 20
Q=912 GeV, ag(Q) = 0.118 1.0 BT
1 1 1

01 F

0.0 & 1 —=
10-% 10725 1072 10°12 107! 10-%
P

[Kardos, GS, Trécséanyi 2018]

» Stronger grooming improves perturbative convergence from NLO to NNLO, but the

NLO K-factor grows with more grooming
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