GEANT4 simulation of ADS

Vladimir Grichine

Abstract

Accelerator driven system (ADS) is simulated by the GEANT4 tools - the mass layered geometry and scoring. The ADS target was simulated with different geometries of cooling layers. The neutron output spectra as well as energy deposition profiles are shown. The ADS power (and other parameters) dependence on driver thickness are shown. The medical isotope production is simulated in the batch mode (2000 jobs with 5000 events each)
1 Outline

1. GEANT4 Mass layered geometry and scoring
2. Energy deposition profiles.
3. Target neutron flux and energy deposition profiles.
4. Medical isotope production
5. Power vs. driver thickness dependence.
2 Geant4 mass layered geometry and scoring

The Geant4 mass layered parallel geometry was applied to describe the proton beam pipe and the cooling channel. Both primitives were created in the mass parallel world and interfaced to the physical tracking.

Geant4 scoring tools were applied to describe energy deposition and neutron flux profiles in the central part of ADS. The scoring mesh with 2x2x2 m³ volume was subdivided by 1 million 2x2x2 cm³ voxels, where the local energy deposition and neutron flux were accumulated. The mesh was centered by the target position.

All simulations were done at 9.7 cm thick driver zone corresponding roughly to 1 MW of produced power. Realistic ADS geometry with tungsten-water (six 1 mm layers) target was used.
Energy deposition (MeV/proton) in 2x2x2 cm3 voxels

XZ-profile of the energy deposition at the target center.
XY-profile of the energy deposition at the target center.
Neutron flux (cm²/proton) in 2x2x2 cm³ voxels

XZ-profile of the neutron flux at the target center.
XY-profile of the neutron flux at the target center.
3 Target simulation set-up

The target was the tungsten box with realistic ADS geometry (76x45x250 mm3). Six 1 mm thick water layers were uniformly distributed along x-axis with 11 mm period. The target is surrounded by thin (0.1 mm) check volume with galactic material.

One mode is energy deposition of initial proton, another - from all particles in the target. FTFP_BERT_HP physics list was used (the same as was used in the simulation of all ADS realistic geometry)
The neutron track origin x-position profile along the beam line direction.
Total energy deposition in target (W+6x1mmH2O, p 300 MeV)

![Graph showing total energy deposition profile in the ADS target.](image)

Total energy deposition profile in the ADS target.
Total energy deposition in target (W+6x1mmH2O, p 300 MeV)

Beam proton energy deposition profile in the ADS target.
Neutron spectra produced in W+H₂O by 300 MeV p (100 µA) out of target (C1 readout)

The neutron spectrum near target.
Neutron spectra produced in W+H₂O by 300 MeV p (100 µA) out of target (C2 readout)

The neutron spectrum in the middle of Pb diffusor.
Geant4 simulation of ADS

Neutron spectra produced in W+H\textsubscript{2}O by 300 MeV p (100 \(\mu\)A) out of target (C3 readout)

![Graph showing neutron spectra produced in W+H\textsubscript{2}O by 300 MeV p (100 \(\mu\)A) out of target (C3 readout).]

The neutron spectrum near driver (U+H\textsubscript{2}O).

V. Grichine
Activity of 40.91 g Mo (plate) for 100 μA 300 MeV proton beam in 10 h

Activity (99Mo) of 40.91 g natural Mo plate (6.33x6.323x0.1 cm3) at 100 μA 300 MeV proton beam and $K_{eff}=0.97$. Irradiation time is 10 hours.
ADS Power at 100 μA 300 MeV proton beam (30 kW) versus K_{eff}

ADS power versus the rectivity. The reactivity $K_{\text{eff}}=0.9695\sim0.97$ ($T_{\text{driver}}=9.55$ cm) was selected to study isotope production ($K_{\text{eff}} = 1 - N_{sp}/N_{fis}$).
Inelastic neutron tungsten cross section vs. the neutron energy.
Geant4 simulation of ADS

Power at 100 µA 600 MeV proton current versus \(K_{eff} \).

\[\text{ADS Power at 100 µA 600 MeV proton beam (60 kW) versus } K_{eff} \]

\[\text{Power at 100 µA 600 MeV proton current versus } K_{eff}. \]
4 Summary

1. Geant4 mass layered geometry allows one to describe drilled pipes in terms of physical tracking.

2. Energy deposition and neutron flux profiles scored in the central part of ADS look to be reasonable.

4. At $k_{eff} \sim 0.98$ (the driver thickness ~ 9.7 cm), the simulated power is ~ 1 MW in agreement with the MCNPX simulation.