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Retrieving information from Geant4



Extract useful information

• Given geometry, physics and primary track generation, Geant4 does proper 

physics simulation “silently”. 

– You have to do something to extract information useful to you.

• There are three ways:

– Built-in scoring commands

• Most commonly-used physics quantities are available.

– Use scorers in the tracking volume

• Create scores for each event

• Create own Run class to accumulate scores

– Assign G4VSensitiveDetector to a volume to generate “hit”.

• Use user hooks (G4UserEventAction, G4UserRunAction) to get event / 

run summary

• You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction, 

etc.)

– You have full access to almost all information

– Straight-forward, but do-it-yourself
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Command-based scoring



Command-based scoring

• Command-based scoring functionality offers the built-in scoring mesh and various 

scorers for commonly-used physics quantities such as dose, flux, etc.

– Due to small performance overhead, it does not come by default.

• To use this functionality, access to the G4ScoringManager pointer after the 

instantiation of G4(MT)RunManager in your main().

#include “G4ScoringManager.hh”

int main()

{

G4RunManager* runManager = new G4MTRunManager;

G4ScoringManager* scoringManager = 

G4ScoringManager::GetScoringManager();

…

• All of the UI commands of this functionality are in /score/ directory.

• /examples/extended/runAndEvent/RE03
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Command-based scorers
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Define a scoring mesh

• To define a scoring mesh, the user has to specify the followings. 

1. Shape and name of the 3D scoring mesh. 

• Currently, box and cylinder are available. 

2. Size of the scoring mesh. 

• Mesh size must be specified as "half width" similar to the arguments of 
G4Box / G4Tubs. 

3. Number of bins for each axes. 

• Note that too many bins causes immense memory consumption. 

4. Specify position and rotation of the mesh. 

• If not specified, the mesh is positioned at the center of the world volume 
without rotation. 

# define scoring mesh 

/score/create/boxMesh boxMesh_1 

/score/mesh/boxSize 100. 100. 100. cm 

/score/mesh/nBin 30 30 30

/score/mesh/translate/xyz 0. 0. 100. cm

• The mesh geometry can be completely independent to the real material geometry.
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Scoring quantities

• A mesh may have arbitrary number of scorers. Each scorer scores one physics 
quantity.

– energyDeposit * Energy deposit scorer.

– cellCharge * Cell charge scorer.

– cellFlux * Cell flux scorer.

– passageCellFlux * Passage cell flux scorer

– doseDeposit * Dose deposit scorer.

– nOfStep * Number of step scorer.

– nOfSecondary * Number of secondary scorer.

– trackLength * Track length scorer.

– passageCellCurrent * Passage cell current scorer.

– passageTrackLength * Passage track length scorer.

– flatSurfaceCurrent * Flat surface current Scorer.

– flatSurfaceFlux * Flat surface flux scorer.

– nOfCollision * Number of collision scorer.

– population * Population scorer.

– nOfTrack * Number of track scorer.

– nOfTerminatedTrack * Number of terminated tracks scorer.
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List of provided primitive scorers
• Concrete Primitive Scorers  ( See Application Developers Guide 4.4.6 )

– Track length

• G4PSTrackLength, G4PSPassageTrackLength

– Deposited energy

• G4PSEnergyDepsit, G4PSDoseDeposit, G4PSChargeDeposit

– Current/Flux

• G4PSFlatSurfaceCurrent, 

G4PSSphereSurfaceCurrent,G4PSPassageCurrent, G4PSFlatSurfaceFlux, 

G4PSCellFlux, G4PSPassageCellFlux

– Others

• G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep
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V : Volume

L : Total step length in the cell.

SurfaceCurrent :
Count number of 
injecting particles 
at defined surface.

SurfaceFlux :
Sum up 1/cos(angle) of 
injecting particles
at defined surface

CellFlux :
Sum of  L / V of 
injecting particles 
in the geometrical cell.



Filter

• Each scorer may take a filter.

– charged * Charged particle filter.

– neutral * Neutral particle filter.

– kineticEnergy * Kinetic energy filter.

/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>

– particle * Particle filter.

/score/filter/particle <fname> <p1> … <pn>

– particleWithKineticEnergy * Particle with kinetic energy filter.

/score/filter/ParticleWithKineticEnergy
<fname> <eLow> <eHigh> <unit> <p1> … <pn>

/score/quantity/energyDeposit eDep MeV

/score/quantity/nOfStep nOfStepGamma

/score/filter/particle   gammaFilter gamma

/score/quantity/nOfStep nOfStepEMinus

/score/filter/particle   eMinusFilter e-

/score/quantity/nOfStep nOfStepEPlus

/score/filter/particle   ePlusFilter e+

/score/close
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Close the mesh when defining scorers is done. 

Same primitive scorers 
with different filters 
may be defined.



Drawing a score

• Projection

/score/drawProjection <mesh_name> <scorer_name> <color_map>

• Slice

/score/drawColumn <mesh_name> <scorer_name> <plane> <column> 

<color_map>

• Color map

– By default, linear and log-scale color maps are available.

– Minimum and maximum values can be defined by 

/score/colorMap/setMinMax command. Otherwise, min and max values are 

taken from the current score.
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Write scores to a file

• Single score

/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name>

• All scores

/score/dumpAllQuantitiesToFile <mesh_name> <file_name>

• By default, values are written in CSV.

• By creating a concrete class derived from G4VScoreWriter base class, the user 

can define his own file format.

– Example in /examples/extended/runAndEvent/RE03

– User’s score writer class should be registered to G4ScoringManager.
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Energy spectrum?

• One of most frequently asked questions is “How to get energy spectrum?”.

• Create arbitrary number of flux scorers of same kind combined with particle and kinetic 
energy filters.

/score/quantity/flatSurfaceFlux flux0

/score/filter/particleWithKineticEnergy range0 10. 20. MeV e-

/score/quantity/flatSurfaceFlux flux1

/score/filter/particleWithKineticEnergy range1 20. 30. MeV e-

/score/quantity/flatSurfaceFlux flux2

/score/filter/particleWithKineticEnergy range2 30. 40. MeV e-

/score/quantity/flatSurfaceFlux flux3

/score/filter/particleWithKineticEnergy range3 40. 50. MeV e-
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Alias

• Alias can be defined by

/control/alias [name] [value]

– It is also set with /control/loop and /control/foreach commands

– Aliased value is always treated as a string even if it contains numbers only.

• Alias is to be used with other UI command.

– Use curly brackets, { and }.

– For example, frequently used lengthy command can be shortened by 

aliasing.

/control/alias tv /tracking/verbose

{tv} 1

– Aliases can be used recursively.

/control/alias file1 /diskA/dirX/fileXX.dat

/control/alias file2 /diskB/dirY/fileYY.dat

/control/alias run 1

/myCmd/getFile {file{run}}
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Loop
• /control/loop and /control/foreach commands execute a macro file 

more than once. Aliased variable name can be used inside the macro file.

• /control/loop [macroFile] [counterName] 

[initialValue] [finalValue] [stepSize]

– counterName is aliased to the number as a loop counter

• /control/foreach [macroFile] [counterName] [valueList]

– counterName is aliased to a value in valueList

– valueList must be enclosed by double quotes (" ")

• on UI terminal or other macro file

/control/loop myRun.mac Ekin 10. 20. 2.

• in myRun.mac

/control/foreach mySingleRun.mac pname “p pi- mu-”

• in mySingleRun.mac

/gun/particle {pname}

/gun/energy {Ekin} GeV

/run/beamOn 100

• Note: Simple math functions are also available

– E.g. /control/add y {x} 2.   y = x + 2.
16



More than one scoring meshes

• You may define more than one scoring 

mesh.

– And, you may define arbitrary 

number of primitive scorers to each 

scoring mesh.

• Mesh volumes may overlap with other 

meshes and/or with mass geometry.

• A step is limited on any boundary.

• Please be cautious of too many meshes, 

too granular meshes and/or too many 

primitive scorers.

– Memory consumption

– Computing speed 
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Add a new scorer/filter to command-based scorers



Scorer base class

• G4VPrimitiveScorer is the abstract base of all scorer classes. 

• To make your own scorer you have to implement at least:

– Constructor

– Initialize()

• Initialize G4THitsMap<G4double> map object

– ProcessHits()

• Get the physics quantity you want from G4Step, etc. and fill the map

– Clear()

– GetIndex()

• Convert three copy numbers into an index of the map

• G4PSEnergyDeposit3D could be a good example.

• Create your own messenger class to define /score/quantity/<your_quantity> 

command. 

– Refer to G4ScorerQuantityMessengerQCmd class.

Scoring Functionalities -
M.Asai (SLAC)
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Creating your own scorer
• Though we provide most commonly-used scorers, you may want to create your own.

– If you believe your requirement is quite common, just let us know, so that we will add 

a new scorer.

• G4VPrimitiveScorer is the abstract base class.

class G4VPrimitiveScorer

{

public:

G4VPrimitiveScorer(G4String name, G4int depth=0);

virtual ~G4VPrimitiveScorer();

protected:

virtual G4bool ProcessHits(G4Step*,

G4TouchableHistory*) = 0;

virtual G4int GetIndex(G4Step*);

public:

virtual void Initialize(G4HCofThisEvent*);

virtual void EndOfEvent(G4HCofThisEvent*);

virtual void clear();

…

};

• Methods written in red will be discussed at “Scoring 2” talk.
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Filter class

• G4VSDFilter

– Abstract base class which you can use to make your own filter

class G4VSDFilter 

{

public: 

G4VSDFilter(G4String name);

virtual ~G4VSDFilter();

public:

virtual G4bool Accept(const G4Step*) const = 0;

…

• Create your own messenger class to define /score/filter/<your_filter> command. 

– Refer to G4ScorerQuantityMessenger class.

Scoring Functionalities -
M.Asai (SLAC)
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Define scorers to the tracking 

volume



Class diagram
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Keys of G4THitsMap

• All provided primitive scorer classes use G4THitsMap<G4double>.

• By default, the copy number is taken from the physical volume to which 

G4MultiFunctionalDetector is assigned.

– If the physical volume is placed only once, but its (grand-)mother volume is 

replicated, use the “depth” argument of the constructor of the primitive scorer 

to indicate the level where the copy number should be taken.

e.g. G4PSCellFlux(G4String name, G4String& unit, G4int depth=0)

See exampleRE06

– If your indexing scheme is more complicated (e.g. utilizing copy numbers of 

more than one hierarchies), you can override the virtual method GetIndex() 

provided for all the primitive scorers.
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G4VSDFilter

• G4VSDFilter can be attached to G4VSensitiveDetector and/or 

G4VPrimitiveSensitivity to define which kinds of tracks are to be scored. 

– E.g., surface flux of protons can be scored by G4PSFlatSurfaceFlux with a filter 

that accepts protons only.
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G4VSensitiveDetector
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example…

MyDetectorConstruction::ConstructSDandField()

{ 

G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector(“myCellScorer”);

G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->Register(totalSurfFlux); 

G4VPrimitiveSensitivity* protonSufFlux = new G4PSFlatSurfaceFlux(“ProtonSurfFlux”);

G4VSDFilter* protonFilter = new G4SDParticleFilter(“protonFilter”);

protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->Register(protonSurfFlux);

G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);

SetSensitiveDetector(“myLogVol”,myScorer);

}
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Accumulate scores for a run



Class diagram
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Score == G4THitsMap<G4double>

• At the end of successful event, G4Event has a vector of G4THitsMap as the 

scores.

• Create your own Run class derived from G4Run, and implement two methods.

• RecordEvent(const G4Event*) method is invoked in the worker thread at the end 

of each event. You can get all output of the event so that you can accumulate 

the sum of an event to a variable for entire run.

• Merge(const G4Run*) method of the run object in the master thread is invoked 

with the pointer to the thread-local run object when an event loop of that thread 

is over. You should merge thread-local scores to global scores.

• Your run class object should be instantiated in GenerateRun() method of your 

UserRunAction.

– This UserRunAction must be instantiated both for master and worker threads.
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Customized run class

#include “G4Run.hh”

#include “G4Event.hh”

#include “G4THitsMap.hh”

Class MyRun : public G4Run

{

public: 

MyRun();

virtual ~MyRun();

virtual void RecordEvent(const G4Event*);

virtual void Merge(const G4Run*);

private:

G4int nEvent;

G4int   totalSurfFluxID,   protonSurfFluxID,   totalDoseID;

G4THitsMap<G4double> totalSurfFlux;

G4THitsMap<G4double> protonSurfFlux;

G4THitsMap<G4double> totalDose;

public:

… access methods …

};
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Implement how you accumulate 
event data

Implement how you merge 
thread-local scores



Customized run class

MyRun::MyRun() 

{

G4SDManager* SDM = G4SDManager::GetSDMpointer();

totalSurfFluxID = SDM->GetCollectionID("myCellScorer/TotalSurfFlux");

protonSurfFluxID = SDM->GetCollectionID("myCellScorer/ProtonSurfFlux");

totalDoseID = SDM->GetCollectionID("myCellScorer/TotalDose");

}
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name of G4MultiFunctionalDetector 
object

name of G4VPrimitiveSensitivity object



Customized run class

void MyRun::RecordEvent(const G4Event* evt)

{

G4HCofThisEvent* HCE = evt->GetHCofThisEvent();

G4THitsMap<G4double>* eventTotalSurfFlux

= (G4THitsMap<G4double>*)(HCE->GetHC(totalSurfFluxID));

G4THitsMap<G4double>* eventProtonSurfFlux

= (G4THitsMap<G4double>*)(HCE->GetHC(protonSurfFluxID));

G4THitsMap<G4double>* eventTotalDose

= (G4THitsMap<G4double>*)(HCE->GetHC(totalDoseID));

totalSurfFlux += *eventTotalSurfFlux;

protonSurfFlux += *eventProtonSurfFlux;

totalDose += *eventTotalDose;

G4Run::RecordEvent(evt);

}
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No need of loops. 
+= operator is provided !

Don’t forget to invoke base class 
method!



Customized run class

void MyRun::Merge(const G4Run* run)

{

const MyRun* localRun = static_cast<const MyRun*>(run);

totalSurfFlux += *(localRun . totalSurfFlux);

protonSurfFlux += *(localRun . protonSurfFlux);

totalDose += *(localRun . totalDose);

G4Run::Merge(run);

}
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No need of loops. 
+= operator is provided !

Don’t forget to invoke base class 
method!

Cast !



RunAction with customized run 

G4Run* MyRunAction::GenerateRun()

{ return (new MyRun()); }

void MyRunAction::EndOfRunAction(const G4Run* aRun)

{

const MyRun* theRun = static_cast<const MyRun*>(aRun);

if( IsMaster() )

{

// … analyze / record / print-out your run summary

// MyRun object has everything you need …

}

}

• As you have seen, to accumulate event data, you do NOT need

– Event / tracking / stepping action classes

• All you need are your Run and RunAction classes.
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IsMaster() returns true for the RunAction
object assigned to the master thread. (also 
returns true for sequential mode)
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Sensitive detector 

vs. 

primitive scorer



Extract useful information

• Given geometry, physics and primary track generation, Geant4 does proper 

physics simulation “silently”. 

– You have to add a bit of code to extract information useful to you.

• There are three ways:

– Built-in scoring commands

• Most commonly-used physics quantities are available.

– Use scorers in the tracking volume

• Create scores for each event

• Create own Run class to accumulate scores

– Assign G4VSensitiveDetector to a volume to generate “hit”.

• Use user hooks (G4UserEventAction, G4UserRunAction) to get event / 

run summary

• You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction, 

etc.)

– You have full access to almost all information

– Straight-forward, but do-it-yourself
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Sensitive detector vs. primitive scorer
Sensitive detector

• You have to implement your own 
detector and hit classes.

• One hit class can contain many 
quantities. A hit can be made for 
each individual step, or accumulate 
quantities.

• Basically one hits collection is made 
per one detector.

• Hits collection is relatively compact. 

Primitive scorer

• Many scorers are provided by 

Geant4. You can add your own.

• Each scorer accumulates one 

quantity for an event. 

• G4MultiFunctionalDetector creates 

many collections (maps), i.e. one 

collection per one scorer.

• Keys of maps are redundant for 

scorers of same volume.
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I would suggest to :

 Use primitive scorers 

 if you are not interested in recording each individual step but accumulating 
some physics quantities for an event or a run, and

 if you do not have to have too many scorers.

 Otherwise, consider implementing your own sensitive detector.
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Sensitive detector
• A G4VSensitiveDetector object can be assigned to G4LogicalVolume.

• In case a step takes place in a logical volume that has a G4VSensitiveDetector 

object, this G4VSensitiveDetector is invoked with the current G4Step object.

– You can implement your own sensitive detector classes, or use scorer 

classes provided by Geant4.
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Defining a sensitive detector

• Basic strategy 

In your ConstructSDandField() method

G4VSensetiveDetector* pSensetivePart

= new MyDetector(“/mydet”);

G4SDManager::GetSDMpointer()

->AddNewDetector(pSensetivePart);

SetSensitiveDetector(“myLogicalVolume”,pSensetivePart);

• Each detector object must have a unique name.

– Some logical volumes can share one detector object.

– More than one detector objects can be made from one detector class with 

different detector name.

– One logical volume cannot have more than one detector objects. But, one 

detector object can generate more than one kinds of hits.

• e.g. a double-sided silicon micro-strip detector can generate hits for each 

side separately.
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Class diagram
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Hits collection, hits map

• G4VHitsCollection is the common abstract base class of both G4THitsCollection

and G4THitsMap.

• G4THitsCollection is a template vector class to store pointers of objects of one 

concrete hit class type.

– A hit class (deliverable of G4VHit abstract base class) should have its own 

identifier (e.g. cell ID).

– In other words, G4THitsCollection requires you to implement your hit class.

• G4THitsMap is a template map class so that it stores keys (typically cell ID, i.e. 

copy number of the volume) with pointers of objects of one type.

– Objects may not be those of hit class.

• All of currently provided scorer classes use G4THitsMap with simple 

double.

– Since G4THitsMap is a template, it can be used by your sensitive detector 

class to store hits. 

Scoring Functionalities - M.Asai (SLAC) 42



Version 10.5.p01

Sensitive detector and hit



Sensitive detector and Hit

• Each Logical Volume can have a pointer to a sensitive detector.

– Then this volume becomes sensitive.

• Hit is a snapshot of the physical interaction of a track or an accumulation of 

interactions of tracks in the sensitive region of your detector.

• A sensitive detector creates hit(s) using the information given in G4Step 

object. The user has to provide his/her own implementation of the detector 

response.

• Hit objects, which are still the user’s class objects, are collected in a G4Event 

object at the end of an event.
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Hit class
• Hit is a user-defined class derived from G4VHit.

• You can store various types information by implementing your own concrete Hit class. 

For example:

– Position and time of the step 

– Momentum and energy of the track 

– Energy deposition of the step 

– Geometrical information 

– or any combination of above

• Hit objects of a concrete hit class must be stored in a dedicated collection which is 

instantiated from G4THitsCollection template class.

• The collection will be associated to a G4Event object via G4HCofThisEvent.

• Hits collections are accessible 

– through G4Event at the end of event.

• to be used for analyzing an event

– through G4SDManager during processing an event.

• to be used for event filtering.Scoring Functionalities - M.Asai (SLAC) 45



Implementation of Hit class

#include "G4VHit.hh"

#include "G4Allocator.hh"

class MyHit : public G4VHit

{

public:

MyHit(some_arguments);

inline void*operator new(size_t);

inline void operator delete(void *aHit);

virtual ~MyHit();

virtual void Draw();

virtual void Print();

private:

// some data members

public:

// some set/get methods

};

#include “G4THitsCollection.hh”

typedef G4THitsCollection<MyHit> MyHitsCollection;
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G4Allocator

• Instantiation / deletion of an object is a heavy operation.

– It may cause a performance concern, in particular for objects that are 

frequently instantiated / deleted.

• E.g. hit, trajectory and trajectory point classes

• G4Allocator is provided to ease such a problem.

– It allocates a chunk of memory space for objects of a certain class.

• Please note that G4Allocator works only for a concrete class.

– It works only for “final” class.

– Do NOT use G4Allocator for abstract base class.

• G4Allocator must be thread-local. Also, objects instantiated by G4Allocator must 

be deleted within the same thread.

– Such objects may be referred by other threads.
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Use of G4Allocator

MyHit.hh

#include "G4VHit.hh"

#include "G4Allocator.hh"

class MyHit : public G4VHit

{

public:

MyHit(some_arguments);

inline void*operator new(size_t);

inline void operator delete(void *aHit);

. . .

};

extern G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator;

inline void* MyHit::operator new(size_t)

{

if (!MyHitAllocator)

MyHitAllocator = new G4Allocator<MyHit>;

return (void*)MyHitAllocator->MallocSingle();

}

inline void MyHit::operator delete(void* aHit)

{ MyHitAllocator->FreeSingle((MyHit*)aHit); }

MyHit.cc

#include ”MyHit.hh"

G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator = 0;
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Sensitive Detector class

• Sensitive detector is a user-defined class derived from G4VSensitiveDetector.

#include "G4VSensitiveDetector.hh"

#include "MyHit.hh"

class G4Step;

class G4HCofThisEvent;

class MyDetector : public G4VSensitiveDetector

{

public:

MyDetector(G4String name);

virtual ~MyDetector();

virtual void Initialize(G4HCofThisEvent*HCE);

virtual G4bool ProcessHits(G4Step*aStep, 

G4TouchableHistory*ROhist);

virtual void EndOfEvent(G4HCofThisEvent*HCE);

private:

MyHitsCollection * hitsCollection;

G4int collectionID;

};
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Sensitive detector

• A tracker detector typically generates a hit for every single step of every single 

(charged) track.

– A tracker hit typically contains 

• Position and time

• Energy deposition of the step

• Track ID

• A calorimeter detector typically generates a hit for every cell, and accumulates 

energy deposition in each cell for all steps of all tracks.

– A calorimeter hit typically contains

• Sum of deposited energy

• Cell ID

• You can instantiate more than one objects for one sensitive detector class. Each 

object should have its unique detector name.

– For example, each of two sets of detectors can have their dedicated 

sensitive detector objects. But, the functionalities of them are exactly the 

same to each other so that they can share the same class. See 

examples/basic/B5 as an example.
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Step

• Step has two points and also “delta” information of a particle (energy loss on the 

step, time-of-flight spent by the step, etc.).

• Each point knows the volume (and material). In case a step is limited by a 

volume boundary, the end point physically stands on the boundary, and it 

logically belongs to the next volume.

• Note that you must get the volume information from the “PreStepPoint”.
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Implementation of Sensitive Detector - 1
MyDetector::MyDetector(G4String detector_name)

:G4VSensitiveDetector(detector_name),

collectionID(-1)

{

collectionName.insert(“collection_name");

}

• In the constructor, define the name of the hits collection which is handled by this 

sensitive detector

• In case your sensitive detector generates more than one kinds of hits (e.g. 

anode and cathode hits separately), define all collection names.
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Implementation of Sensitive Detector - 2
void MyDetector::Initialize(G4HCofThisEvent*HCE)

{

if(collectionID<0) collectionID = GetCollectionID(0);

hitsCollection = new MyHitsCollection 

(SensitiveDetectorName,collectionName[0]);

HCE->AddHitsCollection(collectionID,hitsCollection); 

}

• Initialize() method is invoked at the beginning of each event. 

• Get the unique ID number for this collection.

– GetCollectionID() is a heavy operation. It should not be used for every events.

– GetCollectionID() is available after this sensitive detector object is constructed 

and registered to G4SDManager. Thus, this method cannot be invoked in the 

constructor of this detector class.

• Instantiate hits collection(s) and attach it/them to G4HCofThisEvent object given 

in the argument.

• In case of calorimeter-type detector, you may also want to instantiate hits for all 

calorimeter cells with zero energy depositions, and insert them to the collection.
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Implementation of Sensitive Detector - 3
G4bool MyDetector::ProcessHits

(G4Step*aStep,G4TouchableHistory*ROhist)

{

MyHit* aHit = new MyHit();

...

// some set methods 

...

hitsCollection->insert(aHit);

return true; 

}

• This ProcessHits() method is invoked for every steps in the volume(s) where this 

sensitive detector is assigned.

• In this method, generate a hit corresponding to the current step (for tracking 

detector), or accumulate the energy deposition of the current step to the existing 

hit object where the current step belongs to (for calorimeter detector).

• Don’t forget to collect geometry information (e.g. copy number) from 

“PreStepPoint”.

• Currently, returning boolean value is not used.
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Implementation of Sensitive Detector - 4
void MyDetector::EndOfEvent(G4HCofThisEvent*HCE) 

{;}

• This method is invoked at the end of processing an event.

– It is invoked even if the event is aborted. 

– It is invoked before UserEndOfEventAction.
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Step point and touchable

• As mentioned already, G4Step has two G4StepPoint objects as its starting and 

ending points. All the geometrical information of the particular step should be 

taken from “PreStepPoint”.

– Geometrical information associated with G4Track is identical to 

“PostStepPoint”.

• Each G4StepPoint object has 

– Position in world coordinate system

– Global and local time

– Material

– G4TouchableHistory for geometrical information

• G4TouchableHistory object is a vector of information for each geometrical 

hierarchy.

– copy number

– transformation / rotation to its mother

• Since release 4.0, handles (or smart-pointers) to touchables are intrinsically used. 

Touchables are reference counted.
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Copy number

• Suppose a calorimeter is made of 

4x5 cells.

– and it is implemented by two 

levels of replica.

• In reality, there is only one physical 

volume object for each level. Its 

position is parameterized by its 

copy number.

• To get the copy number of each 

level, suppose what happens if a 

step belongs to two cells.
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 Remember geometrical information in G4Track is identical to 

"PostStepPoint".

 You cannot get the correct copy number for "PreStepPoint" if you directly 

access to the physical volume.

 Use touchable to get the proper copy number, transform matrix, etc.



Touchable

• G4TouchableHistory has information of geometrical hierarchy of the point. 

G4Step* aStep;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHistory* theTouchable =

(G4TouchableHistory*)(preStepPoint->GetTouchable());

G4int copyNo = theTouchable->GetVolume()->GetCopyNo();

G4int motherCopyNo

= theTouchable->GetVolume(1)->GetCopyNo();

G4int grandMotherCopyNo

= theTouchable->GetVolume(2)->GetCopyNo();

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()

->GetTopTransform().TransformPoint(worldPos);

Scoring Functionalities - M.Asai (SLAC) 59


