
Version 10.5.p01

Scoring Functionalities

Makoto Asai (SLAC)

ENSAR2 workshop: GEANT4 in nuclear physics

April 25, 2019

Contents

• Introduction to sensitivity

• Command-based scoring

• Add a new scorer/filter

• Define scorers in the tracking volume

• Accumulate scores for a run

• Sensitive detector vs. primitive scorer

• Basic structure of detector sensitivity

• Sensitive detector and hit

• Touchable

Scoring Functionalities - M.Asai (SLAC) 2

Version 10.5.p01

Retrieving information from Geant4

Extract useful information

• Given geometry, physics and primary track generation, Geant4 does proper

physics simulation “silently”.

– You have to do something to extract information useful to you.

• There are three ways:

– Built-in scoring commands

• Most commonly-used physics quantities are available.

– Use scorers in the tracking volume

• Create scores for each event

• Create own Run class to accumulate scores

– Assign G4VSensitiveDetector to a volume to generate “hit”.

• Use user hooks (G4UserEventAction, G4UserRunAction) to get event /

run summary

• You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction,

etc.)

– You have full access to almost all information

– Straight-forward, but do-it-yourself

Scoring Functionalities - M.Asai (SLAC) 4

Version 10.5.p01

Command-based scoring

Command-based scoring

• Command-based scoring functionality offers the built-in scoring mesh and various

scorers for commonly-used physics quantities such as dose, flux, etc.

– Due to small performance overhead, it does not come by default.

• To use this functionality, access to the G4ScoringManager pointer after the

instantiation of G4(MT)RunManager in your main().

#include “G4ScoringManager.hh”

int main()

{

G4RunManager* runManager = new G4MTRunManager;

G4ScoringManager* scoringManager =

G4ScoringManager::GetScoringManager();

…

• All of the UI commands of this functionality are in /score/ directory.

• /examples/extended/runAndEvent/RE03

Scoring Functionalities - M.Asai (SLAC) 6

Command-based scorers

Scoring Functionalities - M.Asai (SLAC) 7

Define a scoring mesh

• To define a scoring mesh, the user has to specify the followings.

1. Shape and name of the 3D scoring mesh.

• Currently, box and cylinder are available.

2. Size of the scoring mesh.

• Mesh size must be specified as "half width" similar to the arguments of
G4Box / G4Tubs.

3. Number of bins for each axes.

• Note that too many bins causes immense memory consumption.

4. Specify position and rotation of the mesh.

• If not specified, the mesh is positioned at the center of the world volume
without rotation.

define scoring mesh

/score/create/boxMesh boxMesh_1

/score/mesh/boxSize 100. 100. 100. cm

/score/mesh/nBin 30 30 30

/score/mesh/translate/xyz 0. 0. 100. cm

• The mesh geometry can be completely independent to the real material geometry.

Scoring Functionalities - M.Asai (SLAC) 8

Scoring quantities

• A mesh may have arbitrary number of scorers. Each scorer scores one physics
quantity.

– energyDeposit * Energy deposit scorer.

– cellCharge * Cell charge scorer.

– cellFlux * Cell flux scorer.

– passageCellFlux * Passage cell flux scorer

– doseDeposit * Dose deposit scorer.

– nOfStep * Number of step scorer.

– nOfSecondary * Number of secondary scorer.

– trackLength * Track length scorer.

– passageCellCurrent * Passage cell current scorer.

– passageTrackLength * Passage track length scorer.

– flatSurfaceCurrent * Flat surface current Scorer.

– flatSurfaceFlux * Flat surface flux scorer.

– nOfCollision * Number of collision scorer.

– population * Population scorer.

– nOfTrack * Number of track scorer.

– nOfTerminatedTrack * Number of terminated tracks scorer.

Scoring Functionalities - M.Asai (SLAC) 9
/score/quantity/xxxxx <scorer_name> <unit>

List of provided primitive scorers
• Concrete Primitive Scorers (See Application Developers Guide 4.4.6)

– Track length

• G4PSTrackLength, G4PSPassageTrackLength

– Deposited energy

• G4PSEnergyDepsit, G4PSDoseDeposit, G4PSChargeDeposit

– Current/Flux

• G4PSFlatSurfaceCurrent,

G4PSSphereSurfaceCurrent,G4PSPassageCurrent, G4PSFlatSurfaceFlux,

G4PSCellFlux, G4PSPassageCellFlux

– Others

• G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep

Scoring Functionalities - M.Asai (SLAC) 10

angle

V : Volume

L : Total step length in the cell.

SurfaceCurrent :
Count number of
injecting particles
at defined surface.

SurfaceFlux :
Sum up 1/cos(angle) of
injecting particles
at defined surface

CellFlux :
Sum of L / V of
injecting particles
in the geometrical cell.

Filter

• Each scorer may take a filter.

– charged * Charged particle filter.

– neutral * Neutral particle filter.

– kineticEnergy * Kinetic energy filter.

/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>

– particle * Particle filter.

/score/filter/particle <fname> <p1> … <pn>

– particleWithKineticEnergy * Particle with kinetic energy filter.

/score/filter/ParticleWithKineticEnergy
<fname> <eLow> <eHigh> <unit> <p1> … <pn>

/score/quantity/energyDeposit eDep MeV

/score/quantity/nOfStep nOfStepGamma

/score/filter/particle gammaFilter gamma

/score/quantity/nOfStep nOfStepEMinus

/score/filter/particle eMinusFilter e-

/score/quantity/nOfStep nOfStepEPlus

/score/filter/particle ePlusFilter e+

/score/close

Scoring Functionalities - M.Asai (SLAC) 11

Close the mesh when defining scorers is done.

Same primitive scorers
with different filters
may be defined.

Drawing a score

• Projection

/score/drawProjection <mesh_name> <scorer_name> <color_map>

• Slice

/score/drawColumn <mesh_name> <scorer_name> <plane> <column>

<color_map>

• Color map

– By default, linear and log-scale color maps are available.

– Minimum and maximum values can be defined by

/score/colorMap/setMinMax command. Otherwise, min and max values are

taken from the current score.

Scoring Functionalities - M.Asai (SLAC) 12

Write scores to a file

• Single score

/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name>

• All scores

/score/dumpAllQuantitiesToFile <mesh_name> <file_name>

• By default, values are written in CSV.

• By creating a concrete class derived from G4VScoreWriter base class, the user

can define his own file format.

– Example in /examples/extended/runAndEvent/RE03

– User’s score writer class should be registered to G4ScoringManager.

Scoring Functionalities - M.Asai (SLAC) 13

Energy spectrum?

• One of most frequently asked questions is “How to get energy spectrum?”.

• Create arbitrary number of flux scorers of same kind combined with particle and kinetic
energy filters.

/score/quantity/flatSurfaceFlux flux0

/score/filter/particleWithKineticEnergy range0 10. 20. MeV e-

/score/quantity/flatSurfaceFlux flux1

/score/filter/particleWithKineticEnergy range1 20. 30. MeV e-

/score/quantity/flatSurfaceFlux flux2

/score/filter/particleWithKineticEnergy range2 30. 40. MeV e-

/score/quantity/flatSurfaceFlux flux3

/score/filter/particleWithKineticEnergy range3 40. 50. MeV e-

Scoring Functionalities - M.Asai (SLAC) 14

Alias

• Alias can be defined by

/control/alias [name] [value]

– It is also set with /control/loop and /control/foreach commands

– Aliased value is always treated as a string even if it contains numbers only.

• Alias is to be used with other UI command.

– Use curly brackets, { and }.

– For example, frequently used lengthy command can be shortened by

aliasing.

/control/alias tv /tracking/verbose

{tv} 1

– Aliases can be used recursively.

/control/alias file1 /diskA/dirX/fileXX.dat

/control/alias file2 /diskB/dirY/fileYY.dat

/control/alias run 1

/myCmd/getFile {file{run}}

Scoring Functionalities - M.Asai (SLAC) 15

Scoring Functionalities - M.Asai (SLAC)

Loop
• /control/loop and /control/foreach commands execute a macro file

more than once. Aliased variable name can be used inside the macro file.

• /control/loop [macroFile] [counterName]

[initialValue] [finalValue] [stepSize]

– counterName is aliased to the number as a loop counter

• /control/foreach [macroFile] [counterName] [valueList]

– counterName is aliased to a value in valueList

– valueList must be enclosed by double quotes (" ")

• on UI terminal or other macro file

/control/loop myRun.mac Ekin 10. 20. 2.

• in myRun.mac

/control/foreach mySingleRun.mac pname “p pi- mu-”

• in mySingleRun.mac

/gun/particle {pname}

/gun/energy {Ekin} GeV

/run/beamOn 100

• Note: Simple math functions are also available

– E.g. /control/add y {x} 2.  y = x + 2.
16

More than one scoring meshes

• You may define more than one scoring

mesh.

– And, you may define arbitrary

number of primitive scorers to each

scoring mesh.

• Mesh volumes may overlap with other

meshes and/or with mass geometry.

• A step is limited on any boundary.

• Please be cautious of too many meshes,

too granular meshes and/or too many

primitive scorers.

– Memory consumption

– Computing speed

Scoring Functionalities - M.Asai (SLAC) 17

Version 10.5.p01

Add a new scorer/filter to command-based scorers

Scorer base class

• G4VPrimitiveScorer is the abstract base of all scorer classes.

• To make your own scorer you have to implement at least:

– Constructor

– Initialize()

• Initialize G4THitsMap<G4double> map object

– ProcessHits()

• Get the physics quantity you want from G4Step, etc. and fill the map

– Clear()

– GetIndex()

• Convert three copy numbers into an index of the map

• G4PSEnergyDeposit3D could be a good example.

• Create your own messenger class to define /score/quantity/<your_quantity>

command.

– Refer to G4ScorerQuantityMessengerQCmd class.

Scoring Functionalities -
M.Asai (SLAC)

19

Creating your own scorer
• Though we provide most commonly-used scorers, you may want to create your own.

– If you believe your requirement is quite common, just let us know, so that we will add

a new scorer.

• G4VPrimitiveScorer is the abstract base class.

class G4VPrimitiveScorer

{

public:

G4VPrimitiveScorer(G4String name, G4int depth=0);

virtual ~G4VPrimitiveScorer();

protected:

virtual G4bool ProcessHits(G4Step*,

G4TouchableHistory*) = 0;

virtual G4int GetIndex(G4Step*);

public:

virtual void Initialize(G4HCofThisEvent*);

virtual void EndOfEvent(G4HCofThisEvent*);

virtual void clear();

…

};

• Methods written in red will be discussed at “Scoring 2” talk.
Scoring Functionalities - M.Asai (SLAC) 20

Filter class

• G4VSDFilter

– Abstract base class which you can use to make your own filter

class G4VSDFilter

{

public:

G4VSDFilter(G4String name);

virtual ~G4VSDFilter();

public:

virtual G4bool Accept(const G4Step*) const = 0;

…

• Create your own messenger class to define /score/filter/<your_filter> command.

– Refer to G4ScorerQuantityMessenger class.

Scoring Functionalities -
M.Asai (SLAC)

21

Version 10.5.p01

Define scorers to the tracking

volume

Class diagram

Scoring Functionalities - M.Asai (SLAC) 23

G4LogicalVolume

G4VSensitiveDetector

G4MultiFunctionalDetector

userSensitiveDetector

G4Event

G4HCofThisEvent

G4VHitsCollection
G4THitsCollection

G4THitsMap

userHitsCollection
or userHitsMap

G4VHit

userHit

G4VPrimitiveSensitivity

Concrete class provided by G4

Abstract base class provided by G4

Template class provided by G4

User’s class

G4PSDoseScorer hits map

has

kind of

G4PSDoseScorer hits map
G4PSDoseScorer hits map

G4PSDoseScorer hits map
G4PSDoseScorer hits map

0..1

n

1

n

n

n

n

1

Keys of G4THitsMap

• All provided primitive scorer classes use G4THitsMap<G4double>.

• By default, the copy number is taken from the physical volume to which

G4MultiFunctionalDetector is assigned.

– If the physical volume is placed only once, but its (grand-)mother volume is

replicated, use the “depth” argument of the constructor of the primitive scorer

to indicate the level where the copy number should be taken.

e.g. G4PSCellFlux(G4String name, G4String& unit, G4int depth=0)

See exampleRE06

– If your indexing scheme is more complicated (e.g. utilizing copy numbers of

more than one hierarchies), you can override the virtual method GetIndex()

provided for all the primitive scorers.
Scoring Functionalities - M.Asai (SLAC) 24

CopyNo
0

Copy No
0

CopyNo
0

Copy No
0

CopyNo
0

Copy No
0

Copy No 0 Copy No 1 Copy No 2

Scorer A

Scorer B

Key should be taken
from upper
geometry hierarchy

G4VSDFilter

• G4VSDFilter can be attached to G4VSensitiveDetector and/or

G4VPrimitiveSensitivity to define which kinds of tracks are to be scored.

– E.g., surface flux of protons can be scored by G4PSFlatSurfaceFlux with a filter

that accepts protons only.

Scoring Functionalities - M.Asai (SLAC) 25

G4VSensitiveDetector

G4MultiFunctionalDetectoruserSensitiveDetector

G4VPrimitiveSensitivity

G4PSDoseScorer
G4PSDoseScorer

G4PSDoseScorer
G4PSDoseScorer

G4PSDoseScorer

G4VSDFilter

G4SDParticleFilter
G4SDParticleFilter

userFilter

G4SDParticleFilter
G4SDParticleFilter

G4SDParticleFilter
G4SDParticleFilter

example…

MyDetectorConstruction::ConstructSDandField()

{

G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector(“myCellScorer”);

G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->Register(totalSurfFlux);

G4VPrimitiveSensitivity* protonSufFlux = new G4PSFlatSurfaceFlux(“ProtonSurfFlux”);

G4VSDFilter* protonFilter = new G4SDParticleFilter(“protonFilter”);

protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->Register(protonSurfFlux);

G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);

SetSensitiveDetector(“myLogVol”,myScorer);

}

Scoring Functionalities - M.Asai (SLAC) 26

Version 10.5.p01

Accumulate scores for a run

Class diagram

Scoring Functionalities - M.Asai (SLAC) 28

G4LogicalVolume

G4VSensitiveDetector

G4MultiFunctionalDetector

userSensitiveDetector

G4Event

G4HCofThisEvent

G4VHitsCollection
G4THitsCollection

G4THitsMap

userHitsCollection
or userHitsMap

G4VHit

userHit

G4VPrimitiveSensitivity

Concrete class provided by G4

Abstract base class provided by G4

Template class provided by G4

User’s class

G4PSDoseScorer hits map

has

kind of

G4PSDoseScorer hits map
G4PSDoseScorer hits map

G4PSDoseScorer hits map
G4PSDoseScorer hits map

0..1

n

1

n

n

n

n

1

Score == G4THitsMap<G4double>

• At the end of successful event, G4Event has a vector of G4THitsMap as the

scores.

• Create your own Run class derived from G4Run, and implement two methods.

• RecordEvent(const G4Event*) method is invoked in the worker thread at the end

of each event. You can get all output of the event so that you can accumulate

the sum of an event to a variable for entire run.

• Merge(const G4Run*) method of the run object in the master thread is invoked

with the pointer to the thread-local run object when an event loop of that thread

is over. You should merge thread-local scores to global scores.

• Your run class object should be instantiated in GenerateRun() method of your

UserRunAction.

– This UserRunAction must be instantiated both for master and worker threads.

Scoring Functionalities - M.Asai (SLAC) 29

Customized run class

#include “G4Run.hh”

#include “G4Event.hh”

#include “G4THitsMap.hh”

Class MyRun : public G4Run

{

public:

MyRun();

virtual ~MyRun();

virtual void RecordEvent(const G4Event*);

virtual void Merge(const G4Run*);

private:

G4int nEvent;

G4int totalSurfFluxID, protonSurfFluxID, totalDoseID;

G4THitsMap<G4double> totalSurfFlux;

G4THitsMap<G4double> protonSurfFlux;

G4THitsMap<G4double> totalDose;

public:

… access methods …

};

Scoring Functionalities - M.Asai (SLAC) 30

Implement how you accumulate
event data

Implement how you merge
thread-local scores

Customized run class

MyRun::MyRun()

{

G4SDManager* SDM = G4SDManager::GetSDMpointer();

totalSurfFluxID = SDM->GetCollectionID("myCellScorer/TotalSurfFlux");

protonSurfFluxID = SDM->GetCollectionID("myCellScorer/ProtonSurfFlux");

totalDoseID = SDM->GetCollectionID("myCellScorer/TotalDose");

}

Scoring Functionalities - M.Asai (SLAC) 31

name of G4MultiFunctionalDetector
object

name of G4VPrimitiveSensitivity object

Customized run class

void MyRun::RecordEvent(const G4Event* evt)

{

G4HCofThisEvent* HCE = evt->GetHCofThisEvent();

G4THitsMap<G4double>* eventTotalSurfFlux

= (G4THitsMap<G4double>*)(HCE->GetHC(totalSurfFluxID));

G4THitsMap<G4double>* eventProtonSurfFlux

= (G4THitsMap<G4double>*)(HCE->GetHC(protonSurfFluxID));

G4THitsMap<G4double>* eventTotalDose

= (G4THitsMap<G4double>*)(HCE->GetHC(totalDoseID));

totalSurfFlux += *eventTotalSurfFlux;

protonSurfFlux += *eventProtonSurfFlux;

totalDose += *eventTotalDose;

G4Run::RecordEvent(evt);

}

Scoring Functionalities - M.Asai (SLAC) 32

No need of loops.
+= operator is provided !

Don’t forget to invoke base class
method!

Customized run class

void MyRun::Merge(const G4Run* run)

{

const MyRun* localRun = static_cast<const MyRun*>(run);

totalSurfFlux += *(localRun . totalSurfFlux);

protonSurfFlux += *(localRun . protonSurfFlux);

totalDose += *(localRun . totalDose);

G4Run::Merge(run);

}

Scoring Functionalities - M.Asai (SLAC) 33

No need of loops.
+= operator is provided !

Don’t forget to invoke base class
method!

Cast !

RunAction with customized run

G4Run* MyRunAction::GenerateRun()

{ return (new MyRun()); }

void MyRunAction::EndOfRunAction(const G4Run* aRun)

{

const MyRun* theRun = static_cast<const MyRun*>(aRun);

if(IsMaster())

{

// … analyze / record / print-out your run summary

// MyRun object has everything you need …

}

}

• As you have seen, to accumulate event data, you do NOT need

– Event / tracking / stepping action classes

• All you need are your Run and RunAction classes.

Scoring Functionalities - M.Asai (SLAC) 34

IsMaster() returns true for the RunAction
object assigned to the master thread. (also
returns true for sequential mode)

Version 10.5.p01

Sensitive detector

vs.

primitive scorer

Extract useful information

• Given geometry, physics and primary track generation, Geant4 does proper

physics simulation “silently”.

– You have to add a bit of code to extract information useful to you.

• There are three ways:

– Built-in scoring commands

• Most commonly-used physics quantities are available.

– Use scorers in the tracking volume

• Create scores for each event

• Create own Run class to accumulate scores

– Assign G4VSensitiveDetector to a volume to generate “hit”.

• Use user hooks (G4UserEventAction, G4UserRunAction) to get event /

run summary

• You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction,

etc.)

– You have full access to almost all information

– Straight-forward, but do-it-yourself

Scoring Functionalities - M.Asai (SLAC) 36

Sensitive detector vs. primitive scorer
Sensitive detector

• You have to implement your own
detector and hit classes.

• One hit class can contain many
quantities. A hit can be made for
each individual step, or accumulate
quantities.

• Basically one hits collection is made
per one detector.

• Hits collection is relatively compact.

Primitive scorer

• Many scorers are provided by

Geant4. You can add your own.

• Each scorer accumulates one

quantity for an event.

• G4MultiFunctionalDetector creates

many collections (maps), i.e. one

collection per one scorer.

• Keys of maps are redundant for

scorers of same volume.

Scoring Functionalities - M.Asai (SLAC) 37

I would suggest to :

 Use primitive scorers

 if you are not interested in recording each individual step but accumulating
some physics quantities for an event or a run, and

 if you do not have to have too many scorers.

 Otherwise, consider implementing your own sensitive detector.

Version 10.5.p01

Basic structure of

detector sensitivity

Sensitive detector
• A G4VSensitiveDetector object can be assigned to G4LogicalVolume.

• In case a step takes place in a logical volume that has a G4VSensitiveDetector

object, this G4VSensitiveDetector is invoked with the current G4Step object.

– You can implement your own sensitive detector classes, or use scorer

classes provided by Geant4.

Scoring Functionalities - M.Asai (SLAC) 39

Stepping
Manager

Physics
Process

Particle
Change

Step Track Logical
Volume

Sensitive
Detector

GetPhysicalInteractionLength

SelectShortest

DoIt Fill

Update

Update

IsSensitive

GenerateHits

Defining a sensitive detector

• Basic strategy

In your ConstructSDandField() method

G4VSensetiveDetector* pSensetivePart

= new MyDetector(“/mydet”);

G4SDManager::GetSDMpointer()

->AddNewDetector(pSensetivePart);

SetSensitiveDetector(“myLogicalVolume”,pSensetivePart);

• Each detector object must have a unique name.

– Some logical volumes can share one detector object.

– More than one detector objects can be made from one detector class with

different detector name.

– One logical volume cannot have more than one detector objects. But, one

detector object can generate more than one kinds of hits.

• e.g. a double-sided silicon micro-strip detector can generate hits for each

side separately.

Scoring Functionalities - M.Asai (SLAC) 40

Class diagram

Scoring Functionalities - M.Asai (SLAC) 41

G4LogicalVolume

G4VSensitiveDetector

G4MultiFunctionalDetector

userSensitiveDetector

G4Event

G4HCofThisEvent

G4VHitsCollection
G4THitsCollection

G4THitsMap

userHitsCollection
or userHitsMap

G4VHit

userHit

G4VPrimitiveSensitivity

Concrete class provided by G4

Abstract base class provided by G4

Template class provided by G4

User’s class

G4PSDoseScorer hits map

has

kind of

G4PSDoseScorer hits map
G4PSDoseScorer hits map

G4PSDoseScorer hits map
G4PSDoseScorer hits map

0..1

n

1

n

n

n

n

1

Hits collection, hits map

• G4VHitsCollection is the common abstract base class of both G4THitsCollection

and G4THitsMap.

• G4THitsCollection is a template vector class to store pointers of objects of one

concrete hit class type.

– A hit class (deliverable of G4VHit abstract base class) should have its own

identifier (e.g. cell ID).

– In other words, G4THitsCollection requires you to implement your hit class.

• G4THitsMap is a template map class so that it stores keys (typically cell ID, i.e.

copy number of the volume) with pointers of objects of one type.

– Objects may not be those of hit class.

• All of currently provided scorer classes use G4THitsMap with simple

double.

– Since G4THitsMap is a template, it can be used by your sensitive detector

class to store hits.

Scoring Functionalities - M.Asai (SLAC) 42

Version 10.5.p01

Sensitive detector and hit

Sensitive detector and Hit

• Each Logical Volume can have a pointer to a sensitive detector.

– Then this volume becomes sensitive.

• Hit is a snapshot of the physical interaction of a track or an accumulation of

interactions of tracks in the sensitive region of your detector.

• A sensitive detector creates hit(s) using the information given in G4Step

object. The user has to provide his/her own implementation of the detector

response.

• Hit objects, which are still the user’s class objects, are collected in a G4Event

object at the end of an event.

Scoring Functionalities - M.Asai (SLAC) 44

Hit class
• Hit is a user-defined class derived from G4VHit.

• You can store various types information by implementing your own concrete Hit class.

For example:

– Position and time of the step

– Momentum and energy of the track

– Energy deposition of the step

– Geometrical information

– or any combination of above

• Hit objects of a concrete hit class must be stored in a dedicated collection which is

instantiated from G4THitsCollection template class.

• The collection will be associated to a G4Event object via G4HCofThisEvent.

• Hits collections are accessible

– through G4Event at the end of event.

• to be used for analyzing an event

– through G4SDManager during processing an event.

• to be used for event filtering.Scoring Functionalities - M.Asai (SLAC) 45

Implementation of Hit class

#include "G4VHit.hh"

#include "G4Allocator.hh"

class MyHit : public G4VHit

{

public:

MyHit(some_arguments);

inline void*operator new(size_t);

inline void operator delete(void *aHit);

virtual ~MyHit();

virtual void Draw();

virtual void Print();

private:

// some data members

public:

// some set/get methods

};

#include “G4THitsCollection.hh”

typedef G4THitsCollection<MyHit> MyHitsCollection;

Scoring Functionalities - M.Asai (SLAC) 46

G4Allocator

• Instantiation / deletion of an object is a heavy operation.

– It may cause a performance concern, in particular for objects that are

frequently instantiated / deleted.

• E.g. hit, trajectory and trajectory point classes

• G4Allocator is provided to ease such a problem.

– It allocates a chunk of memory space for objects of a certain class.

• Please note that G4Allocator works only for a concrete class.

– It works only for “final” class.

– Do NOT use G4Allocator for abstract base class.

• G4Allocator must be thread-local. Also, objects instantiated by G4Allocator must

be deleted within the same thread.

– Such objects may be referred by other threads.

Scoring Functionalities - M.Asai (SLAC) 47

Use of G4Allocator

MyHit.hh

#include "G4VHit.hh"

#include "G4Allocator.hh"

class MyHit : public G4VHit

{

public:

MyHit(some_arguments);

inline void*operator new(size_t);

inline void operator delete(void *aHit);

. . .

};

extern G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator;

inline void* MyHit::operator new(size_t)

{

if (!MyHitAllocator)

MyHitAllocator = new G4Allocator<MyHit>;

return (void*)MyHitAllocator->MallocSingle();

}

inline void MyHit::operator delete(void* aHit)

{ MyHitAllocator->FreeSingle((MyHit*)aHit); }

MyHit.cc

#include ”MyHit.hh"

G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator = 0;

Scoring Functionalities - M.Asai (SLAC) 48

Sensitive Detector class

• Sensitive detector is a user-defined class derived from G4VSensitiveDetector.

#include "G4VSensitiveDetector.hh"

#include "MyHit.hh"

class G4Step;

class G4HCofThisEvent;

class MyDetector : public G4VSensitiveDetector

{

public:

MyDetector(G4String name);

virtual ~MyDetector();

virtual void Initialize(G4HCofThisEvent*HCE);

virtual G4bool ProcessHits(G4Step*aStep,

G4TouchableHistory*ROhist);

virtual void EndOfEvent(G4HCofThisEvent*HCE);

private:

MyHitsCollection * hitsCollection;

G4int collectionID;

};

Scoring Functionalities - M.Asai (SLAC) 49

Sensitive detector

• A tracker detector typically generates a hit for every single step of every single

(charged) track.

– A tracker hit typically contains

• Position and time

• Energy deposition of the step

• Track ID

• A calorimeter detector typically generates a hit for every cell, and accumulates

energy deposition in each cell for all steps of all tracks.

– A calorimeter hit typically contains

• Sum of deposited energy

• Cell ID

• You can instantiate more than one objects for one sensitive detector class. Each

object should have its unique detector name.

– For example, each of two sets of detectors can have their dedicated

sensitive detector objects. But, the functionalities of them are exactly the

same to each other so that they can share the same class. See

examples/basic/B5 as an example.
Scoring Functionalities - M.Asai (SLAC) 50

Step

• Step has two points and also “delta” information of a particle (energy loss on the

step, time-of-flight spent by the step, etc.).

• Each point knows the volume (and material). In case a step is limited by a

volume boundary, the end point physically stands on the boundary, and it

logically belongs to the next volume.

• Note that you must get the volume information from the “PreStepPoint”.

Scoring Functionalities - M.Asai (SLAC) 51

Pre-step point
Post-step point

Step

Boundary

Implementation of Sensitive Detector - 1
MyDetector::MyDetector(G4String detector_name)

:G4VSensitiveDetector(detector_name),

collectionID(-1)

{

collectionName.insert(“collection_name");

}

• In the constructor, define the name of the hits collection which is handled by this

sensitive detector

• In case your sensitive detector generates more than one kinds of hits (e.g.

anode and cathode hits separately), define all collection names.

Scoring Functionalities - M.Asai (SLAC) 52

Implementation of Sensitive Detector - 2
void MyDetector::Initialize(G4HCofThisEvent*HCE)

{

if(collectionID<0) collectionID = GetCollectionID(0);

hitsCollection = new MyHitsCollection

(SensitiveDetectorName,collectionName[0]);

HCE->AddHitsCollection(collectionID,hitsCollection);

}

• Initialize() method is invoked at the beginning of each event.

• Get the unique ID number for this collection.

– GetCollectionID() is a heavy operation. It should not be used for every events.

– GetCollectionID() is available after this sensitive detector object is constructed

and registered to G4SDManager. Thus, this method cannot be invoked in the

constructor of this detector class.

• Instantiate hits collection(s) and attach it/them to G4HCofThisEvent object given

in the argument.

• In case of calorimeter-type detector, you may also want to instantiate hits for all

calorimeter cells with zero energy depositions, and insert them to the collection.

Scoring Functionalities - M.Asai (SLAC) 53

Implementation of Sensitive Detector - 3
G4bool MyDetector::ProcessHits

(G4Step*aStep,G4TouchableHistory*ROhist)

{

MyHit* aHit = new MyHit();

...

// some set methods

...

hitsCollection->insert(aHit);

return true;

}

• This ProcessHits() method is invoked for every steps in the volume(s) where this

sensitive detector is assigned.

• In this method, generate a hit corresponding to the current step (for tracking

detector), or accumulate the energy deposition of the current step to the existing

hit object where the current step belongs to (for calorimeter detector).

• Don’t forget to collect geometry information (e.g. copy number) from

“PreStepPoint”.

• Currently, returning boolean value is not used.
Scoring Functionalities - M.Asai (SLAC) 54

Implementation of Sensitive Detector - 4
void MyDetector::EndOfEvent(G4HCofThisEvent*HCE)

{;}

• This method is invoked at the end of processing an event.

– It is invoked even if the event is aborted.

– It is invoked before UserEndOfEventAction.

Scoring Functionalities - M.Asai (SLAC) 55

Version 10.5.p01

Touchable

Step point and touchable

• As mentioned already, G4Step has two G4StepPoint objects as its starting and

ending points. All the geometrical information of the particular step should be

taken from “PreStepPoint”.

– Geometrical information associated with G4Track is identical to

“PostStepPoint”.

• Each G4StepPoint object has

– Position in world coordinate system

– Global and local time

– Material

– G4TouchableHistory for geometrical information

• G4TouchableHistory object is a vector of information for each geometrical

hierarchy.

– copy number

– transformation / rotation to its mother

• Since release 4.0, handles (or smart-pointers) to touchables are intrinsically used.

Touchables are reference counted.

Scoring Functionalities - M.Asai (SLAC) 57

Copy number

• Suppose a calorimeter is made of

4x5 cells.

– and it is implemented by two

levels of replica.

• In reality, there is only one physical

volume object for each level. Its

position is parameterized by its

copy number.

• To get the copy number of each

level, suppose what happens if a

step belongs to two cells.

Scoring Functionalities - M.Asai (SLAC) 58

CopyNo = 0

CopyNo = 1

CopyNo = 2

CopyNo = 3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

 Remember geometrical information in G4Track is identical to

"PostStepPoint".

 You cannot get the correct copy number for "PreStepPoint" if you directly

access to the physical volume.

 Use touchable to get the proper copy number, transform matrix, etc.

Touchable

• G4TouchableHistory has information of geometrical hierarchy of the point.

G4Step* aStep;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHistory* theTouchable =

(G4TouchableHistory*)(preStepPoint->GetTouchable());

G4int copyNo = theTouchable->GetVolume()->GetCopyNo();

G4int motherCopyNo

= theTouchable->GetVolume(1)->GetCopyNo();

G4int grandMotherCopyNo

= theTouchable->GetVolume(2)->GetCopyNo();

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()

->GetTopTransform().TransformPoint(worldPos);

Scoring Functionalities - M.Asai (SLAC) 59

