A hybrid method calculating linear energy transfer for intensity modulated proton therapy

J. Lentz, X. Ding, M. Bues, W. Liu

ENSAR2 workshop: GEANT4 in nuclear physics
24 April 2019 – 26 April 2019 – CIEMAT Madrid, Spain
Facility Layout

G4 G3 G2 G1

High Energy Beam Transport

Synchotron

Gantry 4 Gantry 3 Gantry 2 Gantry 1

Control Room Control Room Control Room Control Room Control Room
Treatment Room
Pencil Beam Scanning

- Layer by layer (energy switching)
- Spot by spot (magnetic deflection)
Linear Energy Transfer (LET) calculation

- LET is one of the important factors in determining the biological effects of proton radiation therapy
- No commercial Treatment Planning System (TPS) offers an LET calculation
- We developed a hybrid method to calculate LET distributions in real patient geometries
- The hybrid method was implemented in our in-house TPS and has been in routine clinical use for 2 years
Hybrid method to calculate LET

- Developed a Geant4 MC code to model the proton therapy nozzle
- Generated the LET kernels by the MC code
- Incorporated the kernels into our in-house treatment planning system
Developed a Geant4 MC code

1. Started from an example (hadrontherapy) from the Geant4 example set
2. Wrote the geometry (proton nozzle) based on the vendor’s documentation
3. Default physics model QGSF_BIC_EMY
4. Parameterized proton source (energy, momentum, position) to match measurement
5. Validated the MC code by measurement (IDD, profile, and FSF)
Mayo Clinic proton nozzle

Validation by measurement:
(1) IDD comparison
Validation by measurement:
(2) In-air profile comparison

90.1 MeV with RS-45 @ Isocenter
Validation by measurement:
(3) In-water profile comparison

228.8 MeV @ depth 210.5 mm
Validation by measurement:
(4) FSF comparison
Generation of LET kernels (LET_d)
Comparison between hybrid and MC:
(1) Two lateral profiles through a lung tumor
Comparison between hybrid and MC:
(2) LET deposition and LET-volume histograms for a H-N case
Comparison between hybrid and MC:
(3) LET deposition and LET-volume histograms for a Brain case
Conclusions

• Geant4 MC code can be used to calculate LET data for proton radiation therapy

• The hybrid method can be used to calculate LET distribution for real patient geometry accurately and efficiently
Questions & Discussion