Augmenting PODIO
Serialisation

CERN Summer Student Program 2018

Ali Fatemi
Graeme Stewart, Benedikt Hegner

PODIO

e support the creation and handling of data models in
particle physics

e plain-old-data (POD) data structures

e avoiding deep-object hierarchies

e virtual inheritance

runtime performance & persistency services

Design

1. theconcrete data are contained within plain-old-data
structures (PODs)

2. user-exposed data types are concrete and do not use
inheritance

3. the C++ and Python interface should look as close as
possible

4. the user does not do any explicit memory management

5. classes are generated using a higher-level abstraction
and code generators

Layout of Objects

four different kind of objects and layers

The User Layer

The Internal Data Layer

The POD Layer

The Collections

Hit

HitObject

HitData

HitCollection

Mutability

e data collections may be read-only after creation, or may be still
altered

e however, created collections are always immutable after
leaving the scope of the creator

Data Models and Data Model Definitions

basic types like int, double

components built up from
basic types

Arrays of those types

class EventInfoData {

public:
datatypes : int Number;
EventInfo : }
Description : "My first data type” class EventInfo {
Author : "It's me" > public:

Members

< int Number() const;
- int Number // event number

void Number(int);

Definition of custom data classes

OneToOneRelations:
<type> <name> // <comment>

OneToManyRelations: Definition of references between objects

<type> <name> // <comment>

Persistency

Writing Back-End Reading Back-End
1. the ID of the collection,
2. thevector of PODs in the A
collection. and // your creation of the collection and reading of the PODs from disk
. ’ . . . // ttt
3. therelation information in the collection->setBuffer(buffer);
collection auto refCollections = collection->referenceCollections();
WK oo
collection->prepareForWrite(); // your filling of refCollections from disk
J
LI

void* buffer = collection->getBufferAddress(); . . .
; !) collection->setID(<collection ID read from disk>);
auto refCollections = collection->referenceCollections(); . .
collection->prepareAfterRead();
/1 .. oo
// write buffer, collection ID, and refCollections collection->setReferences(&collectionProvider);

7

Sequential Files (ASCII)

ASCIIReader

ExampleWithStructCollectionx collection = new ExampleWithStructCollection() ;

m_inputs.emplace_back(std::make_pair(collection,name));
auto structure = ExampleWithStruct(b);
collection->push_back(structure);

collection->setID(id);

collection->prepareAfterRead();

Time (s)

ASCIIWriter vs. ROOTWriter

1034

1 —— AsCliwriter

— ROOTWriter

109 101 102 103 104 10° 106 107

Events

ASCIIReader vs. ROOTReader

102 -
{ —+— ASCIlIReader
1 —1 ROOTReader
101 -
@
Q
£
I._
1009 -
10—1 i

10° 10! 102 103 104 10° 10° 107
Events

ROOT Writing
~20X

ROOT File Size
~BX
ASC" Read"‘]g* Less Memory Consumption

~1.2X

What's next?

e Automatically handling data types in reader
e Serialising/deserialising object links
e An binary writer and reader

e More tests

Thanks

