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ABC of I.R. Renormalons

All-orders contributions to QCD amplitude of the form

∫ m

0

dkp αS(k2) =

∫ m

0

dkp αS(m2)

1 + b0αS(m2) log k2

m2

= αS(m2)
∞∑
n=0

(2b0αS(m2))n
∫ m

0

dkp logn m

k︸ ︷︷ ︸
pnn!

.

Asymptotic expansion.

Arises from all order leading-logarithmic corrections induced by the
coupling constant renormalization.
In QED these are the sum of all photon polarization corrections.
In QCD not quite so ... but the substance is the same.
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I Minimal term at nmin ≈ 1
2pb0αS (m2)

.

I Size of minimal term: mpαS(m2)
√

2πnmine
−nmin ≈ Λp

QCD.

I Typical scale dominating at order αn+1
S : m exp(−np).

Notice: parametric form of the minimal term consistent with the
presence of the Landau pole at k = m exp( 1

2αS (m2)b0
) = ΛQCD:∫ m

0
dkp αS(k2) (1)

become ambiguous when αS(k2) ≈ 1, i.e. k ≈ ΛQCD, leading to a
Λp
QCD ambiguity.
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The large b0 approximation

In QED, the diagrams leading to renormalons are the polarization
insertions in photon propagators.
An often used approximation to estimate renormalon contributions
on QCD is by considering only polarization insertions int he gluon

propagator due to light quarks, leading to b
(nl )
0 = −nlTf

3π colour

factors. At the end of the calculation, one replaces the b
(nl )
0 with

the true QCD b0:

− nl
3π
→ 11CA − 4nlTf

12pi
.

This is the so called large-b0 approximation.
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Beneke and Braun, arXiv:hep-ph/9506452

Abstract:

Their calculation: large b0 approximation:
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Top mass measurements

I Linear (i.e. p = 1) renormalons may affect top mass
measurements at order Λ (near the present experimental
accuracy). Until now, only the top pole mass renormalons has
received some attention.

I Several other sources of linear renormalons come into play in
top mass measurements (for example, from jet definition).
What is their structure, and what is their interplay with the
pole mass renormalon?

I Are there “priviledged” (i.e. no p = 1 renormalons)
observables?
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Ferrario Ravasio, Oleari, arXiv:1810.10931

We consider a simplified production framework W ∗ →Wtb̄:

W ∗

W

b

b̄

(i.e. no incoming hadrons for now), and a massless b. However:

I The finite width of the top is accounted for;

I We can consider any IR safe final state observables.
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Diagrams up to leading Nf one gluon correction

W ∗

W

b

b̄

W ∗

W

b

b̄

k

W ∗

W

b

b̄

W ∗

W

b

b̄

q̄

q

k

= +
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All-order result

Introducing the notation

I Φb, phase space for Wbb̄;

I Φg , phase space for Wbb̄g∗, where g∗ is a massive gluon with
mass λ,

I Φqq̄, phase space for Wbb̄qq̄

the all-order result can be expressed in terms of

I σb(Φb), the differential cross section for the Born process;

I σv (λ,Φb), the virtual correction to the Born process due to
the exchange of a gluon of mass λ;

I The real cross section σg∗(λ,Φg∗), obtained by adding one
massive gluon to the Born final state;

I The real cross section σqq̄(Φqq̄), obtained by adding a qq̄
pair, produced by a massless gluon, to the Born final state;
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All-order result

Consider a (IR safe) final state observable O. Define:

N(0) =

[∫
dΦb σb

]−1

, 〈O〉b = N(0)

∫
dΦb σb(Φb)O(Φb) ,

Ṽ (λ) = N(0)

∫
dΦb σ

(1)
v (λ,Φb)

[
O(Φb)− 〈O〉b

]
,

R̃(λ) = N(0)

∫
dΦg∗ σ

(1)
g∗ (λ,Φg∗)

[
O(Φg∗)− 〈O〉b

]
,

∆̃(λ) = N(0) 3λ2

2αSTF

∫
dΦqq̄ δ

(
λ2 − k2

qq̄

)
σ

(2)
qq̄ (Φqq̄)× [O(Φqq̄)− O(Φg∗)]

〈O〉b + Ṽ (λ) + R̃(λ) is the average value of O in a theory with a
massive gluon with mass λ, accurate to order αS .

Notice: Ṽ (λ) + R̃(λ) has a finite limit for λ→ 0, while each
contribution is log divergent.
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defining T̃ (λ) ≡ Ṽ (λ) + R̃(λ) + ∆̃(λ), our final result is

〈O〉 = 〈O〉b +
3π

αSTF

∫ ∞
0

dλ

π

d

dλ

[
T̃ (λ)

]
atan

(
αSπb0

1 + αSb0log
λ2

µ̃2

)
(2)

where µ̃ ≡ µ exp(5/6).
This has the same renormalon structure of the example we
considered at the beginning. Now the atan function has an
unphysical discontinuity near the Landau pole

λ2 = µ̃2 exp

[
1

αS(µ)b0

]
= Λ2

QCD exp(5/3). (3)

If we thus have:
T̃ (λ) = a + b λ+O

(
λ2
)

(4)

the integration has an ambiguity of order bΛQCD, i.e. a Linear
Renormalon.
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Comments

I In order to get our results, we need lim
λ→∞

T̃ (λ) = 0 .

This happens if we use the Pole Mass Scheme for mt .
I The need to include the ∆ term has a long story:

I Seymour,P.N. 1995, I.R. renormalons in e+e− event shapes.
I Dokshitzer,Lucenti,Marchesini,Salam, 1997-1998 Milan factor

I We compute T (λ) numerically. The λ→ 0 limit implies the
cancellation of two large logs in V and R. However, the
precise value at λ = 0 can also be computed directly by
standard means (which we do).

13 / 30



Changing the mass scheme

The relation of the pole mass as a function of the MS mass in the
large NF approximation is well known (Beneke, 1999)

m = m̄[1 + Rf (αS , µ, m̄) + Rd(αS , µ, m̄)],

Rf = − 3π

αSTF

∫ ∞
0

dλ

π

drf (λ)

dλ
atan

−αSπb0

1 + αSb0 log λ2

µ̃2

rf (λ) = −αS

CF

2

λ

m
. (5)

We can easily convert our results to the MS scheme:

〈O〉b(m,m∗) = 〈O〉b(m,m∗) +

{
∂〈O〉b(m,m∗)

∂m
(m −m) + cc

}
For the leading renormalon this amounts to

T̃ (λ)→ T̃ (λ)− ∂〈O〉b(m,m∗)

∂Re(m)

CFαs

2
λ+O(λ2) .
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Selected Results
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Total cross section
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No linear renormalon in MS scheme!

16 / 30



Total cross section

I For k < Γ: no renormalon in the physics! The top finite width
screens the soft sensitivity of the cross section.
The renormalon is there only if it is present in the mass
counterterm; thus, it is not there in the MS scheme.

I What about k � Γ?
This is the narrow width limit: the cross section factorizes
into a production cross section and a partial width.
The former has no physical renormalons for obviour reasons.
The latter does not have them either (not obvious at all?
known fact from B decay theory)

So, the mass from the total σ is free of linear power corrections
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Total cross section with cuts

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

W ∗ → tb̄→ Wbb̄, total cross section with cuts

T
(λ

)/
α

S

λ [GeV]

R = 0.1

R = 0.2

R = 0.3

R = 0.4

R = 0.5

R = 0.6

R = 0.7

R = 0.9

R = 1.2

R = 1.5

18 / 30



Total cross section with cuts
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The requirement of a b jet spoils this conclusion!
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Reconstructed top mass

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

W ∗ → tb̄→ Wbb̄, Γt = 1.3279 GeV, 〈M〉
[ T̃

(λ
)
−
T̃

(0
)] /α

S

λ [GeV]

R = 0.1

R = 0.2

R = 0.3

R = 0.4

R = 0.5

R = 0.6

R = 0.7

R = 0.9

R = 1.2

R = 1.5

20 / 30



Reconstructed top mass
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For large radii, mpole is better!
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Leptonic Observables

Choose as mass sensitive observable the average EW .
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For k � Γ, the slope is roughly 0.45. The MS conversion would
add −0.067.
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Leptonic Observables

It seems that physical linear renormalons are present also in
leptonic observables.
But, for k � Γ, the slope of T (k) decreases, approaching 0.067!
So, the top finite width screens the linear renormalons!

Is this an exact statement?

YES! (we can prove it ...)
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Perturbative expansion

Besides computing the effect of the linear renormalon, we can
compute also the exact (in the large b0 limit) perturbative
corrections order-by-order in perturbation theory, and explicitly
check how they are affected by IR renormalons.
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Conclusions

I This work is addressing theoretical questions having to do
with the high-order perturbative structure, in its relation to
power corrections.

I Many simplifying assumptions were made; some of them mey
be removed in the future.

I In spite of the simplifying assumption, several results have
implications even for current measurements:
I Although there are good reasons to believe that the total cross

section is not affected by linear renormalons, as soon as we
introduce acceptance cuts, linear corrections, especially due to
jets, do appear.

I For observables that do not depend upon jets, the finite width
ot the top seems to screen linear renormalon effects. Leptonic
observables could benefit from this. In practice, however, this
feature does not help at the moment, since it requires very
high order calculations.

I Leptonic observables are also affected by linear renormalons,
unless one goes at very high order in their perturbative
calculation. 29 / 30



Prospects

There are several directions in which this work can be extended.

I Study observables where jets are calibrated. See if linear
renormalons are reduced, and to what extent.

I Does jet trimming reduce linear renormalon effects?

I In general, are there “better” observables from this point of
view?
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