











# Comparison and discussion on multi-parameter fits



Michele Pinamonti (ATLAS)
Markus Seidel, Pietro Vischia (CMS)

University and INFN Roma "Tor Vergata", University of Maryland, UC Louvain

### The profile likelihood fit technique

- Profile likelihood fit (PLF) = a statistically meaningful way of including systematic uncertainties in a maximum likelihood fit
  - systematics included as "constrained" nuisance parameters
  - the idea behind is that systematic uncertainties on the measurement of  $\mu$  come from **imperfect knowledge** of parameters of the model (S and B prediction)

$$\mathcal{L}(\boldsymbol{n}, \boldsymbol{\theta}^0 | \mu, \boldsymbol{\theta}) = \prod_{i \in bins} \mathcal{P}(n_i | \mu \cdot S_i(\boldsymbol{\theta}) + B_i(\boldsymbol{\theta})) \times \prod_{j \in syst} \mathcal{G}(\theta_j^0 | \theta_j, \Delta \theta_j)$$

- The fit procedure becomes a multi-dimensional Likelihood maximisation problem
  - the fit **result** is not just the value (and uncertainty)
     on parameter(s) of interest (POI), but **a set of values** for all the parameters, including nuisance parameters:

$$(\hat{\mu}, \hat{\theta}_0, ... \hat{\theta}_{N-1}) : \mathcal{L}(\hat{\mu}, \hat{\boldsymbol{\theta}}) = max$$

 usually Wilks' theorem and asymptotic regime used to estimate uncertainties and extracting exclusion limits and discovery significance without integrations or toys



-2log(L)

### Latest top results using profiling



- Searches for FCNC
   (tHq multi-lep, tHq yy, tHq bb, tZq)
- <u>ttV</u>, <u>tZ</u>
- Single top <u>Wt</u> and <u>s-channel (8TeV)</u>
- tt+gamma (only for fiducial cross-section, not for differential)

#### Outside TopWG, but top-related:

- ttH (<u>bb</u>, <u>multi-lepton</u>)
- <u>Search for tt resonance</u>
- 4 tops



"Standard measurements" moving to profiling:

- Cross-section (<u>dilepton</u>, <u>lepton+jets</u>, <u>5 TeV</u>)
- Top mass (<u>dilepton</u>)

TOP searches and rare processes:

- 4 tops (<u>same-sign</u>, <u>opposite-sign</u>)
- FCNC, tZ, ttV

#### Related to TOP:

• ttH (<u>leptonic</u>, <u>all-jet</u>)

### Pros and cons of profiling

#### Pros:

- Systematics are really part of the fit procedure ⇒ nice properties like:
  - the precision always improves when adding more information, i.e. more bins
- Limit setting, significance evaluation and combination of different analyses very natural
- Same procedure adopted by ATLAS and CMS
- In most cases → reduction of total uncertainty, thanks to constraints on nuisance parameters / in-situ calibration of systematic uncertainties

#### Cons:

- Minimisation procedure for complex fits can become computationally intense
- Definition of systematic uncertainties delicate:
  - o complete systematic model with proper granularity needed
  - o pulls and constraints on nuisance parameters need to be understood
- **Limited statistics in MC** (w.r.t. data) becoming an issue, especially for systematic uncertainties
- *Until recently*, only applicable / applied to signal strength / total cross-section measurements (but see last slides)

### NP pulls, constraints and correlations

Preliminary  $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ 

Useful to monitor NP pulls and constraints:





uncertainties on NPs (*and POI*) extracted from *covariance matrix*, which includes *correlation coefficients* 



(anti-)correlations can reduce total post-fit uncertainty!



### **Profiling issues**

- The profile likelihood approach is valid with some assumptions
  - in particular, assumed that "nature" can be described by the model with a single combination of values for the parameters

 Cannot just take large uncertainties hoping that they are enough to cover for imperfect knowledge of S+B expectation!



"Flexibility" / "granularity" of the systematics model needs to be considered

### The constraint issue

- Flexibility more and more critical when statistical uncertainty on data becomes less and less important w.r.t. systematics
  - e.g. taking the example before:



- More real examples:
  - single JES systematic NP across all jet energy spectrum allows high-stats low-energy control regions/bins to calibrate JES for high energy jets → intended?
  - simple flat  $\pm$  50% overall uncertainty on background, probably enough to cover uncertainties also in remote phase-spaces (*e.g. tails of distributions for W+HF-enriched selection*), but data in CRs will constrain it to <5%, propagated to SRs...  $\rightarrow$  ok?

### Theory modeling systematics

- **Experimental systematics** nowadays often well suited for profile likelihood application:
  - come from calibrations ⇒ gaussian constraint appropriate
  - broken-down into several independent/uncorrelated components (JES, b-tagging...)
- Different situation for **theory systematics**:
  - **difficulty 1:** what is the **distribution** of the subsidiary measurement?
  - **difficulty 2:** what are the **parameters** of the systematic?
    - can a combination of the included parameters describe **any possible** configuration?
    - is **any allowed value** of the parameter physically meaningful?

See: https://indico.cern.ch/event/287744/contributions/16412 /attachments/535763/738679/Verkerke Statistics 3.pdf

- The obviously tricky case: "two point" systematics
  - e.g. Herwig vs. Pythia as "parton shower and hadronization model uncertainty", as a single NP



### Theory modeling systematics

#### One-bin case:

 reasonable to think that "Sherpa" can be between Herwig and Pythia



Nuisance parameter  $\alpha_{gen}$ 

#### Shape case:

- Sherpa can be different from linear combination of Py and Her...



#### Which prior?



Pre-fit / non-constrained NP could be fine to cover for all possible models...



# Theory modeling systematics

- A not-so-obviously tricky case:
  - scale uncertainties

Take NLO scale variations as uncertainty (missing NNLO MC)

⇒ flat uncertainty here,
 and NNLO is within
 uncertainty, but
 +1
 NNLO/NLO is not flat!

Suppose data looks like NNLO, we measure  $y_{tt}$ , we constrain scale syst. in low  $y_{tt}$  bins  $\Rightarrow$  new physics at high  $y_{tt}$ ?

• New idea by Frank Tackmann (talk at LHC EW precision group):

Phys. Rev. Lett. 116, 08200

replace scale uncertainties by taking the coefficients of higher-order corrections as floatable NP

→ can be constrained by data (if constraint ≤ 0.1: add structure of next order)

Czakon, Heymes, Mitov (2015)

100

60

20

 $\mathrm{d}\sigma/\mathrm{d}y_{\mathrm{t}\hat{\mathrm{t}}}$ 

NNLO

 $PP \rightarrow t\bar{t} + X (8 \text{ TeV})$   $m_t = 173.3 \text{ GeV}$ MSTW2008

 $\mu_{\rm F} \,_{\rm R}/{\rm m}_{+} \in \{0.5, 1, 2\}$ 

NLO ZZZZ

### Statistical fluctuations in systematic templates

- See this talk at the latest ATLAS+CMS stat meeting
- Statistical fluctuations in templates used to define systematics can lead to artificial constraints ⇒ artificially small total uncertainty!



#### **Template smoothing:**

- largely used by ATLAS
- different smoothing algorithms •
- current recommendation:
  - choose case-by-case
  - check systs one-by-one
  - compare different choices



#### **Pseudo-experiments:**

Different ways to control / mitigate this effect:

- used in CMS (CMS-PAS-TOP-17-001)
  - repeat fit N times with fluctuation of systematic templates spread of fitted results taken as
  - additional uncertainty



## Impact of NP on the POI aka the "ranking plot"

- To answer the question "which systematics are more important?"
- The "ranking plot" shows *pre-fit* and *post-fit* impact of individual NP on the determination of  $\mu$ :
  - each NP fixed to  $\pm$  1 pre-fit and post-fit sigmas ( $\Delta\theta$  and  $\Delta\hat{\theta}$  = uncertainty on  $\hat{\theta}$ )
  - o fit re-done with *N-1* parameters
  - o impact extracted as difference in





- Often combined with pulls and constraints on these top ranked NPs
- Why not always publishing such a plot?

### **Breakdown of uncertainty in measurement**

- To answer a similar but different question:
  - how much of the total uncertainty comes from a certain set of systematic uncertainties?
  - or similarly, how large is the pure "statistical uncertainty"?
     (keep in mind that )

| • | Recommended procedure                 |
|---|---------------------------------------|
|   | (used by ATLAS and some CMS results): |

- fix a group of NPs to post-fit values
- o repeat the fit
- look at **error on**  $\mu$  this time and get  $\Delta\mu$  as quadratic difference between full and reduced error
- statistical uncertainty obtainedby fixing all NPs

|                                                | <u>arxiv.1004.03002</u>     |                             |
|------------------------------------------------|-----------------------------|-----------------------------|
| Uncertainty source                             | $\pm \Delta \mu$ (observed) | $\pm \Delta \mu$ (expected) |
| Total experimental                             | +0.15/-0.16                 | +0.19/-0.17                 |
| b tagging                                      | +0.11/-0.14                 | +0.12/-0.11                 |
| jet energy scale and resolution                | +0.06/-0.07                 | +0.13/-0.11                 |
| Total theory                                   | +0.28/-0.29                 | +0.32/-0.29                 |
| $t\bar{t}$ +hf cross section and parton shower | +0.24/-0.28                 | +0.28/-0.28                 |
| Size of the simulated samples                  | +0.14/-0.15                 | +0.16/-0.16                 |
| Total systematic                               | +0.38/-0.38                 | +0.45/-0.42                 |
| Statistical                                    | +0.24/-0.24                 | +0.27/-0.27                 |
| Total                                          | +0.45/-0.45                 | +0.53/-0.49                 |

arXiv:1804 03682

• In some analysis **not fully clear** what is done (e.g. <a href="mailto:cms-pas-top-17-011">cms-pas-top-17-011</a>, where individual sources larger that total uncertainty quoted...)

### Profile likelihood fit for shape analyses

- Usually PLF applied just to cross-section / signal strength measurements
  - i.e. **POI** applied as *multiplicative factor* to signal process prediction:

$$\mathcal{L}(\boldsymbol{n}, \boldsymbol{\theta}^0 | \mu, \boldsymbol{\theta}) = \prod_{i \in bins} \mathcal{P}(n_i | \mu \cdot S_i(\boldsymbol{\theta}) + B_i(\boldsymbol{\theta})) \times \prod_{j \in syst} \mathcal{G}(\theta_j^0 | \theta_j, \Delta \theta_j)$$

Nothing wrong in having the POI(s) affecting also the shape of the signal prediction
 (i.e. relative bin content):

$$\mu * S_i(\theta) \rightarrow S_i(\mu, \theta)$$

- This allows to perform other kinds of measurements with PLF:
  - o e.g. top mass, top width
- Just **technical problem** of how to **interpolate** between different histogram templates for different values of the POI
  - not trivial if want to keep using existing tools to produce model (HistFactory)



### Profile likelihood fit and unfolding

- ATLAS and CMS not used to combine profiling and unfolding:
  - unfolding procedures not compatible
     with PLF (e.g. Bayesian unfolding)
  - FBU does something similar to profiling (see <u>ATLAS tt charge asymmetry</u>)
- Conceptually no issue in unfolding with PLF:
  - fit = find values differential x-section that maximise the likelihood
    - → "Maximum Likelihood unfolding"
- Already applied in CMS Higgs:
  - CMS H→yy unfolds by fitting signal strength in different bins:

$$\begin{split} \mathcal{L}(\mathrm{data}|\Delta\vec{\sigma}^{\mathrm{fid}},\vec{n}_{\mathrm{bkg}},\vec{\theta}_{\mathrm{S}},\vec{\theta}_{\mathrm{B}}) = \\ &\prod_{i=1}^{\mathrm{n}}\prod_{j=1}^{n_{\mathrm{b}}}\prod_{l=1}^{n_{\mathrm{bm}}\gamma_{\mathrm{f}}} \left(\frac{\sum_{k=1}^{n_{\mathrm{b}}}\Delta\sigma_{k}^{\mathrm{fid}}K_{k}^{ij}(\vec{\theta}_{\mathrm{S}})S_{k}^{ij}(m_{\gamma\gamma}^{l}|\vec{\theta}_{\mathrm{S}})L + n_{\mathrm{OOA}}^{ij}S_{\mathrm{OOA}}^{ij}(m_{\gamma\gamma}^{l}|\vec{\theta}_{\mathrm{S}}) + n_{\mathrm{bkg}}^{ij}B^{ij}(m_{\gamma\gamma}^{l}|\vec{\theta}_{\mathrm{B}})}{n_{\mathrm{sig}}^{ij} + n_{\mathrm{bkg}}^{ij}}\right)^{n_{\mathrm{bkg}}^{ij}} \\ &\operatorname{Pois}(n_{\mathrm{ev}}^{ij}|n_{\mathrm{sig}}^{ij} + n_{\mathrm{bkg}}^{ij})\operatorname{Pdf}(\vec{\theta}_{\mathrm{S}})\operatorname{Pdf}(\vec{\theta}_{\mathrm{B}}), \end{split}$$









### **Combination of measurements**

- With the PLR approach, **combination** of different measurements is **natural**:
  - "just" *add some more bins* to the product
- However, important to consider **compatibility of models**:
  - **orthogonality** of channels:
    - bin contents in PLR supposed to be statistically independent
  - **same** definition of (set of) **POI**:
    - sometimes obvious, but not always (is μ applied to all the ttH, or just one decay channel? What about tH? ...)
  - **compatible** set of **systematics**:
    - most tricky part, especially for ATLAS+CMS combinations!
    - mainly dealing with the question "which NPs are correlated between channels?"
    - often cannot reach perfect solution, need to **test different correlation assumptions** (notice that in PLR formalism systematics are either fully correlated or fully uncorrelated, even if this can be circumvented by splitting a nuisance into two components, and make one correlated, the other uncorrelated) 16



arXiv:1804.03682

### Sanity check-list for profile likelihood fits

- Is your systematic model complete and granular enough?
  - o are all relevant uncertainties, in relationship to the *observables* used, in place?
- Perform a fit on **Asimov data** and check all the nuisance parameter constraints:
  - are all the constraints understood?
    - e.g. is it reasonable to expect improvements on this systematic using top events?
    - pay even more attention to "top ranked" systematics
- Perform fit on data and check nuisance parameter constraints and pulls:
  - do you see the same constraints in Asimov and in data?
  - o are the **pulls understood**?
    - is it reasonable for these NPs to compensate for data/MC disagreement?
- Special attention to theory systematics:
  - ask theorists what are the **limits** of their calculations
  - o be careful if you seem to **constrain models** (CR, UE) **without a dedicated observable** 
    - and when adding dedicated observables: are you probing the same side of the coin?
  - 2-point systematics as well as scale uncertainties are delicate (αs shown in previous slides)



### **Conclusions**

- Profile likelihood fit is a **powerful tool**,
   that could be used in **any** ATLAS or CMS top physics analysis
- Like many other nice toys in our field, it **cannot be used as a black box**:
  - understanding of the underlying concepts is needed
  - pulls and constraints of nuisance parameters have to be always scrutinised
- Important message:
  - in order to be used in a PLF analysis (as for precision measurements performed with other tools), the set of systematic uncertainties has to be complete and decomposed in all its independent sources
    - this is especially challenging for theory / MC uncertainties, where close collaboration between theory and experiment communities is needed



# **Backup**

### Splitting systematic uncertainties

- Usual answer from stats-gurus to the question "what to do if worried by (over)constraints?"
  - redesign your analysis in order to be less affected by systematics you don't want to constrain
  - or, redesign you systematic model,
     e.g. by *splitting* systematic uncertainties into more independent components

When possible, always consider splitting important and/or tightly constrained uncertainties, e.g.:

- Jet energy scale, b-tagging, ...  $\rightarrow$  use all the O(20-100) sources provided as output of the calibrations
- ME scale  $\rightarrow$  vary  $\mu_R$  and  $\mu_F$  separately, consider  $\mu_R$ + $\mu_F$  in addition for shape analyses?
- PS scale → 7-point scale variation suggested by Peter Skands (presentation at CMS TOP workshop 2018)
  - + variations for non-singular terms
  - + flavor-dependent variations where relevant (m<sub>+</sub>)?

• ..

