
Vectorizing common HEP

analysis algorithms
Author: Mentors:

Jaydeep Nandi Jim Pivarski

David Lange

1

Contents

1. Scalar programming and vectorization

2. Vectorization and GPU

3. Autovectorization

4. Vectorization of HEP analysis algorithms

1. Argproduct

2. Local reduction

5. Conclusions

2

Scalar Pogramming and

Vectorization
3

Scalar Programming

 Works on scalar (individual elements) values of an array.

 Applies an operation over the elements via a loop, usually a for-loop or

while loop.

 Low-level, and tedious to write.

 Virtually all programming languages support scalar programming.

4

Scalar Programming

 For example: If we wish to add two compatible vectors (of same shape

and castable type) A and B together and store it in C, a typical scalar

program (in Python) would look like:

for i in range(len(A)):

C[i] = A[i] + B[i]

 It operates on each element of the arrays sequentially.

5

What is Vectorization?

 Converting a scalar program to a vector program.

 It is also known as Array Programming.

 Wikipedia Definition: “In computer science, array programming languages

(also known as vector or multidimensional languages) generalize
operations on scalars to apply transparently to vectors, matrices, and

higher-dimensional arrays.“

 Allows applying an operation on multiple data items simultaneously

6

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Vector_(computing)
https://en.wikipedia.org/wiki/Scalar_(computing)
https://en.wikipedia.org/wiki/Vector_(geometric)
https://en.wikipedia.org/wiki/Matrix_(mathematics)

Array Languages

 Some languages and libraries support vectorization by default. Examples

include:

 Python: Numpy, Scipy etc.

 MATLAB

 GNU OCTAVE

 R etc.

 Usually they compute the vectors under the hood as efficient “C” or

“FORTRAN” implementations.

7

Array Languages

 Recollect the addition of all elements of two vectors to give a new vector,

which we implemented as a scalar code:

for i in range(len(A)):

C[i] = A[i] + B[i]

 In an array language, it is quite simple to write:

C = A + B

8

So why Vectorize?

 Simple to write; no need of writing loops incessantly.

 Expressive, from a mathematical point of view.

 But those are not the major reason for vectorising code.

 Most modern CPUs and GPUs provide support for vectorised code, which runs

very efficiently, operating in a SIMD style.

 Can take advantage of SSE (Streaming SIMD Extensions) and AVX instructions,

which operate on 4, 8 or more data simultaneously.

 GPUs take it even further: Can operate on a large number, typically in thousands,

of data at once. (More on it later!)

9

Vectorization and GPUs
10

General Purpose GPU (GPGPU)

Programming

 Works on Single Instruction Multiple Thread (SIMT) architecture.

 Processes multiple (depending on the number of threads available) data

elements simultaneously.

 However, it requires parallel instructions, which don’t have a dependency

that can create a data race.

 Can be programmed with CUDA for Nvidia cards, and OpenCL for AMD

cards and others.

 Primarily in C; bindings exist for other languages like PyCUDA and

PyOPENCL for Python.

11

Vectorization and GPGPU

programming

 Vectorized codes are inherently parallel. They apply same instructions on

multiple data elements of the vector at once.

 Is in perfect agreement with GPGPU philosophy.

 Vectorized codes thus give very high speedups if operated on the GPU.

12

Autovectorization
13

Autovectorization

 Modern compilers allow the vectorization of simple sequential loops into

efficient SIMD instructions for CPU, typically through a compiler switch.

 Some compilers which support this:

 GCC: Supports through switch –ftree-vectorize or –O3 level optimization.

 ICC: From Intel. Reported to be better than GCC at vectorising code.

 MSVC and others.

 They check if a loop is safe to be vectorised, and if it is, they vectorise the

code. The list of such possible vectorizable loops fo GCC can be found

here.

14

https://www.gnu.org/software/gcc/projects/tree-ssa/vectorization.html

Autovectorization

 As an example, consider again the addition of two vectors. A simple c loop that
does is :

for (int i=0; i<length(A); i++)

C[i] = A[i] + B[i];

 The corresponding assembly dump (relevant part) is:

vmovdqu xmm0, XMMWORD PTR [r9+rax]

add edx, 1

vinserti128 ymm0, ymm0, XMMWORD PTR [r9+16+rax], 0x1

vpaddd ymm0, ymm0, YMMWORD PTR [r13+0+rax]

vmovups XMMWORD PTR [rcx+rax], xmm0

 Note the vector instructions in the assembly (vmovdqu, vinserti etc)

15

Autovectorization

 Advantages:

 Sufficiently simpler than writing SSE or AVX instructions.

 Easy to debug.

 Portable.

 There is however, a major disadvantage. They cannot vectorise a loop if

there is a loop carried dependency.

16

Barriers to Autovectorization

 The major barrier is a loop carried dependency. They are variables whose
particular value depends on the order of the execution.

 As an example consider the problem of finding the cumulative sum of all
elements in an array A, and store it in array B.

int sum = 0;

for (int i=0; i<N; i++)

B[i] = sum + A[i];

sum = B[i];

 The value in sum at any instance depends on the order of loop execution. So,
it’s a loop carried dependency, and the compiler cannot autovectorize it.

17

Barriers to Autovectorization

 The assembly output of the loop is

mov r10d, 1000

mov ecx, eax

xor edx, edx

sub r10d, eax

sal rcx, 2

xor eax, eax

mov r9d, r10d

 Note the absence of vector instructions in the assembly, indicating an
unvectorized loop.

 The reduction operation can be vectorised, and will be dealt with shortly.

18

Vectorization of HEP analysis

algorithms
19

Algorithms Considered

 Argproduct: Forming the pairs of particles in an event. Return the indices of the
particles in the pairs as two arrays, one for first element, and other for second.

 Local Reduction: Reduce attributes of a particle set per event using a function
like max(), min() or custom operations.

 And others.

 For the complete list of algorithms and their detailed analysis, please refer to the
complete report available here.

 Note that the algorithms are not physics-specific algorithms per se, but primitives
which can be used to build them. They are meant to serve the purpose of
demonstrating the efficiency of vectorization.

20

https://gitlab.com/Jayd_1234/GSoC_vectorized_proof_of_concepts/blob/master/markdown files/Introduction.md

Argproduct
21

Motivation: Relativistic mass and boson

detection

 Argproduct returns two arrays, consisting of the index of first element in the pair,
and another array consisting of the index of the second element in the pair.

 A typical application in HEP is operating on the combinations or pairs of
different particles in an event.

 Higgs bosons and Z bosons decay so quickly that they're gone before they ever
reach a detector. All we can detect is the electrons and/or muons, and
sometimes not even that, if an electron or muon flies past the detector without
entering it.

 One powerful technique relies on relativistic mass: Higgs bosons have a (fairly)
well-defined mass and Z bosons have a (fairly) well-defined mass (with some
variation due to quantum effects, some due to measurement error). When a
particle decays, its decay products have the same total energy E as the original
particle (a scalar number), as well as the same total momentum P.

22

Motivation: Relativistic mass and boson

detection

 The relativistic mass is given as 𝑚2 = 𝐸2 − 𝑃2.

 So if we compute mass from the total energy and total momentum of a set

of particles, that mass will be approximately single-valued if the set of

particles came from a particle of a given mass.

 The particles, that came from Higgs or Z boson decay can be determined

by calculating the masses of pairs of muons and electrons.

 The particles that originate from Higgs or Z will add up to the same mass as

them (91 GeV for Z boson for example).

 With argproduct, we can generate the indices of pairs of particles from

same or different sets, which can then be used in the pairwise mass

calculation as above.

23

Argproduct

 Argproduct isn’t inherently vectorizable, it has a loop carried dependency.

 Some definitions:

 Events: Refers to a set of particles or elements that have some property in
common.

 Offsets: Gives the start and end indices of an event. The start indices are given by

starts, while the stop indices by stops.

 Parent: An array that gives the event id for every element or particle.

 Local and Global Operations: If a operation is done ithin the elements of an
event only, it is local in nature. Global operations work on particles from all

events.

24

Argproduct

 Sequential python code:

for i in range(events):

pairs_i = 0

for j in range(starts1[i], stops1[i]):

for k in range(strats2[i], stops2[i]):

first[pairs_i] = j

second[pairs_i] = k

pairs_i += 1

 Note that pairs_i is a loop carried dependency.

25

Argproduct

 The code can be vectorised if we have the information of

 Parents array of every pair.

 The number of elements in either array, say given by counts array, and the starts

and stops arrays for the two particle sets.

 A running index array for all the pairs in all the events.

 An important thing to notice is that if we consider the linear indexed arrays

as matrices, then the first and second arrays are given by the row index

and column index of the matrix.

 So, we just need a way to convert the linear index to matrix index.

26

Argproduct

 For a simple illustration, consider the two arrays

arr1 = [‘a’, ‘b’, ‘c’]

arr2 = [1,2]

 The output of argproduct will be

first = [0,0,1,1,2,2]

second = [0,1,0,1,0,1]

 Which correspond to the pairs

[[‘a’, 1],[‘a’, 2],[‘b’, 1],[‘b’, 2],[‘c’, 1],[‘c’, 2]]

27

Argproduct

 Now, there are 3*2 = 6 possible pairs. Notice that if we have a running index
array:
index = [0,1,2,3,4,5]

 Then first can be generated as the integer division of elements in index with
number of elements in second array, given by counts, and second is the result
of modulo operation on index by counts.

first = index // counts
second = index%counts

 The operations are vectorised.

 The per-event case then can be derived by giving the proper offset to the
indices.

28

Performance Improvements of

argproduct

 Vectorizing the argproduct gives a high speedup, especially when

considered between vectorised GPU and scalar CPU code.

29

Local Reduction
30

Motivation: Generated Reconstructed

particle matching

 Reduces an array per-event. The reduction operator can be any associative
operator like max(), min() or sum().

 A particular application in HEP is to find the matching between generated
particles and reconstructed particles.

 Generated particles are the truth or ideal values, and reconstructed particles
are the detected ones in an experiment.

 Gen-reco matching attempts to find which reconstructed particles belong to a
particular generated particle class.

 Usually achieved by minimizing an optimization criteria, which we can call the
predicate function. An example of that is the minimum deltaR criteria.

 We aim to find the particle pair that achieves the best value of optimization
criteria in an event.

 This requires local reduction, that is reduction per event.

31

Local Reduction

 Significantly tough to vectorise.

 We shall consider max(), and the rest can be simply substituted in place of

max()

 Sequential code

for i in range(events):

for i in range(starts[i], stops[i]):

val = max(val, A[i])

32

Local reduction

 The reduction has been implemented in parallel through a modified version

of Hillis-Steele and Blleloch scan algorithm.

 Let us consider a single event first. The pseudocode for the upsweep phase

of the algorithm is

for d=0 to (log2n -1) do

forall k=0 to n-1 by 2d+1 do

a[k+2d+1-1] = max(a[k+2d-1], a[k+2d+1-1])

 The algorithm proceeds by tree reducing the array elements, until a single element

remains.

33

Local Reduction34

 Upsweep phase of the reduction.

(Image Courtesy: gpugems)

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html

Local Reduction

 To extend it to per-event case, we will again require the parents array for

the data.

 It will serve as a mask for the array elements, so that data isn’t accessed

across events.

The modified pseudocode will then look like

for d=0 to (log2n -1) do

forall k=0 to n-1 by 2d+1 do

if (parents[k+2d+1-1] == parents[k+2d-1])

a[k+2d+1-1] = max(a[k+2d-1], a[k+2d+1-1])

35

Local Reduction performance

 The vectorised GPU code performs moderately well in comparison to the

sequential CPU code. The timings as a function of average number of

particles are given below:

36

Conclusions

 Vectorization and parallelization of code achieves superior performance

over sequential implementation.

 Vectorized code can be offloaded to GPU, achieving high runtime speeds.

 Code remains clean and efficient.

 The algorithms will be a part of awkward-array authored by Jim Pivarski,

which is under development now. Several of them like vectorised

argproduct have already been merged.

37

https://github.com/scikit-hep/awkward-array

Thank You!38

