

In2p3

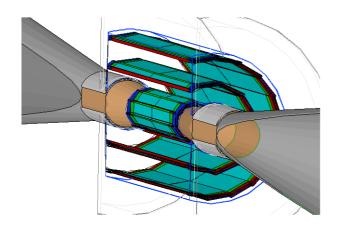
Projects for 2010 and beyond

Contents

- ► Context & goals
- ► Ladder concept
- **▶** Difficulties
- ► Current status
- ► Testing
- ► Work organization & schedule
- ► Open questions

Context & Goals

Geometry for ILC


x ILD layers: 125mm

Material budget request

- x 0.16% X0 for double layer
- x 0.11% X0 for single layer

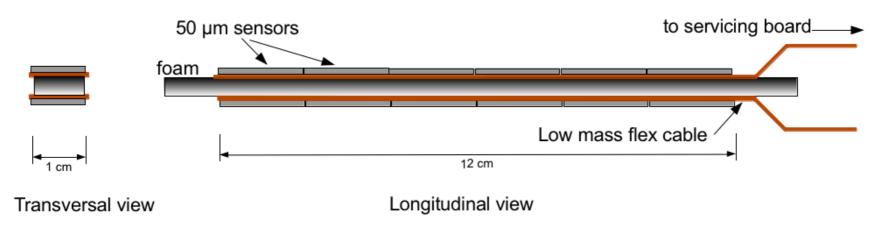
Operation mode

- x Power pulsing (200ms period)
- Air cooling (100mW/cm²)

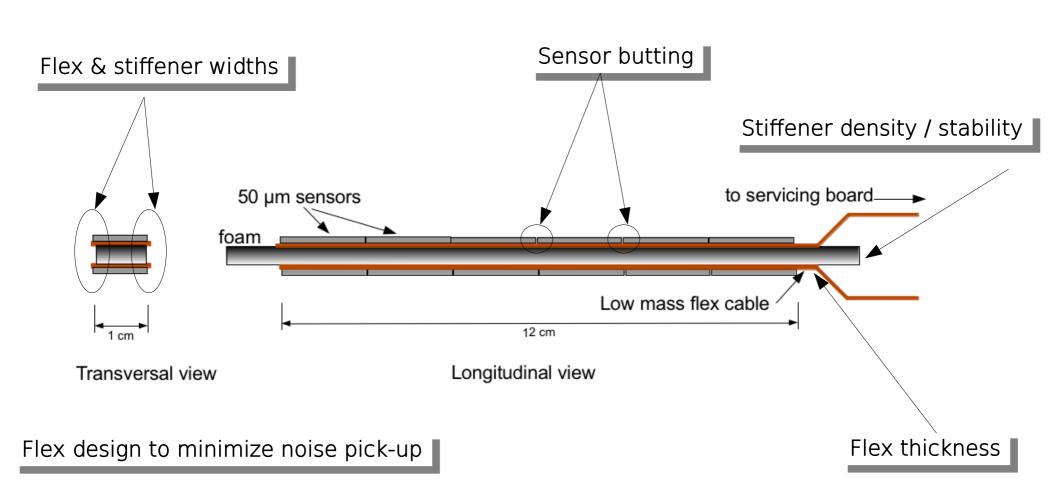
Fabrication

- X Knowledge of full process
- Identify critical steps
- x Develop expertise in lab
 - → Testing
 - → Validating
 - → Mounting

Expected Performances


- ★ For a single layer: Single point resolution ≤3μm with efficiency ~ 100%
- For both layers: evaluate pointing resolution of mini-vectors

Ladder concept


Assumptions, at least for 2010

- x MIMOSA 26 sensors, thinned down to 50 μm
- x Silicon carbide foam stiffener, 2mm width
- x Kapton-metal flex cable
- Discrete components (R,C) on flex for decoupling/termination
- wire bonding for flex outer world connection

Difficulties

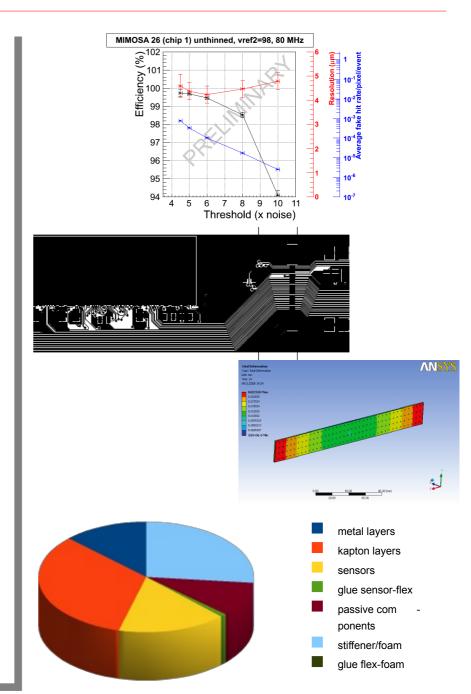
Quantity of discrete components

Current status / performances

Sensors

- Individual tests when mounting on dedicated PCB
- x Thinned down to 120 μm (other types to 50 μm)
- x Experience of mounting & connection on flex @ Strasbourg

Flex


x Design @ Oxford finalized

Stiffener

- x Material well understood @ Bristol
- x Experience of mounting flex

Expected material budget for 2010

- x Computed relatively / sensitive area
- x 2 modules = 0.48% X0
- x 1 double-sided ladder = 0.65% X0

Testing required

Thermal behavior

- ✗ dissipated heat drained by air flow (~°C precision)
- x -> design air system & supporting mechanics

Mechanical behavior

- \mathbf{x} X,Y,Z displacement (μ m level) when in operation
- x Effect of power pulsing, air flow, B-field...
- x -> design ladder stiffener & flex

Electronic & Electromagnetic behavior

- Noise/signal level when power is pulsed
- Noise level (or fake hit rate) of sensors on flex and nearby other sensors and PCB
- x -> design flex

Detection performances

- Once in full operation (power pulsing, air cooling) asses the single point resolution and efficiency IN BEAM
- x Final testing will occur in the AIDA setup in 201?

Tentative schedule & milestones

This is a starting point for discussion today!

2010

- x Produce electrically working ladder
- Test electromagnetic sensitivity

X

2011

- x Produce first optimized ladder
- Perform all tests and provide inputs / design

2012

- Produce best ladder possible
- Final test in beam with full servicing

Tentative task planning

2010

- Produce first flex for 6 MIMOSA26
- x Build sensor-flex automatic mounting setup
- Design & fabricate mechanical ladder-support: handling/traveling/testing
- x Characterize MIMOSA26 for electro-sensitivity, "thermal map"
- Set-up power pulsing bench
- x Set-up thermo-mecanical measurement bench
- x Second flex design

2011

- X Data Acquisition System ready for 12 sensors readout
- x Produce optimized flex
- Mount assemble test

2012

- x Produce best flex
- x Mount assemble test

Open questions

- How many ladders?
 - x In 2010, 2011, 2012
- Need to mirror the flex or not in 2010?
- How many DAQ system do we need?
- Which alternative sensors do we consider?
- Alternative global design?
 - x Without stiffener?
 - x Embedded sensors in polyimide?
- Performances aimed for the 2012 ladder?
- Ψ ...

DISCUSSION BEGINS...

what, when and who?

... and for what costs

Are all difficulties adressed?

Memorandum Of Understanding