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DM & Indirect Detection

- compelling evidence for existence of DM (only gravitational)
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- we are searching for non-gravitational interactions of DM with baryonic matter (us)

- indirect detection: search for excess in cosmic ray flux from
dense regions in the sky
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dwart Spheroidal galaxies (dSphs)

Coma Berenices dSph
- Milky Way galaxy satellites

-0 ( 1()0) kpc away from the Galactic centre

- DM dominated objects as shown by the
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Constraints on DM from dSphs
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Current Fermi-LAT’s procedure

(from non-expert opinion)

- predefined background models (diffuse, isotropic, PLS) where only normalisation is fitted
- independent determination of background in a 15°x15° region around each dwarf
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Points to improve:
- new (unresolved) spatially-dependent contributions may provide unequal performances
in different regions of the sky
- no guarantee that background is consistently determined from one region to another
- Estimation of (theoretical) systematic errors is unclear



A data-driven alternative
for bckg estimation

- Be agnostic about a possibly underlying physics as for background is concerned

- Build a global estimator based only on data, from reasonably well-defined
control regions

- Extrapolation to estimate the background contribution on dwarfs (signal regions)

- Include background uncertainties in the statistical analysis

Regression problem



ML approach

(“Supervised Learning”)

Suppose data is: ({f“ yz) fz : D-dimensional input vector (fixed)
i=1,...N points Y; : output (random variable)

Parametric methods:

- assume a specific shape for the distribution (Likelihood) of data: Y
e.g. Gaussian 5, 5
- assume identical-variance for all data points: O (37 ) — 0

- model the mean at each point
p (but also other

e.g. basis function expansion: ¥; (Z;) = E B;hi(&;) non-linear models

- as neural networks)

Maximum-Likelihood-Estimator equivalent to minimise:
N
C = E (yz — Y
1=1

Training phase: fitting the parameters for a given model complexity (value of p)
Testing phase: choosing the model complexity that best fit new data



ML approach

(“Supervised Learning”)

Non-parametric methods: (followed in this work)

- DOES NOT assume a specific shape for the Likelihood
Parametrise the likelihood using kernel density estimation methods:

N
— 1 — —
F(@y) = 5 D_ Ko (@ — T)ge(y — 1)
=1

a. A small value of o.

[Parzen ‘62] Under quite weak hypothesis (continuity, smoothness)
it provides an unbiased estimator of
the true underlying PDF, F

gaussian tophat epanechnikov b. A larger value of o.

Choice of kernels not unique
[Bishop ‘06]

exponential linear cosine

c. An even larger value of o.

[Specht ‘89]




Stating the problem

Aims:
1) A 100% data-driven estimation of the (PDF of the) background emission at
dwarf positions,
2) A consistent treatment of background uncertainties, when setting
limits on DM annihilation cross section

What is needed:
- Reasonable definition of the “control region” (background-only)
- Concrete ML method for estimating the background distribution
- Likelihood construction

Which data is used:
- Fermi-LAT public data (2008-2015) SOURCE Fermi-LAT P8R2 class data

All-sky, binned in Cartesian coordinates with pixel size 0.1 deg
500MeV — 500GeV energy range in 24 bins



b, Gal. latitude [deg]

How does data looks like?
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Dwarfs distribution

Control regions

As many non-overlapping circular regions as possible(*),
identical in size as dwarfs (r= 0.5°) and spatially distributed as the dwarfs
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(*) removing:

- dwarfs themselves

- galactic disk (|b| < 20°)

- point-like sources from the catalog 3FGL

- extended sources
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L 2x1077

Optimum PDF parameters

Maximum-Likelihood-Estimator

at data point ¥; = (¢;,b;), the PDF is built from the N-1 remaining data points
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Bckg predictions at dSphs

The PDF for dSph d is

Fa(Zq,1nb) Z Ko (Za — ) - go. (Inb — Inb;)

Expected value of bckg counts:

Joo b Fadb SN K, (%4 — ) Inb,

<1n bd> — 0 —
N - -
f—oo Fadb Zi:l KU* (ZUd — Zj
dwarf Obs. counts
For example...
Segue I 158
Sculptor 14

Coma Berenices 27

Ursa Minor 187
Leo II 49
Draco 221

)

In b : logarithm of
bckg counts

N : the whole sample of
bckg-only regions

(in practice,
a weighted average
over all neighbours)

Exp. counts
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172.5
62.7
202.8



Likelihood analysis

* In general the Likelihood for dSph d and energy bin e is: new
Ndg.,e _>\d,e \\
Ld,e()‘d,ea log Jd, In bd,e) — &€ ' N(log Jd) F(ln bd,e)

nd,e.

with:  Adge = Ja(ov) fa.c(mpm) +Inbg. .
% We take the Likelihood for dSph d as: N
Lq({ov),log Jg,Inbg 1) = N(log Jq)F(Inbg 1) H P({ov),log Ji,Inbg )

Nuissance parameters

% The total (stacked) Likelihood is thus:
Ak 9 = (logJ,Inbq)

L({ov), logJ,Inby) = | [ La({ov),log Ja,Inbg)
d

¥ Profile likelihood method:

(for fixed mass) ov g ov
o TS({ov)) = —21n £( Sﬁﬁ(ﬁ(é )

- Note we are only profiling over first energy bin (just for computational simplicity)
since we assume maximum-correlation between bins (after some checks)



Dark matter limits

Profiling over J-factor,
bckg fixed to central value
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- Only showing the 6 dSphs giving strongest limits

- dSph ranking can change w.r.t. case of profiling only over J

- For a given dSph, difference between two limits change, depending on PDF moments



Dark matter limits

. .. Summary plot
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- Fixing the bckg, limits are stronger (weaker) than Fermi-LAT’s for low (high) masses
(optimised bckg modelling vs. limited statistics)

- Profiling also over the bckg, limits weaker by factor 1.5 (relevant e.g. for GC excess)



Conclusions

- Indirect detection of DM hampered by limited knowledge of
astrophysical bckg

- Physical modelling of such bckg is imperfect; may not cover all
information data provides

- Machine-learning (ML) methods can definitely help, if our aim
is to understand DM

- Accounting for background uncertainties have an important impact
on DM limits !

Thanks!



bckp



Existing applications of ML to DM

- “Analyzing gamma-rays of the Galactic Center with Deep Learning”
Caron + , arXiv: 1708.06706

- Improving the positional offset [of DM clusters] (Gravitational lensing)
Harvey +, arXiv: 1311.0704

- DM-vs-neutrino discrimination in electromagnetic showers (data from OPERA)
https://www.kaggle.com/c/dmse-2-1

... and many more to come!

https://indico.cern.ch/event/664842/overview
https://indico.cern.ch/event/687473/overview



AlGalactic Latitude)

A model-independent analysis of the Fermi Large Area Telescope gamma-ray data
from the Milky Way dwarf galaxies and halo to constrain dark matter scenarios

M. N. Mazziotta,''* F. Lf:)parco,l'-?‘i F. de Palma.,%»! and N. Giglietto!?

! [stituto Nazionale di Fisica Nucleare,
Sezione di Bari, 70126 Bari, Italy
?Dipartimento di Fisica “M. Merlin” dell’Universitd e del Politecnico di Bari,
I-70126 Bari, I[taly
(Dated: April 2, 2012)

We implemented a novel technique to perform the collective spectral analysis of sets of multiple
gamma-ray point sources using the data collected by the Large Area Telescope onboard the Fermi
satellite. The energy spectra of the sources are reconstructed starting from the photon counts
and without assuming any spectral model for both the sources and the background. In case of
faint sources, upper limits on their fluxes are evaluated with a Bayesian approach. This analysis
technique is very useful when several sources with similar spectral features are studied, such as
sources of gamma rays from annihilation of dark matter particles. We present the results obtained
by applying this analysis to a sample of dwarf spheroidal galaxies and to the Milky Way dark matter
halo. The analysis of dwarf spheroidal galaxies yields upper limits on the product of the dark matter
pair annihilation cross section and the relative velocity of annihilating particles that are well below
those predicted by the canonical thermal relic scenario in a mass range from a few GeV to a few

tens of GeV for some annihilation channels. httpS//ﬁleVOfg/pdf/llOB2914pdf
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