
  

  Bryan Zaldívar 
        IFT Madrid

 Dark matter constraints from dwarf galaxies
with machine-learning

Based on:  
1803.05508  (in collaboration with Francesca Calore & Pasquale D. Serpico)



  

DM & Indirect Detection

DM

DM

quarks, leptons,
gauge bosons

- compelling evidence for existence of DM  (only gravitational)

- we are searching for non-gravitational interactions of DM with baryonic matter (us)

?

Photons

neutrinos

anti-matter

- indirect detection: search for excess in cosmic ray flux from
                                     dense regions in the sky 



  

dwarf Spheroidal galaxies (dSphs)
Coma Berenices dSph

(Chandra)

- Milky Way galaxy satellites   

-                                    away from the Galactic centre

- DM dominated objects as shown by the 
  kinematics of their stars

(If DM has non-gravitational 
interactions with the SM)

Expected to shine in gamma-rays 
mostly from their DM content

Mateo, astro-ph/9810070

https://kicp.uchicago.edu/depot/talks/kicp_6_may_2015_v1.pdf

Keith Bechtol
A priori very clean laboratories
for DM searches!



  

Constraints on DM from dSphs

J-factors can be
measured independently

Photon counts at
dwarf d

[Charles+PhR ‘16]

dark matter contribution
(known, fixed

hypothesis to test)

total expected  no. of events:

make the measurement,
build your likelihoods,

If no significant excess
put limits on DM contrib.

: background 
  (everything not being DM)



  

Current Fermi-LAT’s procedure
(from non-expert opinion)

- predefined background models (diffuse, isotropic, PLS) where only normalisation is fitted

- independent determination of background in a 15ºx15º region around each dwarf

Points to improve:
    -  new (unresolved) spatially-dependent contributions may provide unequal performances
        in different regions of the sky
    -  no guarantee that background is consistently determined from one region to another
    -  Estimation of (theoretical) systematic errors is unclear  



  

A data-driven alternative
for bckg estimation

-  Be agnostic about a possibly underlying physics as for background is concerned

-  Build a global estimator based only on data,  from reasonably well-defined 
   control regions

-  Extrapolation to estimate the background contribution on dwarfs (signal regions)

-  Include background uncertainties in the statistical analysis 

Regression problem 



  

ML approach

Parametric methods:

(“Supervised Learning”)

- assume a specific shape for the distribution (Likelihood) of data: 
   e.g. Gaussian
- assume identical-variance for all data points:

- model the mean at each point  

Suppose data is: : D-dimensional input vector (fixed)

: output (random variable)

e.g. basis function expansion:

Maximum-Likelihood-Estimator  equivalent to minimise: 

points

(but also other 
non-linear models
as neural networks) 

Training phase: fitting the parameters for a given model complexity (value of p)
Testing phase:  choosing the model complexity that best fit new data



  

Non-parametric methods:  (followed in this work)

ML approach
(“Supervised Learning”)

- DOES NOT assume a specific shape for the Likelihood
Parametrise the likelihood using kernel density estimation methods:

Under quite weak hypothesis (continuity, smoothness)
it provides an unbiased estimator of 
the true underlying PDF,

[Parzen ‘62]

Choice of kernels not unique 

[Specht  ‘89]

[Bishop ‘06]



  

Stating the problem

Aims:
 1) A 100% data-driven estimation of  the (PDF of the) background emission at
   dwarf positions, 
2) A consistent treatment of background uncertainties, when setting 
     limits on DM annihilation cross section    

What is needed:
  - Reasonable definition of the “control region” (background-only)
  - Concrete ML method for estimating the background distribution
  - Likelihood construction   

Which data is used:
  - Fermi-LAT public data (2008-2015)   SOURCE Fermi-LAT P8R2 class data
     All-sky, binned in Cartesian coordinates with pixel size 0.1 deg
     500MeV – 500GeV energy range in 24 bins
     



  

How does data looks like?
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Control regions

 As many  non-overlapping circular regions as possible(*), 
 identical in size as dwarfs  (r= 0.5º)    and spatially distributed as the dwarfs
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 d
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ib
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on

(*) removing:
     - dwarfs themselves
     - galactic disk
     - point-like sources from the catalog 3FGL
     - extended sources   ”          ”       ” 
    

Note:
  dwarfs and control regions are both
  superposed to the background 
  DM halo



  

Optimum PDF parameters
Maximum-Likelihood-Estimator

at data point                              ,  the PDF is built from the N-1 remaining data points

The total (log) Likelihood is:

PDF at one data point

Data is noisy! 

: photon counts
Gaussian Log-normal



  

Bckg predictions at dSphs

The PDF for dSph d  is:
: logarithm of 
  bckg counts

(in practice, 
a weighted average 
over all neighbours)

Expected value of bckg counts:

: the whole sample of
  bckg-only regions

dwarf Obs. counts Exp. counts

Segue I 158 138.5

Sculptor 14 23.2

Coma Berenices 27 27.6

Ursa Minor 187 172.5

Leo II 49 62.7

Draco 221 292.8

For example...



  

Likelihood analysis

In general the Likelihood for dSph d and energy bin e is:

with:

new

We take the Likelihood for dSph d as: 

The total (stacked) Likelihood is thus: 

- Note we are only profiling over first energy bin (just for computational simplicity)
  since we assume maximum-correlation between bins (after some checks)

Profile likelihood method: 

Nuissance parameters

(for fixed DM mass) 



  

Dark matter limits

- Only showing the 6 dSphs giving strongest limits

- dSph ranking can change w.r.t. case of profiling only over J

- For a given dSph, difference between two limits change, depending on PDF moments

Profiling over J-factor,
bckg fixed to central value 

Profiling over J-factor 
and bckg simultaneously



  

Dark matter limits

- Fixing the bckg, limits are stronger (weaker) than Fermi-LAT’s for low (high) masses
                                                                       (optimised bckg modelling vs. limited statistics)

- Profiling also over the bckg, limits weaker by factor 1.5  (relevant e.g. for GC excess)



  

Conclusions

- Indirect detection of DM hampered by limited knowledge of 
   astrophysical bckg

- Physical modelling of such bckg is imperfect; may not cover all
   information data provides

- Machine-learning (ML) methods can definitely help, if our aim
   is to understand DM

- Accounting for background uncertainties have an important impact
   on DM limits !  

Thanks!



  

bckp



  

Existing applications of ML to DM

- “Analyzing gamma-rays of the Galactic Center with Deep Learning”
   Caron + , arXiv: 1708.06706 

- Improving the positional offset [of DM clusters] (Gravitational lensing) 
   Harvey +, arXiv: 1311.0704

- DM-vs-neutrino discrimination in electromagnetic showers (data from OPERA)
   https://www.kaggle.com/c/dmse-2-1 

… and many more to come!

https://indico.cern.ch/event/664842/overview

https://indico.cern.ch/event/687473/overview



  

https://arxiv.org/pdf/1108.2914.pdf
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