GUIDING NEW PHYSICS SEARCHES WITH UNSUPERVISED LEARNING

[DS, Jacques - 1807.06038]

Andrea De Simone

> New Physics ?

Searches for New Physics Beyond the Standard Model have been negative so far...

MAYBE:

1. New Physics (NP) is not accessible by LHC

new particles are too light/heavy or interacting too weakly

2. We have not explored all the possibilities

new physics may be buried under large bkg or hiding behind unusual signatures

> New Physics ?

"Don't want to miss a thing" (in data)

closer look at current data get ready for next run

Model-independent search

searches for specific models may be insensitive to unexpected / unknown / anomalous processes

> New Statistical Test

Want a statistical test for NP which is:

1. model-independent:

no assumption about underlying physical model to intepret data

more general

2. non-parametric:

compare two samples as a whole (not just their means, etc.)

fewer assumptions, no max likelihood estim.

3. un-binned:

high-dim feature space partitioned without rectangular bins

retain full multi-dim info of data

> Outline

1. Statistical test of dataset compatibility

2. Applications to High-Energy Physics

> Outline

1. Statistical test of dataset compatibility

2. Applications to High-Energy Physics

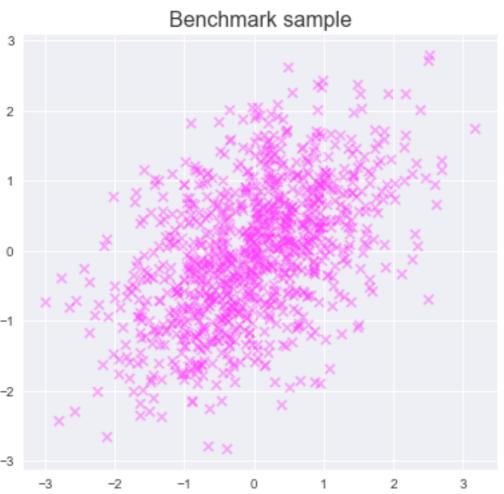
Two sets:

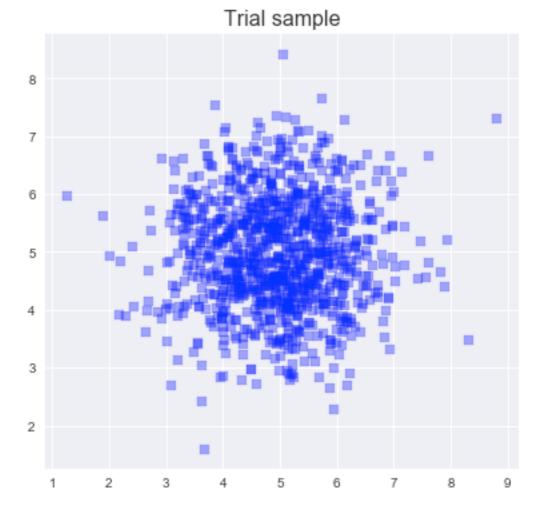
[a.k.a. "homogeneity test"]

 $oldsymbol{x}_i, oldsymbol{x}_i' \in \mathbb{R}^D$

Trial:
$$\mathcal{T} = \{m{x}_1, \dots, m{x}_{N_T}\} \overset{ ext{iid}}{\sim} p_T$$
Benchmark: $\mathcal{B} = \{m{x}_1', \dots, m{x}_{N_B}'\} \overset{ ext{iid}}{\sim} p_B$

probability distributions p_B, p_T unknown





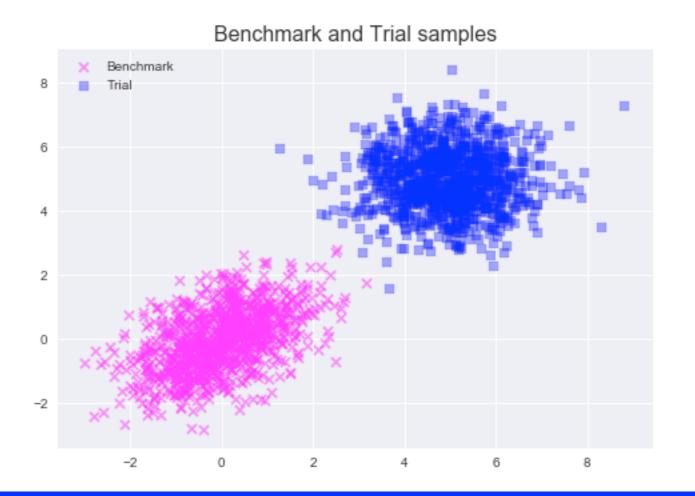
real measured data

Two sets:

Trial:
$$\mathcal{T} = \{m{x}_1,\ldots,m{x}_{N_T}\} \overset{ ext{iid}}{\sim} p_T$$
Benchmark: $\mathcal{B} = \{m{x}_1',\ldots,m{x}_{N_B}'\} \overset{ ext{iid}}{\sim} p_B$ $m{x}_i,m{x}_i' \in \mathbb{R}^D$

probability distributions p_B, p_T unknown

Are B,T drawn from the same prob. distribution?



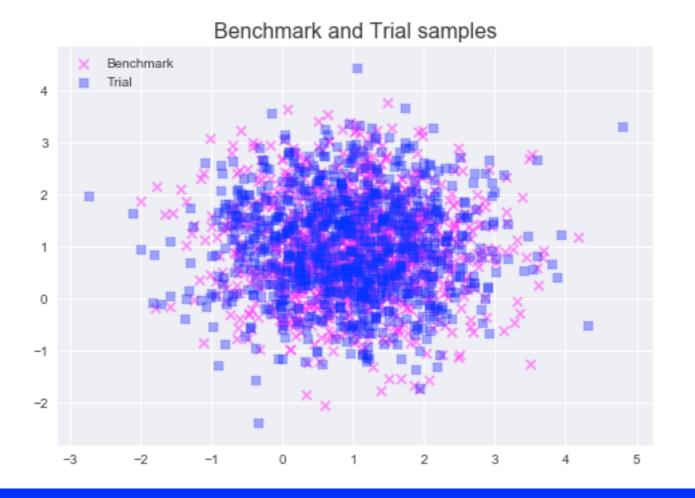
easy...

Two sets:

Trial:
$$\mathcal{T}=\{m{x}_1,\ldots,m{x}_{N_T}\}\stackrel{ ext{iid}}{\sim} p_T$$
Benchmark: $\mathcal{B}=\{m{x}_1',\ldots,m{x}_{N_B}'\}\stackrel{ ext{iid}}{\sim} p_B$ $m{x}_i,m{x}_i'\in\mathbb{R}^D$

probability distributions p_B, p_T unknown

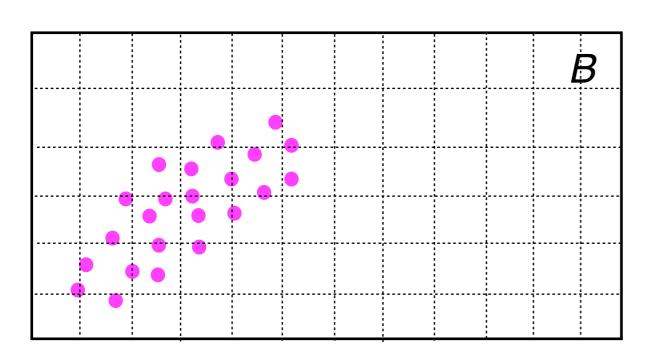
Are *B,T* drawn from the same prob. distribution?

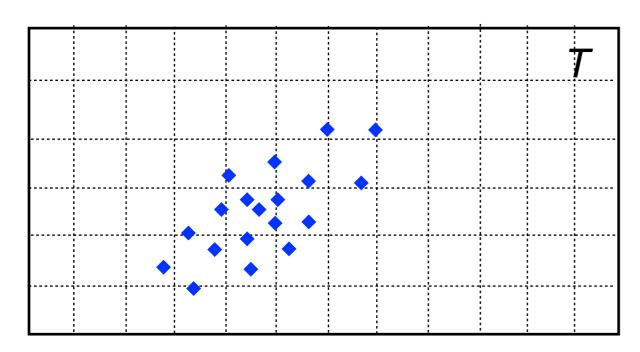


... hard!

RECIPE:

- 1. Density Estimator
 - reconstruct PDFs from samples
- 2. Test Statistic (TS)
 - measure "distance" between PDFs
- 3. TS distribution
 - associate probabilities to TS under null hypothesis H_0 : $p_B = p_T$
- 4. *p* -value
 - → accept/reject H₀





Divide the space in squared bins?

- √ easy
- \checkmark can use simple statistics (e.g. χ^2)
- hard/slow/impossible in high-D

Need un-binned multivariate approach

Find PDFs *estimators*: $\hat{p}_B(\mathbf{x}), \hat{p}_T(\mathbf{x})$ e.g. based on densities of points:

$$\hat{p}_{B,T}(\boldsymbol{x}) = \frac{\rho_{B,T}(\boldsymbol{x})}{N_{B,T}}$$

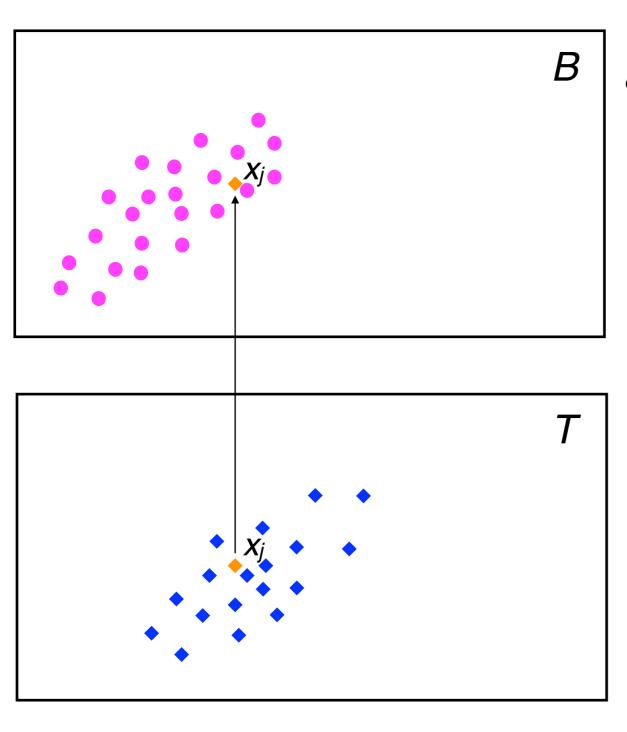
Nearest Neighbors!

```
[Schilling - 1986][Henze - 1988]

[Wang et al. - 2005,2006]

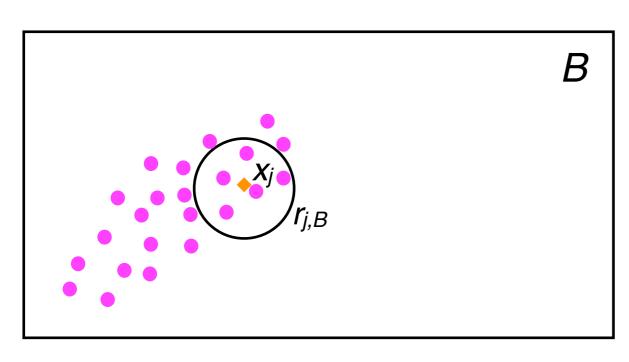
[Dasu et al. - 2006][Perez-Cruz - 2008]

[Sugiyama et al. - 2011][Kremer et al, 2015]
```



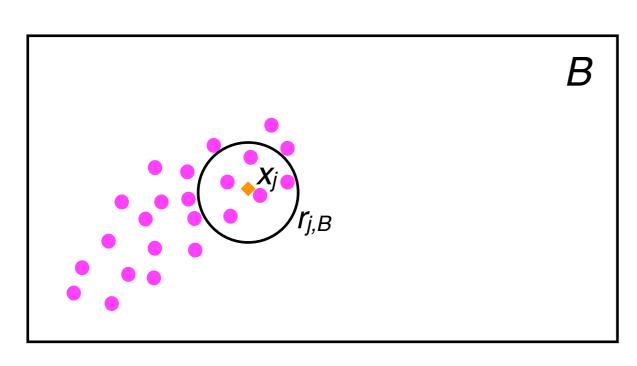
• Fix integer K.

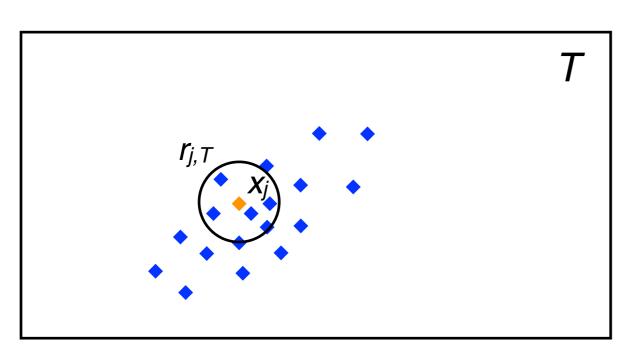
• Choose query point x_j in T and draw it in B.



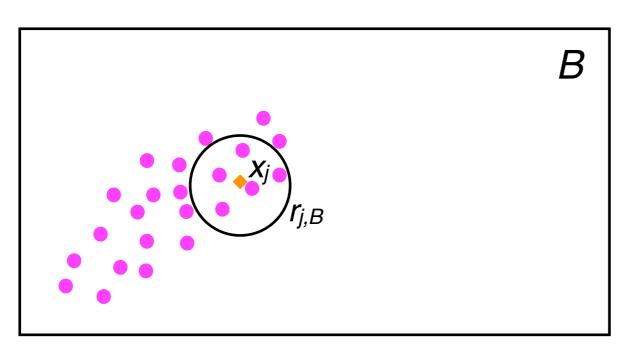
- Fix integer K.
- Choose query point x_j in T and draw it in B.
- Find the distance $r_{j,B}$ of the Kth-NN of x_i in B.

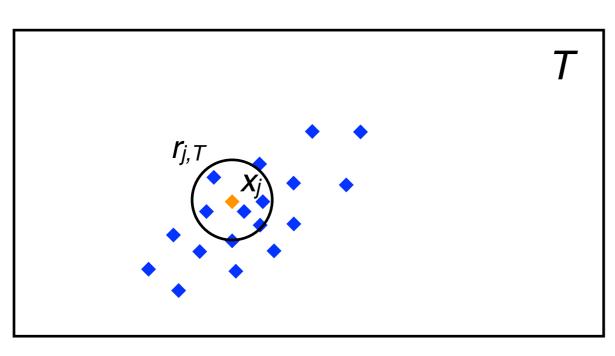






- Fix integer K.
- Choose query point x_j in T and draw it in B.
- Find the distance $r_{j,B}$ of the Kth-NN of x_i in B.
- Find the distance $r_{j,T}$ of the Kth-NN of x_i in T.





- Fix integer K.
- Choose query point x_j in T and draw it in B.
- Find the distance $r_{j,B}$ of the Kth-NN of x_i in B.
- Find the distance $r_{j,T}$ of the Kth-NN of x_j in T.
- Estimate PDFs:

$$\hat{p}_B(\boldsymbol{x}_j) = \frac{K}{N_B} \frac{1}{\omega_D r_{j,B}^D}$$

$$\hat{p}_T(\boldsymbol{x}_j) = \frac{K}{N_T - 1} \frac{1}{\omega_D r_{j,T}^D}$$

> 2. Test Statistic

Measure of the "distance" between 2 PDFs

 Define **Test Statistic**: (detect under-/over-densities)

$$TS(\mathcal{T}) \equiv \frac{1}{N_T} \sum_{j=1}^{N_T} \log \frac{\hat{p}_T(\boldsymbol{x}_j)}{\hat{p}_B(\boldsymbol{x}_j)}$$

• Related to Kullback-Leibler divergence as: $\mathrm{TS}(\mathcal{T}) = \hat{D}_{\mathrm{KL}}(\hat{p}_T || \hat{p}_B)$

$$D_{\mathrm{KL}}(p||q) \equiv \int_{\mathbb{R}^D} p(oldsymbol{x}) \log rac{p(oldsymbol{x})}{q(oldsymbol{x})} doldsymbol{x}$$

- From NN-estimated PDFs: $TS(\mathcal{T}) = \frac{D}{N_T} \sum_{j=1}^{N_T} \log \frac{r_{j,B}}{r_{j,T}} + \log \frac{N_B}{N_T-1}$
- Theorem: this estimator converges to $D_{KL}(p_B || p_T)$, in large sample limit [Wang et al. 2005,2006]

> 3. Test Statistic Distribution

How is TS distributed? Permutation test!

Assume $p_B = p_T$. Union set: $\mathcal{U} = \mathcal{T} \cup \mathcal{B} = \{x_1, \dots, x_{N_T}, x_1', \dots, x_{N_B}\}$

for n = 1 to N_{perm} do

- Random reshuffle (sample without replacement) *U*:

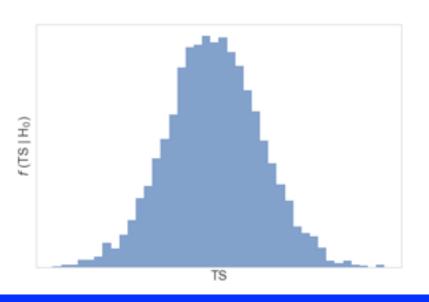
$$\mathcal{U}_n = \{ ilde{m{x}}_1, \dots, ilde{m{x}}_{N_T + N_B}\}$$

- Assign first *N*_B points to *B* and remaining points to *T*:

$$egin{aligned} ilde{\mathcal{B}} &= \{ ilde{m{x}}_1, \dots, ilde{m{x}}_{N_B} \} \ ilde{\mathcal{T}} &= \{ ilde{m{x}}_{N_B+1}, \dots, ilde{m{x}}_{N_B+N_T} \} \end{aligned}$$

- Compute the test statistic TS_n on: $(\mathcal{B}, \mathcal{T})$ end for

Distribution of TS under H_0 : $f(TS|H_0) \leftarrow \{TS_n\}$ [asymptotically normal with zero mean]



> 4. p-value

• $\hat{\mu}, \hat{\sigma}$: mean, variance of TS distribution $f(TS|H_0)$

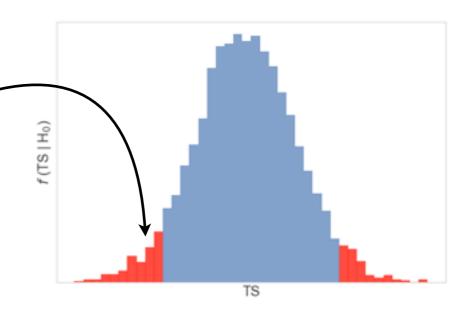
• Standardize the TS:
$$TS \to TS' \equiv \frac{TS - \hat{\mu}}{\hat{\sigma}}$$

• TS' distributed according to $f'(TS'|H_0) = \hat{\sigma}f(\hat{\mu} + \hat{\sigma}TS'|H_0)$

Two-sided p-value:

$$p = 2 \int_{|TS'_{obs}|}^{+\infty} f'(TS'|H_0) dTS'$$

• Equivalent significance: $Z \equiv \Phi^{-1}(1 - p/2)$



> Gaussian Example

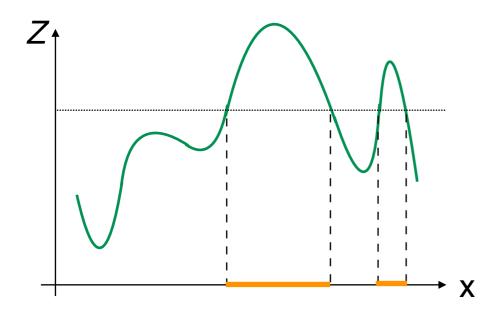
$$p_B = \mathcal{N}(\mu_B, \Sigma_B) \qquad p_T = \mathcal{N}(\mu_T, \Sigma_T) \qquad \Sigma_B = \Sigma_T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mu_B = \begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix} \qquad \mu_T = \begin{pmatrix} 1.2 \\ 1.2 \end{pmatrix}$$
 exact KL divergence
$$\mu_B = \begin{pmatrix} 1.0 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.001 \\ 0.0$$

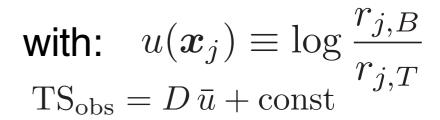
> Where are the discrepancies?

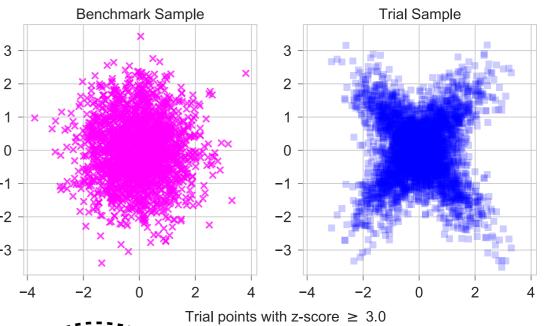
Bonus: Characterize regions with significant discrepancies

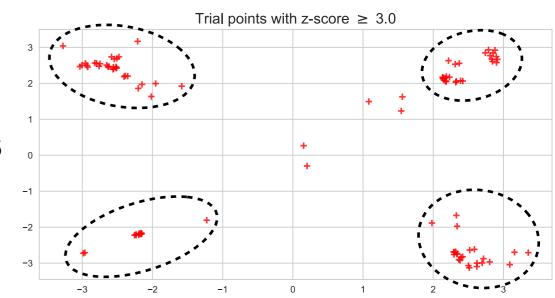
1. "Score" field over T : $Z(m{x}_j) \equiv \frac{u(m{x}_j) - ar{u}}{\sigma_u}$



- 2. Identify points where Z(x) > cThey contribute the most to large TS_{obs} \rightarrow high-discrepancy (anomalous) regions
- 3. Apply a clustering algorithm to group them







> NN2ST: Summary

INPUT:

Trial sample:
$$\mathcal{T} = \{ m{x}_1, \dots, m{x}_{N_T} \} \stackrel{ ext{iid}}{\sim} p_T$$
 $m{x}_i, m{x}_i' \in \mathbb{R}^D$ Benchmark sample: $\mathcal{B} = \{ m{x}_1', \dots, m{x}_{N_B}' \} \stackrel{ ext{iid}}{\sim} p_B$ $m{p}_B, m{p}_T$ unknown

K: number of nearest neighbors

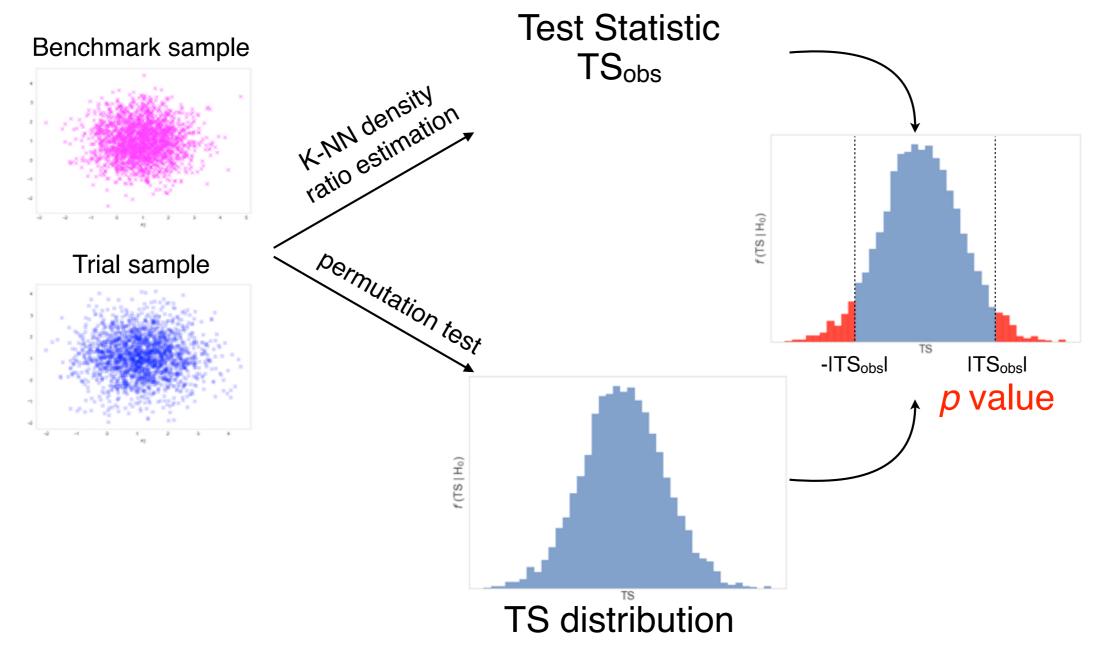
*N*_{perm}: number of permutations

OUTPUT:

p -value of the null hypothesis H_0 : $p_B = p_T$

[check compatibility between 2 samples]

> NN2ST: Summary



[github.com/de-simone/NN2ST]

> NN2ST: Summary

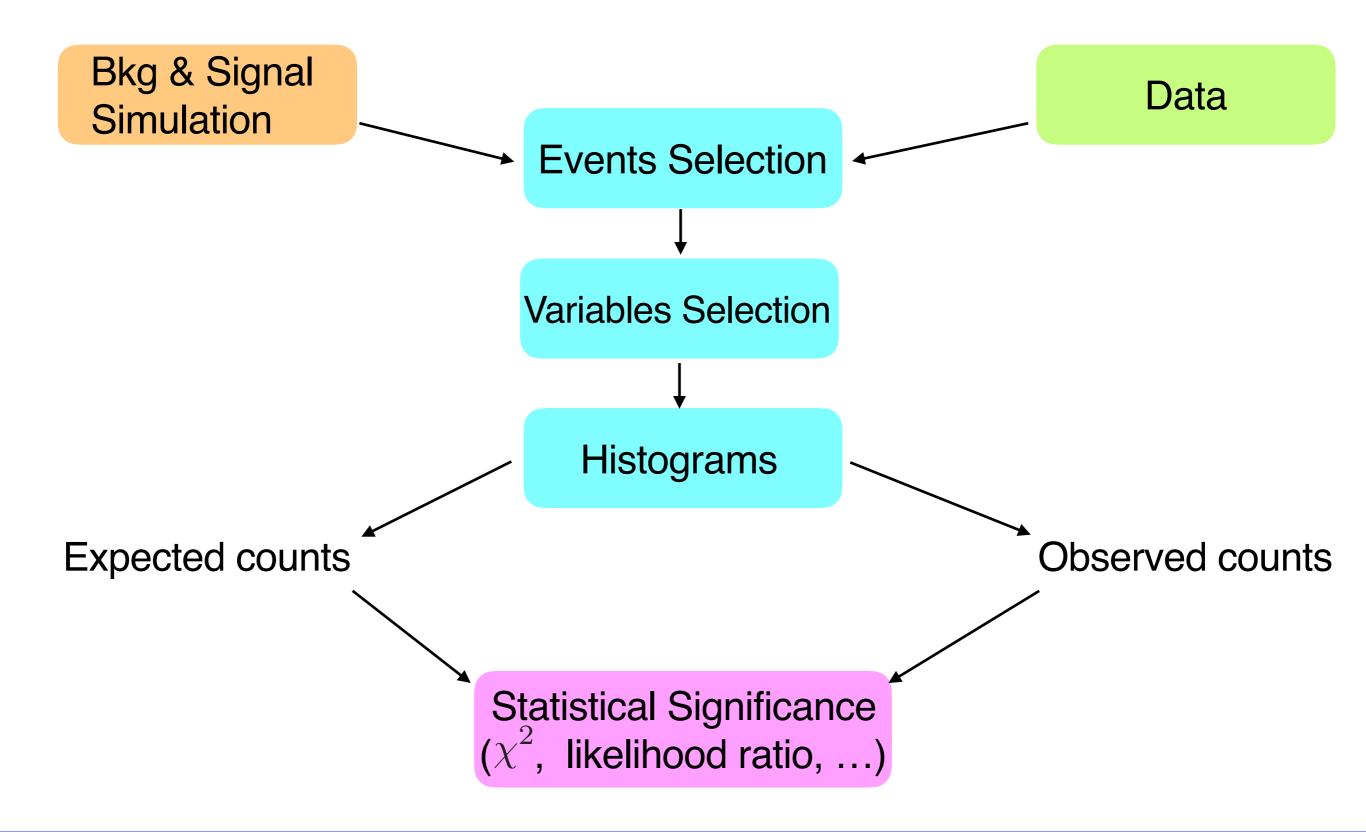
- √ general, model-independent
- √ fast, no optimization
- ✓ sensitive to unspecified signals
- ✓ useful when no variable can separate sig/bkg
- √ helps finding signal regions, optimal cuts, ...
- need to run for each sample pair
- permutation test is bottleneck
- limited by sample accuracies

> Outline

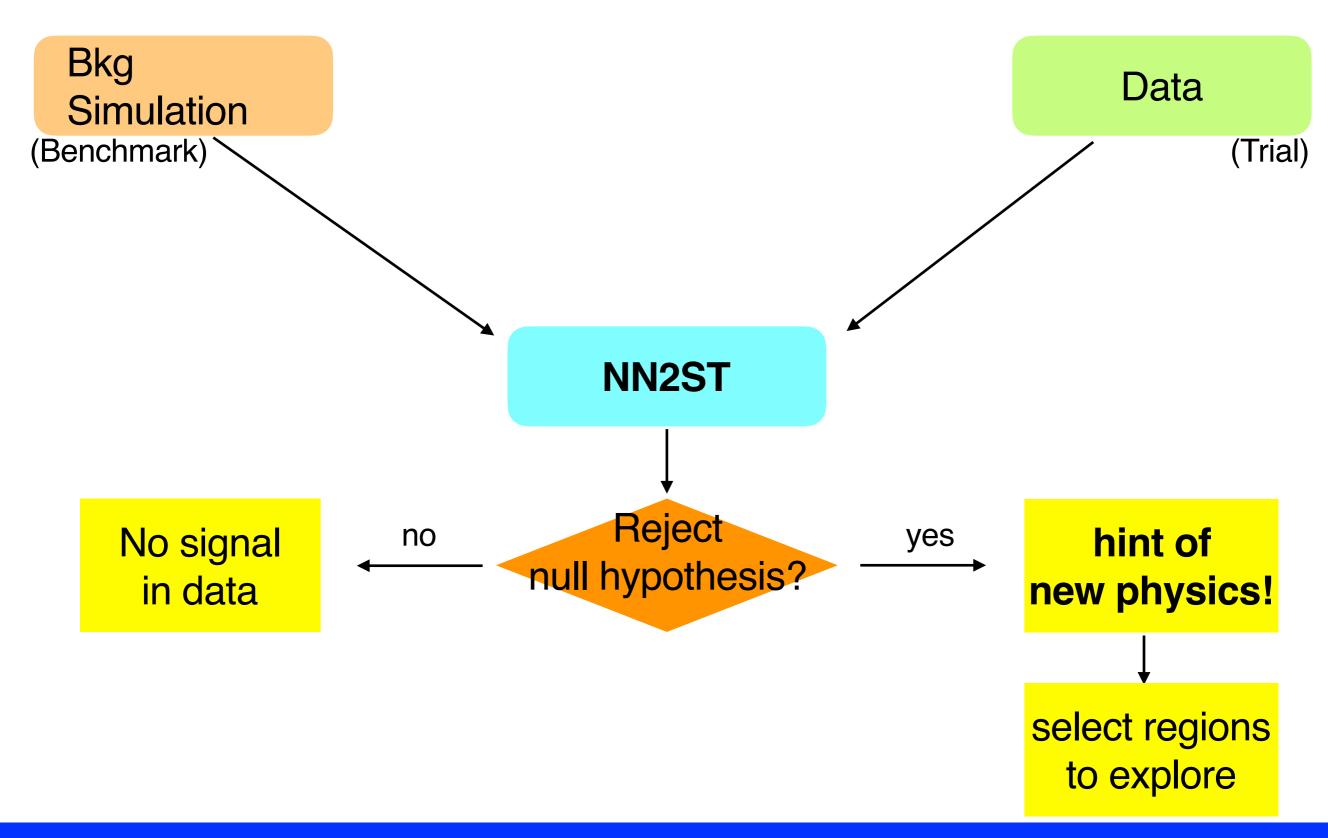
1. Statistical test of dataset compatibility

2. Applications to High-Energy Physics

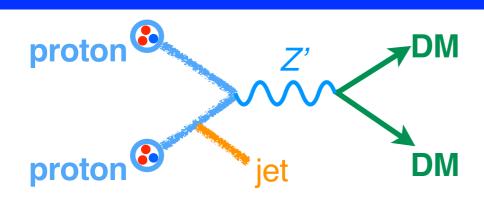
> Standard Analysis Pipeline



> Our Method

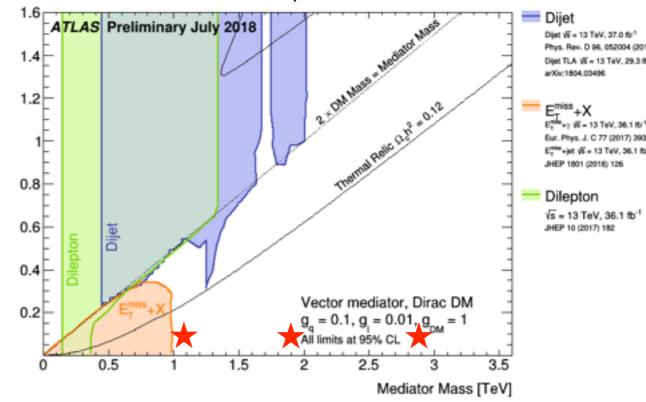


> DM search @ LHC



- "proof-of-principle" study
- bkg: $Z \rightarrow \nu \bar{\nu} + (1,2) j$ ($\sigma_{\rm bkg}$ =202.6 pb) sub-leading bkgs not included
- no full detector effects (generic Delphes profile)

DM + Z' vector mediator $m_{DM} = 100 \; GeV$ $m_{Z'} = 1.2, \, 2, \, 3 \; TeV$ $g_{DM} = 1, \, g_q = 0.1$ $\sqrt{s} = 13 \; TeV$



Benchmark: BKG₁

Trials: BKG₂ + SIG

$$K = 5$$

$$N_{perm} = 3000$$

8 features:

- n. of jets
- p_T , η of 2 leading jets
- $E_T^{
 m miss}, H_T$
- $\Delta\phi_{E_T^{ ext{miss}},j_1}$

A. De Simone 2

OM Mass [TeV]

> DM search @ LHC

- B: **BKG**₁ (20k events)
- T1: **BKG**₂ (20k events) + **SIG**₁ (2010 events)
- **T2: BKG**₂ (20k events) + **SIG**₂ (375 events)
- **T3: BKG**₂ (20k events) + **SIG**₃ (59 events)

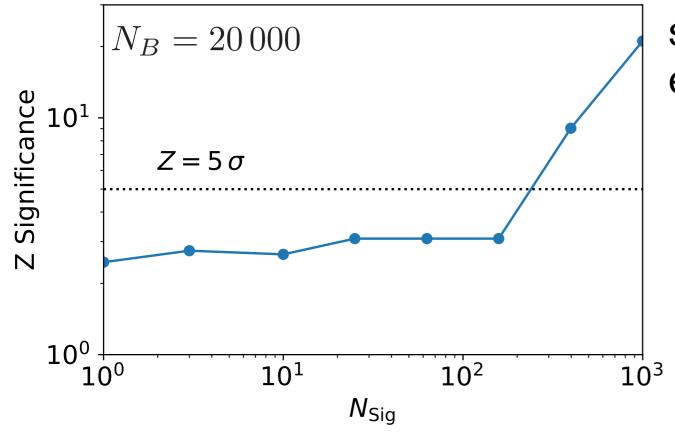
$N_{\rm sig}$	$=N_B$	X	$\frac{\sigma_{ m signal}}{\sigma_{ m signal}}$
518	D		$\sigma_{ m bkg}$

Sample	M _Z ,	σ signal	Z
T1	1.2 TeV	20.4 pb	>15 σ
T2	2 TeV	3.8 pb	10 σ
Т3	3 TeV	0.6 pb	0.13 σ

too good to be true!

- in real world: expect degradation of results (bkg uncert.)
- the method has value, it is worth exploring

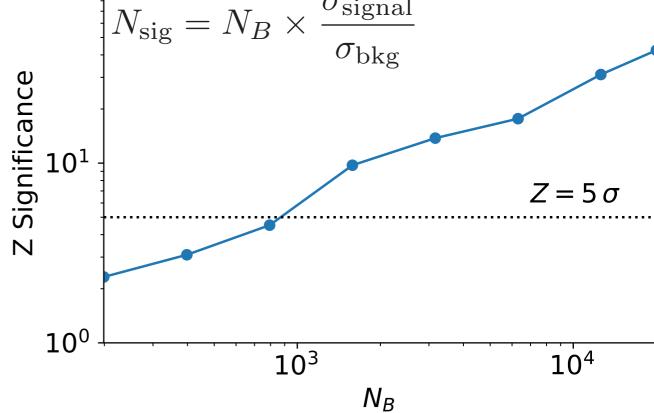
DM search @ LHC



stronger signal easier to discover

$$N_T = N_B + N_{\rm sig}$$

 $\sigma_{\rm signal}$



more data, more power

A. De Simone 29

 10^2

> Outlook

Directions for future work:

- inclusion and impact of bkg uncertainties
- adaptive choice of *K*
- identifying discrepant regions in realistic situations (with Z-score method)
- validation tool for bkg: compatibility between MC sims. and data in control regions
- scalability
- ... your suggestions?

> Take-Home Messages

1. New Statistical Test for BSM Physics

- assess degree of compatibility between 2 samples
- rooted on nearest-neighbors, solid math foundations

2. NN2ST as a discovery tool

- powerful and model-independent
- lots of applications

3. NN2ST to guide searches

- identify regions of discrepancies

BACKUP

> Model Selection

how to choose K? Model Selection!

True:
$$r(x) = \frac{p_T(x)}{p_B(x)}$$
 Estimated: $\hat{r}(x) = \frac{\hat{p}_T(x)}{\hat{p}_B(x)}$

Define the mean-square error:

$$L(r,\hat{r}) = \frac{1}{2} \int \left[\hat{r}(\boldsymbol{x}') - r(\boldsymbol{x}')\right]^2 p_B(\boldsymbol{x}') d\boldsymbol{x}'$$

$$= \frac{1}{2} \int \hat{r}(\boldsymbol{x}')^2 p_B(\boldsymbol{x}') d\boldsymbol{x}' - \int \hat{r}(\boldsymbol{x}) p_T(\boldsymbol{x}) d\boldsymbol{x} + \frac{1}{2} \int r(\boldsymbol{x}')^2 p_B(\boldsymbol{x}') d\boldsymbol{x}'$$

Select optimal K minimizing the loss.

Alternatively: Point-Adaptive k-NN (PAk) [1802.10549]