TCAD simulation of LGAD

<u>Sayaka Wada¹,</u> Kazuhiko Hara¹, Koji Nakamura²

University of Tsukuba¹, KEK²

- Motivation
- Strip Structure
- Electric Field Distribution
- Comparison with measurements
- Electrode Structure Candidate
- Summary

+ Motivation

Technology Computer Aided Design

- Strip LGAD has been tested.
 Non-uniformity in gain region
 No gain in interstrip region.
 We need better structure with uniform and sufficient gain.
 - Strip LGAD parameterized in TCAD and validated comparing with measured results.
 - Simulation started for promising candidate structures.

+ Strip Sensor Structure

Concentration information not available from HPK. The concentrations and physical dimensions in TCAD are just best estimates.

+ Electric Field Distribution

LGAD PD

IV Curve

TCAD

- PiN (Black line) and LGAD (colors for different p+ concentration) with same electrode structure (other than p+ implant) should break at a similar voltage.
- Impact Ionization occurs underneath the aluminum edge.

6

Sayaka Wada

CV Curve

TCAD

- Difference to PiN is clearly reproduced, caused by p+ layer in LGAD.
- CV curve is roughly reproduced, especially depletion of p+ layer dependence on the concentration.
 - Need further understanding of
 - p+ dose and profile
 - strip dimensions
 - p-stop structure

▶

+ Depletion Process

Sayaka Wada

Workshop for development and applications of fast-timing semiconductor devices 8 De

8 Dec. 2018

+ Comparison with Measurements Charge Collection Profile

Place charges uniformly along vertical track (mimic MIP).

Profile is reproduced.

Gain drop towards electrode edges

is due to insufficient field.

TCAD

+ Electrode Structure Candidate for Uniform Gain

Υ

10

Υ

Υ

10

NORMAL

No gain in interstrip region.

TRENCH

Strip isolation is achieved by (deep) trench. Depth and width need optimized.

AC LGAD

Avalanche generated at ~uniform np junction layer. Signal read out by AC coupling. Concentration of n+ layer needs optimized.

Optimization with TCAD is underway.

+ Electric Field Comparison_{@-300v} 11

+ NORMAL LGAD E Field @-300V 12

+TRENCH E Field @-300V

+AC LGAD E Field @-300V

TCAD simulation is performed.

Measured results for strip LGAD are used to validate the simulation.

□ IV & CV are (roughly) reproduced.

□ Charge collection profile is also reproduced.

Started optimization of electrode structure for uniform gain.

□ Candidates are TRENCH isolation and AC LGAD.

Backups

+

17

18

+ Pad Sensor Structure

Sayana waua

+ Hamamatsu LGAD

Samples from HPK

- Monitor Diode
 - Chip Size: 2.5mm × 2.5mm
 - Window 1mmφ

Strip

- Chip Size: 6.0mm × 12mm
- Strip Pitch: 80µm

Dose of P⁺ layer

Low to high; A-B-C-D (HPK confidential)

Active thickness

50µm or 80µm

Monitor Diode

Strip

Sample Name	P ⁺ Dose Light>dense	Physical Thickness [µm]	Active Thickness [µm]
50A	A	150	50
50B	В		
50C	С		
50D	D		
80A	A		80
80B	В		
80C	С		
80D	D		