

HL-LHC Operation scenario/constraints in case new P1/P5 Cryogenic system is down

S. Claudet (TE-CRG)

With contributions from M. Sisti & J. Metselaar for Cryogenics

P. Fessia for MS optimisation study

02Aug'18

LHC Cryogenics architecture

Large variety of configuration, with provision to use 1 cryoplant on 2 sectors for helium management and up to "low intensity" physics Identified modes were: Installed – Nominal – Low intensity –

Injection stand-by – 75K stand-by

Possible modes identified so far for HiLumi

Decreasing requirements in cooling capacity

- Ultimate Luminosity (HL)
- Nominal Luminosity (HL)
- Nominal Luminosity (LHC)
- Low Luminosity / Intensity
- . Powering conditions to 7TeV, (maybe pilots or few bunches)
- Injection stand-by (He preservation in magnets, ELQA) (maybe pilots or few bunches at injection)
- Magnets @20K

=> What could be achieved under which conditions if P1/P5 cryogenics would be down (Cryo cause or other origin)

=> Fall back solution considered so far: connection to existing Cryoplant/QRL of adjacent sector D2Aug'18 TCC#54, HiLumi Cryogenics, Operation modes

P1/P5 Cryogenic architecture

18 kW equivalent at 4.5 K, including 3 kW at 1.8 K

Junction module QRL-QXL

02Aug'18

Junction module QRL-QXL Work on-going

3.5 m 4.0 m 4.5 m It should fit within 12m

+ it could help (volume, cost) with smaller valves, sepecially in case this element could be a show stopper !!!

Possible modes and implications, as identified so far for HiLumi Decreasing requirements in cooling capacity

- Ultimate Luminosity (HL)
- Nominal Luminosity (HL)
 - Nominal Luminosity (LHC)
- Any global approach defined so far ?
 Other systems concerned ?
- Low Luminosity / Intensity
- . Powering conditions to 7TeV, (maybe pilots or few bunches)
 - Injection stand-by (He preservation in magnets, ELQA, maybe pilots or few bunches at injection)
- Magnets @20K

> Junction Module AND bridge between WRL's recommended
 > Corresponding cooling capacities and impact on size/cost/volume
 to be further investigated

ΗL

ſ

Junction Module QRL-QXL WRL

LHC

Cooling P1/P5 SAM's

D2

View from integration views DB

Q6

NEW Jan'18

Q4

LHC HL Present limit for QRL/QXL

- Access / safety / sectorisation ?
- Powering from existing RR & DFBL, corresponding cooling of DFBL and SAM's to be with same origin (QRL or QXL but not mixed)
- Q4 and Q5 possibly with remote alignment, compatible with QRL ?
- 3D models to be implemented and then integrated (Q2-2018 for CRG)

Summary

- Cooling capacity of matching section could be taken by main sector cryoplants without creating a weak point
- It should be possible to re-work 70m/side of existing QRL elements, with service modules not changed and pipe elements kept or adapted
- About 12m would be required for the junction module QRL-QXL between Q4 and crab cavities
- The use of remote alignment should be taken without problem by existing QRL elements (provided it remains within existing tolerances)

Cooling capacity

w/o e-clouds!

Refrigerator Assessment

Results based on model v.3, for existing LHC refrigerators only

Interfaces QRL-SAM's

Evolution required from present LHC configuration

DFBL & Q6 jumpers would be the same, at the same place

- Q5 jumpers would be the same, translated where needed
 - Q4 as real stand-alone (doublet Q4-D2 at present)
 - Re-doing a new single service module + jumper not considered for the moment (would require more effort/cost but more compact)
 - The jumper on Q4 deal as well with the DSL-link cooling
 - > The 2nd jumper corresponds to what is presently installed for D2
 - Header configuration for Q4-D2 jumpers depends on the Interaction Point and tunnel slope
 - Q4 instrumentation to be adapted to stand-alone architecture (TT, LT, EH)
- For Q4, proposal to re-use the existing service modules translated where needed, with Q4/D2 jumper translated and to be adapted to required length/position

2 not touched, 2 translated, 1 translated and adapted

IP1-left (ref. LHCLSQR_0107)

IP1-right (ref. LHCLSQR_0035)

IP5-left (ref. LHCLSQR_0043)

IP5-right (ref. LHCLSQR_0044)

Summary table

IP1-left				IP1-right				IP5-left				IP5-right			
Q4		05	06	Q4		05	06	Q4		05	06	Q4		05	06
left	right*	Q9		left*	right	Q0	QD	left	right*	QO	QO	left*	right	Q0	QO
RD	CL	KD	KD	EE	KD	KD	KD	RD	CL	RD	RD	EE	KD	RD	RD
EE	LD	CC'	CC'	FF	CC'	CC'	CC'	EE	FF	EE	EE	FF	CC'	EE	EE
CL	FF	CL2	CL2	CL	CL	CL2	CL2	LD	EE	FF	FF	LD	CL	FF	FF
CC'	EE	LD	LD		LD	LD	LD	CL		CL1	CL1	CL	EE	CL1	CL1
KD		CL1	CL1		EE	CL1	CL1	CC'		CL2	CL2		RD	CL2	CL2
		FF	FF		RD	FF	FF	KD		LD	LD			LD	LD
		EE	EE			EE	EE			CC'	CC'			CC'	CC'
		RD	RD			RD	RD			KD	KD			KD	KD
5	4	8	8	3	6	8	8	6	3	8	8	4	5	8	8

Beam screen circuit	SHe supply	SC link thermal shield supply			
Thermal shield circuit	GHe return	GHe from SC link return			

* new Q4 jumper (former D2)

CERN

Elementary units of QRL "LEGO-like"

02Aug'18

