MD2901: Asymmetric collimator settings in IR7

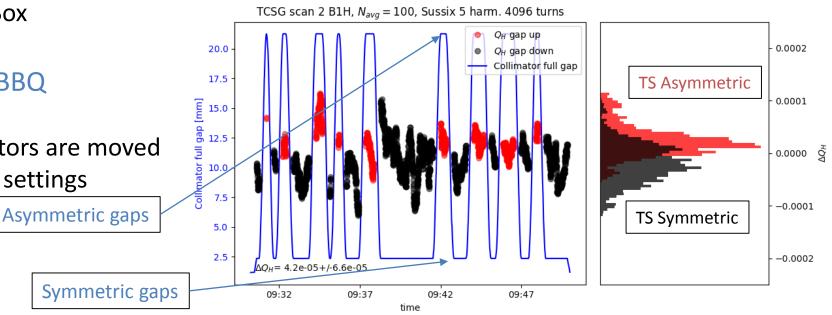
Preliminary results

D.Amorim, S.Antipov, N.Biancacci, X.Buffat, T.Dascalu D.Kodjaandreev, A.Mereghetti, E.Métral, N.Mounet, B.Salvant,

Many thanks to the ADT team, LHC and Injectors OP

MD motivation

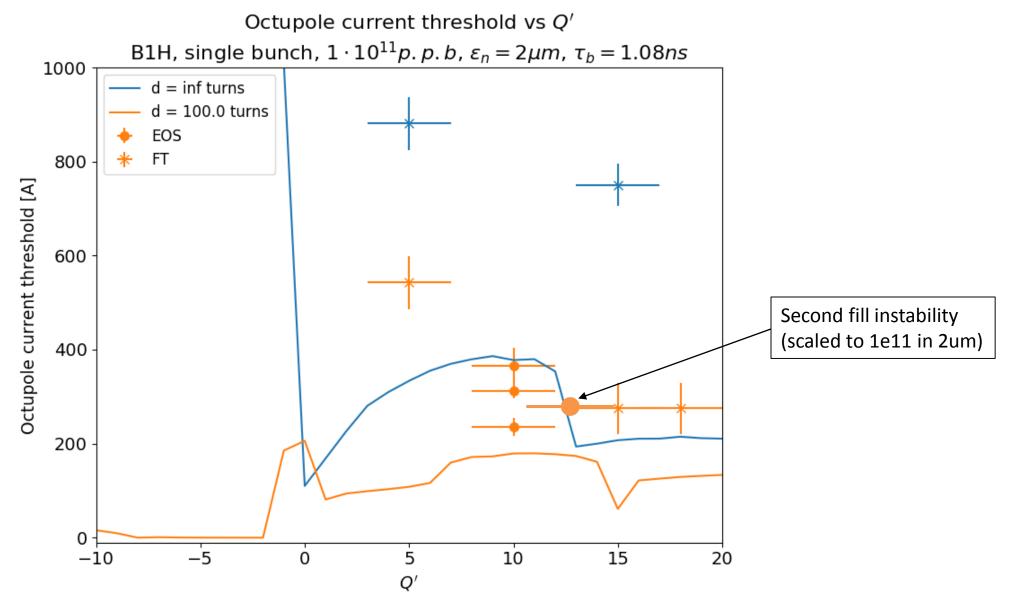
- Investigate asymmetric settings for IR7 collimators
 - One jaw retracted on several collimators
 - Loss maps performed in first fill
 - Impedance measurement in second fill


MD procedure

- First fill: 18 pilots for loss maps and 1 nominal of $0.85 \cdot 10^{11} ppb$
- Second fill: 2 nominal $0.75 \cdot 10^{11} ppb$ and $1.75 \cdot 10^{11} ppb$
- In second fill: excite all bunches with the ADT to measure their individual tune.
- At the end of each fill, instability growth-rate was measured by switching off the damper

LHC Collima	ators Beam: B1 S	set: HW Group:	LHC COLLIMATORS				25-07-201	.8 04:22:09
L(mm) MDC	IP1	PRS R(mm)	5.15 TCLA	.6R <mark>3.B1</mark>	-5.08	1.64	TCSG.A4R7.B1	-1.75
24.96	TCL4R1.B1	-24.98	2.62 <mark>7 TCLA</mark>	.7 <mark>R3.B1</mark>	-4.55	2.02	TCSG.B5R7.B1	-19.99
24.97	TCL5R1.B1	-24.96		P5		2.09	TCSG.D5R7.B1	-1.81
25.01	TCL6R1.B1	-24.99	6.64 🔽 TCTP	1.4L <mark>5.B1</mark>	-11.33	2.02	TCSG.E5R7.B1	-20
9.12	TCTPH.4L1.B1	-8.89	6.49 <mark>TCTP</mark>	V.4 <mark>L5.B1</mark>	-6.4	19.95	TCSG.6R7.B1	-2.8
5.35 📘	TCTPV.4L1.B1	-7.62	25 📘 TCL	4R5.B1	-24.93	1.84	TCLA.A6R7.B1	-1.32
	IP2		24.99 TCL	5R5.B1	-24.96	3.14	TCLA.B6R7.B1	-2.56
7.95	TCTPH.4L2.B1	-7.33	24.98 TCL	6R5.B1	-24.97	4.35	TCLA.C6R7.B1	-1.17
6.97	TCTPV.4L2.B1	-9.93		P6		3.7	TCLA.D6R7.B1	0.08
55	TDI.4L2	-55.02	4.38 TCDQ A	.A4R6.B1		1.67	TCLA.A7R7.B1	-2
20.45	TCDD.4L2	-20.51	4.3 TCSP.	A4 <mark>R6.B1</mark>	-3.82		IP8	
27.93	TCLIA.4R2	-27.98		P 7		7.46	TCTPH.4L8.B1	-2.83
24.8	TCLIB.6R2.B1	-24.98	19.96 TCP.I	06L7.B1	-0.99	4.46	TCTPV.4L8.B1	-7.01
	IP3		1.83 <mark> TCP.</mark> 0	6L7.B1	-19.98		TI2	
4.16	TCP.6L3.B1	-3.59	1.62 📘 тср.	6L7.B1	-19.9	10	TCDIV.20 <mark>607</mark>	-9.99
3.31	TCSG.5L3.B1	-2.67	19.95 <mark>7</mark> CSG	A <mark>6L7.B1</mark>	-1.45	3.04	TCDIV.29012	-0.89
1.8	TCSG.4R3.B1	-2.33	1.92 📘 TCSG	85L7.B1	-19.98	2.73	TCDIH.29050	-5.33
2.26	TCSG.A5R3.B1	-3.11	19.99 <mark>. T</mark> CSG	A5L7.B1	-1.76	1.25	TCDIH.29205	-4.25
2.79	TCSG.B5R3.B1	-3.25	19.96 T CSG.	D4L7.B1	-1.49	2.28	TCDIV.29234	-4.28
6.11	TCLA.A5R3.B1	-5.8	19.99 <mark>. T</mark> CSG	B4L7.B1	-0.93	3.17	TCDIH.29465	-2.65
4.95	TCLA.B5R3.B1	-6.12	2.29 📘 TCSG.	A4L7.B1	-19.98	7.52	TCDIV.29509	-5.72
BE	TATRON_HOR	BET	TATRON_VER	OFFMO	DMENTUM_PO	DS_DP	OFFMOMENTUM_N	EG_DP

MD results


- Impedance measurement during second fill
- Tried to apply the method used in previous MDs (TCSPM for example)
 - Coherent kicking of the bunch with the ADT while collimators are moved
 - Bunch-by-bunch, turn-by-turn position data saved with the ADT ObsBox
 - Online computation of tune with pySUSSIX
- Several difficulties encountered
 - Oscillations de-coherence too fast because of high chromaticity & octupole current & ADT gain
 - Erratic recording with the ObsBox
- Fall back on measurement with BBQ
 - Offline analysis
 - Visible tune-shift when collimators are moved from asymmetric to symmetric settings

MD results

- End of first fill: instability growth-rate measurement
 - Q' reduced to 5 units, octupoles at 300 A
 - $0.85 \cdot 10^{11} ppb$ (with ~2um emittance) became unstable when switching off ADT
- Second fill: high intensity bunch $(1.75 \cdot 10^{11} ppb$ in 1.8um) was very sensitive!
 - Octupoles were at 550 A
 - Tried to reduce Q' to 5 units (in two steps of 5 units): B1H and B2H unstable at Q'~10
- Growth rate measurement with asymmetric settings:
 - With the low intensity bunch $(0.85 \cdot 10^{11} ppb$ in 1.5um)
 - Q' was reduced to 5/8 in B1/B2
 - Bunch unstable at 150A with ADT off
- Linear dependence of the instability growth-rate with intensity1.5um

MD results

