

Machine Learning for $B_{(s)} \rightarrow \mu\mu$ decays

Thomas Mons

Supervisor: Siim Tolk, LHCb collaboration

Motivation

Rare decay with decay rate:

- $(3.67\pm0.17)*10^{-9}$ for $B_s \rightarrow \mu\mu$ [1]
- $(1.06\pm0.09)*10^{-10}$ for $B\rightarrow\mu\mu$ [2]
- Suppressed via GIM mechanism
- Helicity suppressed
- B_s decay has been observed
- Goal is B decay and more B_s events
- Sensitive to beyond standard model physics

Background

- Single mis-identified background at low mass
- Double mis-identified background peaking around 5250 MeV
- Constant combinatorial background
 - Short-lived
 - Long-lived

(a) Di-muons from $pp \rightarrow p\mu^{+}\mu^{-}p$

(c) Long-lived combinatorial background

(d) B decays to J/ψ mesons and muons

(e) Single mis-identified background

(f) Doubly mis-identified background

[3]: Nature 522, 68-72 (04 June 2015)

Data analysis

- 1) Fiducial cut is applied
 - a) Targets shortlived background
- 2) Boosted decision tree (BDTS) removes 60% of combinatorial background and 5% of signal
 - a) Needs well separating variables
 - b) Focus of this project is training new BDTS
- 3) Second BDT classifies into bins with different signal to background ratio
 - a) No further data rejected
 - b) Recently optimised

Current BDTS variables

Data used:

- MC signal data in 2012 condition
- MC combinatorial background data in 2012 condition
 - bb→μμX
- 2012 sideband data
 - m> 5450 MeV

Angle between B and vertices

Distance of closest approach between muons

Current BDTS variables

B impact parameter

B impact parameter χ² distribution

Secondary vertex χ^2 distribution

Minimum impact parameter of muons w.r.t. primary vertex 6

Changing the BDTS cut

BDTS cut value	0.05	0.1	0.15	0.2	0.3
MC background	1.0	0.645	0.453	0.331	0.187
2012 data	1.0	0.644	0.449	0.327	0.181
MC signal	1.0	0.947	0.894	0.842	0.740

Remaining data with different cut values of the BDTS

MC background BDT bins

MC signal BDT bins

New BDTS variables

Next step is training a new BDTS

- Use discarded BDT variables
- Identify new separating variables
- Use scikit-learn BDT software

B candidate lifetime

B candidate transverse momentum

Summary

- $B_{(s)} \rightarrow \mu\mu$ is sensitive to beyond standard model physics
- Machine learning is used to reduce background for B_(s)→µµ decays
- High mass sideband data is shown to be representative of combinatorial background
- Higher cut values of the BDTS seem useful in reducing background
- Next step will be training a new BDT using new variables

Questions?