Unfolding the W Momentum: Deep
Neural Networks
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Outline

1. W boson production and detection overview
2. Unfolding:
a. What is unfolding?
b. Why do we need to unfold the W momentum?
c. What are the current unfolding methods?
3. Neural Networks:
a. How do they work?
b. How can we use them to unfold the W momentum?
4. Bayes Unfolding:
a. Priors and D’Agostini Method
b. How can we apply this to a neural network?
5. Results
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Unfolding - What Is it?

bicubic SRResNet SRGAN

(21.59dB/0.6423) (21.15dB/0.6868)
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Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative

adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4x upscaling]

+ Similar to reconstructing a blurred image
% Given a probability distribution, we want to determine the “true” distribution
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Unfolding - Why?

Folding

Unfolding

< Momentum measurements collected from the CMS detector have a certain
amount of “noise”
% We observe the picture on the left; we want to know the picture on the right
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Unfolding - Current Methods

% Bin-by-bin matrix unfolding
< Downsides: does not scale well to multidimensional data
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Deep Neural Network - What Is it?
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Deep Neural Network - Unfolding

‘ Input Layer: Smeared (folded) data collected from detector

‘ Hidden Layers: 2 hidden layers, 30 nodes each

‘ Output Layer: Binned (unfolded) data, # nodes = # bins
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'I-(T’) Training data, input, Monte Carlo simulated (folded)

Training data, output, Monte Carlo simulated (unfolded, true)
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Bayesian Unfolding - Bayes’ Rule

Probability of smeared distribution given
true distribution

~
P(z | 2)P(2)

P(z)

P(z|x) =
Prior true distribution

Probability of true distribution given
smeared distribution
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Pz | 2)P(2)

Bayesian Unfolding P(z]z) = P

Even under the assumption that the Monte Carlo simulation is perfect, i.e.
P(.CCdata | Zdata,) _ P(:UMC | ZMC)

the prediction depends on prior true distribution P(z)

Since we are trying to measure the W boson momentum, we do not know the
exact distribution to initialize the Monte Carlo simulation, so

P(zdata) % P(ZMC)

Therefore:
P(Zdata | ﬂfdam) 7& P(ZMC | Q’JMC)
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Bayesian Unfolding - D’Agostini

Problem: We are training our neural network on Monte Carlo data, which may
result in a prediction biased towards the Monte Carlo prior distribution

Idea to Build on: Giulio D'Agostini developed an iterative algorithm where the prior
distribution, P(z) , is updated using Bayes’ Theorem:
P(x | z)P(2)
P(z]z) =
P ()
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Bayesian Unfolding - Reweighting

Our Idea: Apply D’Agostini’s unfolding to our neural network by iteratively
reweighting the prior distribution in the loss function

7=3"5" 2 ogh(a)? + (1 - 27) log (1 - h(x){")
i k

Prior distribution Prediction

Use the prediction from the neural network to update the prior distribution:

P(z) = P(z)P™"
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Putting it all Together

Train neural network using Monte Carlo simulated data

Get a prediction from the real data using the neural network

Update the distribution in the loss function using the prediction

Repeat until convergence
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Neural Net Results: Training

Training data after 1000 epochs Training data after 15000 epochs
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Neural Net Results: Testing

Testing data after 1000 epochs
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Bayes R

No Reweighting

ewelight

1000 A

800 1

600 +

400

200 +

MC True Distribution
Measured True Distribution
Predicted from Keras

—2.0

—-1.5

—-1.0

4 |terations

—0.5

0.0

T T
1.0 1.5

0.5 2.0

1000 A

800 1

600 +

400

200 +

MC True Distribution
Measured True Distribution
Predicted from Keras

—2.0

—-1.5

—-1.0

—0.5

0.0

0.5 1.0 1.5 2.0

INg: No Error Term

1 Iteration
MC True Distribution
Measured True Distribution
Predicted from Keras
1000 A
800 1
600 +
]
400
200 +
0 T T T T T T
—2.0 —-1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5 2.0
8 Iterations
MC True Distribution
Measured True Distribution
Predicted from Keras
1000 A
800 1
600
- -
400
200 +
0 T T T T T T T T
—2.0 —-1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5 2.0




Bayes Reweigh

No Reweighting
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