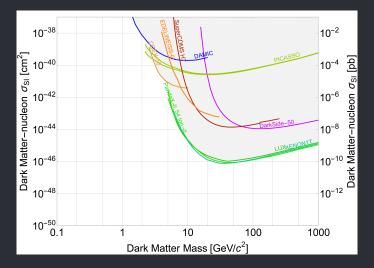
BBN Constraints on Universally Coupled Ultralight Dark Matter

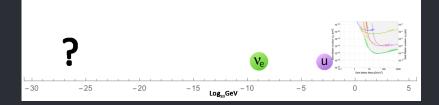
Philip Sørensen

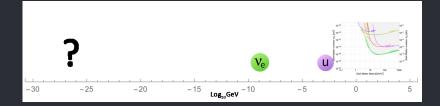
Centre for Cosmology and Particle Physics Phenomenology University of Southern Denmark

Cosmology & Particle Physics

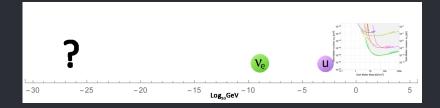
Dark Matter The land of the WIMPs



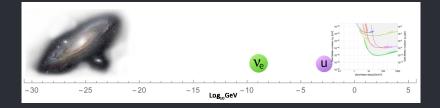




• We need new constraints!



- We need new constraints!
- Ultra light = Ultra large: Fuzzy Dark Matter



- We need new constraints!
- Ultra light = Ultra large: Fuzzy Dark Matter

Constructing the Model A universally coupled scalar field

Constructing the Model A universally coupled scalar field

Step 1: Add a scalar field

$$\mathscr{L}_{phi} = \sqrt{-g} \left[\frac{1}{2} \left(\nabla_{\mu} \phi \right)^2 - m_{\phi}^2 \phi^2 \right]$$

Constructing the Model A universally coupled scalar field

Step 1: Add a scalar field

In o

$$\mathscr{L}_{phi} = \sqrt{-g} \left[rac{1}{2} \left(\nabla_{\mu} \phi \right)^2 - m_{\phi}^2 \phi^2
ight]$$

Step 2: Add interaction through modified gravity (perturbed metric)

$$\sqrt{-g}\mathcal{L}_{SM}[g^{\mu\nu}] \rightarrow \sqrt{-|g^{\mu\nu}(1-2\alpha)|}\mathcal{L}_{SM}[g^{\mu\nu}(1-2\alpha)]$$
ur model: $\alpha = \pm \phi^2 / \Lambda^2$

Effective mass For Standard Model particels

Massive particles interact:

$$\mathscr{L}_{int} = \mp \frac{\phi^2}{\Lambda^2} m_f \bar{f} f \pm \frac{\phi^2}{\Lambda^2} m_v^2 v^2$$

Here f = any fermion and v = w, z. The corresponding diagram:

Effective mass For Standard Model particels

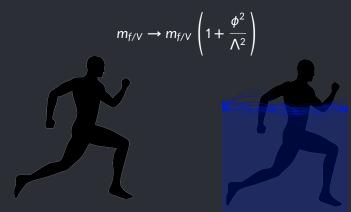
Interactions can be absorbed into effective masses!

$$m_{f/V} \rightarrow m_{f/V} \left(1 + \frac{\phi^2}{\Lambda^2} \right)$$

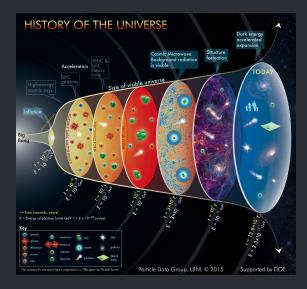
Effective mass

For Standard Model particels

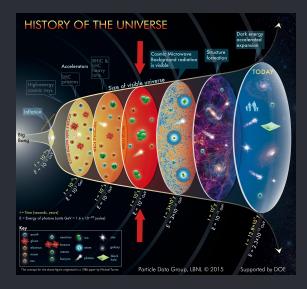
Interactions can be absorbed into effective masses!



Big Bang Nucleosynthesis



Big Bang Nucleosynthesis



Neutron-proton ratio frozen in at \approx 0.8 MeV

$$\sum_{p=0}^{n} e^{-\frac{m_{n}-m_{p}}{T_{F}(m_{W},m_{Z})}}$$

Neutron-proton ratio frozen in at \approx 0.8 MeV

$$\sum_{p}^{n} = e^{-\frac{m_{n}-m_{p}}{T_{F}(m_{W},m_{z})}}$$

Nearly all neutrinos ends up in $He^4 \implies Constraint on n/p$

Neutron-proton ratio frozen in at \approx 0.8 MeV

$$\sum_{p}^{n} = e^{-\frac{m_{n}-m_{p}}{T_{F}(m_{w},m_{z})}}$$

Nearly all neutrinos ends up in $He^4 \implies$ Constraint on n/p

$$\frac{\Delta\left[(m_n - m_p)/T_F\right]}{(m_n - m_p)/T_F} = -\frac{1}{3} \frac{\phi_{BBN}^2 - \phi_0^2}{\Lambda^2} = 0.0033 \pm 0.0085$$

Neutron-proton ratio frozen in at \approx 0.8 MeV

$$\sum_{p}^{n} = e^{-\frac{m_{n}-m_{p}}{T_{F}(m_{w},m_{z})}}$$

Nearly all neutrinos ends up in $He^4 \implies$ Constraint on n/p

$$\frac{\Delta\left[(m_n - m_p)/T_F\right]}{(m_n - m_p)/T_F} = -\frac{1}{3} \frac{\phi_{BBN}^2 - \phi_0^2}{\Lambda^2} = 0.0033 \pm 0.0085$$

Change in $\phi \implies$ Change in $m_{f/V} \implies$ Change in BBN!

Effective masses For Dark Matter particles

The DM scalar also acquires new mass:

$$m_{\phi}^2 \rightarrow m_{\phi}^2 + 2\Lambda^{-2}\rho_f + 2\Lambda^{-2}\rho_{W/2}$$

Effective masses For Dark Matter particles

The DM scalar also acquires new mass:

$$m_{\phi}^2 \rightarrow m_{\phi}^2 + 2\Lambda^{-2}\rho_f + 2\Lambda^{-2}\rho_{W/z}$$

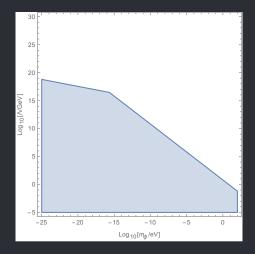
Important points:

- Changes constraints
- Not previously studied
- Main point of my project

The Plan My project in a nutshell

Solve the evolution of DM field ¢ inducing modified mass ↓ Compute how Dark Matter modify BBN ↓ Harvest the constraints and rejoice

Constraints Phase space constrained by BBN

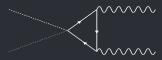


Future To-do list:

• Include e^+/e^- pairs to prior annihilation

$$e^+e^- \rightarrow 2\gamma$$
 (0.5 MeV)

• Photon coupling through loop effects



• Extend analysis to heavier elements (numerical code)

The End

Thanks to my supervisor Sergey Sibiryakov and Tien-Tien Yu who has helped me solve many of my problems.

Backup slides!

- The Einstein and Jordan Frames
- How I actually did the stuff
 - Solving the Equations of Motion
 - Phase evolution
 - Evolution of ϕ

Backup slides The Einstein and Jordan Frames

Einstein frame: Regular gravity + interacting field

$$\sqrt{-g}\mathcal{L}_{GR/\phi}[g^{\mu\nu}] + \sqrt{-|g^{\mu\nu}(1-2\alpha)|}\mathcal{L}_{SM}[g^{\mu\nu}(1-2\alpha)]$$

$$\ \ \, \, \, \, \, \, \, \, \, \, \, g^{\mu\nu} \to g^{\mu\nu} (1\pm 2\alpha) \quad \downarrow$$

Jordan frame: Modified gravity + non-interacting field

$$\sqrt{-|g^{\mu
u}(1+2lpha)}\mathscr{L}_{GR/\phi}[g^{\mu
u}(1+2lpha)] + \sqrt{-g}\mathscr{L}_{SM}[g^{\mu
u}]$$

Equations of Motion

How does ϕ behave?

Satisfies the usual Klein Gordon eq.

$$(\nabla^2 + m_{eff}^2)\phi = 0$$

With modified mass

$$m_{eff}^2 = m_{\phi}^2 + 2\Lambda^{-2}\rho_f + 2\Lambda^{-2}\rho_{w/z}$$

Solving the EOM

A tale of three phases

The EOM in an expanding universe:

$$\ddot{\phi} + 3H\dot{\phi} + 2\Lambda^{-2}\rho_b\phi + m_\phi^2\phi = 0$$

Drop subdominant mass term and peel of *a* dependence:

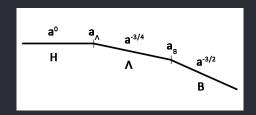
	RD	MD
٨	a ^{-3/4}	a ^{-15/16}
m_{ϕ}	a ^{-3/2}	a ^{-3/2}
Н	a ⁰	a ⁰

Both subdominant to Hubble friction \rightarrow Non-oscillating constant

Evolution of ϕ

From today to BBN

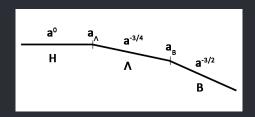
Known transition history: Evolution is easy Example: $H \rightarrow \Lambda \rightarrow B$



Evolution of ϕ

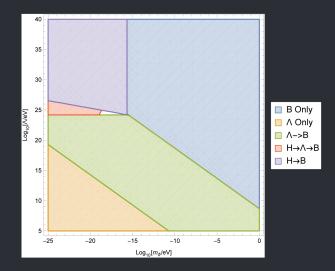
From today to BBN

Known transition history: Evolution is easy Example: $H \rightarrow \Lambda \rightarrow B$



$$\phi_{\rm BBN} = \left(\frac{a_{\rm A}}{a_{\rm B}}\right)^{-3/4} a_{\rm B}^{-3/2} \phi_0$$

Evolution of the phases Phase transitions



Evolution of ϕ From today to BBN

All histories must end as B: $H \rightarrow \Lambda$ and H-only are excluded. Remaining possibilities:

> B only $\Lambda \to B$ $\phi_{BBN} = a_{BBN}^{-3/2} \phi_0$ $\phi_{BBN} = \left(\frac{a_{BBN}}{a_B}\right)^{-3/4} a_B^{-3/2} \phi_0$ $H \to B$ $H \to \Lambda \to B$ $\phi_{BBN} = a_B^{-3/2} \phi_0$ $\phi_{BBN} = \left(\frac{a_\Lambda}{a_B}\right)^{-3/4} a_B^{-3/2} \phi_0$