Study of Misalignment in the H4-VLE Beamline of the CERN North Area

Student: Jeanine Shea
Supervisor: Marcel Rosenthal

Simulation of the complete H 2 and H4 Beamlines in G4Beamline

The circled portion of the beamline makes up the H4VLE, which is the part of the beamline that I simulated.

My simulation of the H4-VLE beamline in G4Beamline

Correcting for Misalignments in Beam Elements

$$
\begin{gathered}
x=f_{1}(\Delta x) \quad x=f_{2}(B 18) \\
f_{1}(\Delta x)=-f_{2}(B 18) \\
B 18=g(\Delta x)
\end{gathered}
$$

Position Change in x for Change in Magnetic Field of B18

Correction Scheme 1

Misalignment of Quadrupole 18 by 1 mm in x-direction

No Correction

Correction Scheme 1

Conclusion: Correcting for the misalignment using CS1 resulted in more particle loss than leaving misalignment uncorrected.

Correction Scheme 2

Misalignment of Quadrupole 18 by 1 mm in x-direction

No Correction

Correction Scheme 2

Conclusion: Correcting for the misalignment using CS2 resulted in more particle loss than leaving misalignment uncorrected.

Correction Scheme 3

Misalignment of Quadrupole 18 by 1 mm in x-direction

No Correction

Correction Scheme 3

Conclusion: Correcting for the misalignment using CS3 resulted in more particle detections compared with no correction.

Conclusion

Achievements

- Creation and benchmarking of the simplified G4Beamline model
- Exploring the options for misalignment correction

Future Work

- Investigate further misalignments in a similar fashion
- Already know change of position based on changing magnetic fields in dipoles

Special thanks to Marcel Rosenthal, Yiota Chatzidaki, and Nikolaos Charitonidis for all their help and mentorship. Also thanks to the National Science Foundation and University of Michigan for funding. And, finally, thank you to the audience for listening!

Full H4-VLE Simulation

Matrix Formalization

Focusing quadrupole, $\mathrm{K}>0$:

$$
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\
-\sqrt{K} \sin (\sqrt{K} s) & \cos (\sqrt{K} s)
\end{array}\right)
$$

Defocusing quadrupole, $\mathrm{K}<0$:

$$
M_{\text {defoc }}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sinh (\sqrt{|K| s)} \\
\sqrt{|K|} \sin (\sqrt{|K|} s) & \cos (\sqrt{|K|} s)
\end{array}\right)
$$

Drift space: length of drift space L

$$
M_{\text {drift }}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)
$$

$$
\binom{x}{x^{\prime}}=M_{d r i f t} \cdot M_{e d g e} \cdot M_{d i p o l e} \cdot M_{e d g e} \cdot M_{d r i f t} \cdot M_{f o c} \cdot M_{d r i f t} \cdot M_{d e f o c} \cdot M_{d r i f t} \cdot M_{f o c} \cdot\binom{x_{0}}{x^{\prime}{ }_{0}}
$$

Matrix formalism

Developed a Mathematica routine for beam optics calculations using transfer matrices to compared with G4Beamline Monte Carlo simulation

Differences between Transfer Matrices and TRANSPORT

Beam Element	R11 (mm)	R12 (mm)	R21 (mm)	R22 (mm)	R33 (mm)	R34 (mm)	R43 (mm)	R44 (mm)
Q17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Q18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Q19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
B18	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Q20	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
B19	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Q21	0.002	0.003	0.000	0.002	0.000	0.000	0.000	0.000
Q22	0.002	0.006	0.000	0.001	0.000	0.001	0.000	0.000
B20	0.002	0.005	0.000	0.001	0.000	0.000	0.000	0.000

Final x-position for 1 mm Misalignment of Quadrupole 18 in y-direction

G4Beamline

Previous studies of this beamline by a master's student found this type of misalignment to be the most critical for final position

Misalignment of Quadrupole 18 in the x-direction

Final Positions of Particles with No Misalignments

Loss of Particles at BPROF1

- Collimator in the beamline after first dipole; particles hit collimator and do not continue trajectory
- Loss of particles on one side when quadrupole is misaligned
- Non-symmetric beam

