

Study of Misalignment in the H4-VLE Beamline of the CERN North Area

Student: Jeanine Shea

Supervisor: Marcel Rosenthal

Within the CERN North Area, I
am working specifically with a
part of the H4 beamline known
as the H4-VLE. This beamline
will be used to study a
prototype neutrino detector
designed for DUNE.

Schematic of Beamlines at CERN and in the North Area

CMS

ATLAS

North Area

BOOSTER 1972 (157 m)

1976 (7 km)

LHCb

CNGS

2006

neutrinos

Gran Sasso

TT41

TIS

TT40

ISOLDE

PS

1959 (628 m)

Leir

05 (78 m)

LHC

2008 (27 km)

TT10

TT2

neutrons

n-ToF

TT60

AD 1999 (182 m)

LINAC 2

LINAC 3

lons

HiRadMat

2011

ALICE

T12

Simulation of the complete H2 and H4 Beamlines in G4Beamline The circled portion of the beamline makes up the H4-VLE, which is the part of the beamline that I simulated.

My simulation of the H4-VLE beamline in G4Beamline

Misalignment of Quadrupole 18 by 1mm in x-direction

No Correction

Correction Scheme 1

Conclusion: Correcting for the misalignment using CS1 resulted in more particle loss than leaving misalignment uncorrected.

Correction Scheme 2

Misalignment of Quadrupole 18 by 1mm in x-direction

Correction Scheme 2

No Correction

hΧ hΧ 2902 Entries Entries 3022 180 Mean 160 .694 Mean 1.006 30.46 Std Dev 28.53 Std Dev 160 γ^2 / ndf 92.03 / 47 140 χ^2 / ndf 50.94 / 46 157.2 ± 3.8 Constant 170.2 ± 3.8 140 Constant 8.661 ± 0.545 Mean 7.143 ± 0.513 120 Mean Sigma 28.49 ± 0.43 120 Sigma 27.83 ± 0.37 100 100 20 20 -40-2060 80 100 60 80 -2020 100 x (mm) x (mm)

Conclusion: Correcting for the misalignment using CS2 resulted in more particle loss than leaving misalignment uncorrected.

Correction Scheme 3

Misalignment of Quadrupole 18 by 1mm in x-direction

No Correction

Correction Scheme 3

Conclusion: Correcting for the misalignment using CS3 resulted in more particle detections compared with no correction.

Conclusion

Achievements

- Creation and benchmarking of the simplified G4Beamline model
- Exploring the options for misalignment correction

Future Work

- Investigate further misalignments in a similar fashion
 - Already know change of position based on changing magnetic fields in dipoles

Special thanks to Marcel Rosenthal, Yiota Chatzidaki, and Nikolaos Charitonidis for all their help and mentorship. Also thanks to the National Science Foundation and University of Michigan for funding. And, finally, thank you to the audience for listening!

Full H4-VLE Simulation

Matrix Formalization

Focusing quadrupole, K >0:

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{K}s) & \frac{1}{\sqrt{K}}\sin(\sqrt{K}s) \\ -\sqrt{K}\sin(\sqrt{K}s) & \cos(\sqrt{K}s) \end{pmatrix}$$

Defocusing quadrupole, K< 0:

$$M_{defoc} = \begin{pmatrix} \cosh(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sinh(\sqrt{|K|}s) \\ \sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}$$

Drift space: length of drift space L

$$M_{drift} = \left(\begin{array}{cc} 1 & L \\ 0 & 1 \end{array}\right)$$

 $\binom{x}{x'} = M_{drift} \cdot M_{edge} \cdot M_{dipole} \cdot M_{edge} \cdot M_{drift} \cdot M_{foc} \cdot M_{drift} \cdot M_{defoc} \cdot M_{drift} \cdot M_{foc} \cdot \binom{x_0}{x'_0}$

Matrix formalism

Developed a Mathematica routine for beam optics calculations using transfer matrices to compared with G4Beamline Monte Carlo simulation

Differences between Transfer Matrices and TRANSPORT

Beam Element	R11 (mm)	R12 (mm)	R21 (mm)	R22 (mm)	R33 (mm)	R34 (mm)	R43 (mm)	R44 (mm)
Q17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Q18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Q19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
B18	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Q20	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
B19	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Q21	0.002	0.003	0.000	0.002	0.000	0.000	0.000	0.000
Q22	0.002	0.006	0.000	0.001	0.000	0.001	0.000	0.000
B20	0.002	0.005	0.000	0.001	0.000	0.000	0.000	0.000

Final x-position for 1mm Misalignment of Quadrupole 18 in y-direction

Previous studies of this beamline by a master's student found this type of misalignment to be the most critical for final position

Misalignment of Quadrupole 18 in the x-direction

Final Positions of Particles with No Misalignments

Loss of Particles at BPROF1

- Collimator in the beamline after first dipole; particles hit collimator and do not continue trajectory
- Loss of particles on one side when quadrupole is misaligned
- Non-symmetric beam

