

RECENT RESULTS FROM LHCB

Daniel Johnson

on behalf of the LHCb collaboration

Aspen 2019 Winter Conference

26 March 2019

3. Exotic hadron spectroscopy

4. Lepton universality

Aspen 2019 Winter Conference

Last Thursday

Last Thursda

This morning

Last Friday

2 Dan Johnson (CERN)

The LHCb experiment

Efficient trigger & reconstruction; effective identification Magnet polarity routinely reversed

3 Dan Johnson (CERN)

CP violation in beauty
 CP violation in charm

3. Exotic hadron spectroscopy

4. Lepton universality

4 Dan Johnson (CERN)

Indirect CPV in B_s^0 **decays to non-flavour-specific f.s.** • in absence of penguin contamination $\phi_s \approx -2\beta_s = \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)]$

Expected to be very small: CKM $-2\beta_s = -37.04 \pm 0.64$ mrad 1106.4041

Classic mode for ϕ_s : $B_s^0 \to J/\psi\phi$

•admixture of CP-even and CP-odd t-dep. angular analysis •most precise measurement uses $B_s^0 \rightarrow J/\psi K^+K^-$ from LHCb: 3 fb⁻¹

 $\phi_s = 60 \pm 49 \pm 6 \text{ mrad}$ 1411.3104

Significant K⁺K⁻ S-wave present

5 Dan Johnson (CERN)

• $s\bar{s}$ can manifest in $f_0(980) [\rightarrow \pi^+\pi^-]$ 0812.2832

• $B_s^0 \to J/\psi \pi^+ \pi^-$ is > 97.7% CP-odd at 95% CL

Data 2015 - 2016: $2 \, \text{fb}^{-1}$ @ 13 TeV

Trigger:

- Hardware: high pT muon or high ET calorimeter deposit
- Software 1: High $p_{\rm T}$ & χ^2_{IP} muon or muon-pair with $m(\mu^+\mu^-) > 2.7 \,{\rm GeV}/c^2$
- Software 2: Full reco; good dimuon vertex, well-separated from PVs, near $m_{J/\psi}$

6 Dan Johnson (CERN)

Data 2015 - 2016: 2 fb⁻¹ @ 13 TeV

Trigger:

7 Dan Johnson (CERN)

- Hardware: high pT muon or high ET calorimeter deposit
- Software 1: High $p_{\rm T} \& \chi_{IP}^2$ muon or muon-pair with $m(\mu^+\mu^-) > 2.7 \, {\rm GeV}/c^2$
- Software 2: Full reco; good dimuon vertex, well-separated from PVs, near $m_{J/\psi}$

1903.05530

Fit: Unbinned max-L fit to:

decay time, flavour tag, $(m_{\pi\pi}/m_{KK} \text{bin}), B_s^0$ helicity angles

• Efficiencies in angular variables (and $m_{\pi\pi}$) taken from simulation

- Decay time acceptance determined using $B^0 \to J/\psi K^*(892)^0$ and known τ_{B^0}
- Decay time uncertainty calibrated with prompt J/ψ + h⁺h⁻
 effective resolution: 40 45 fs
- Flavour tag a) decays of 'opposite side' b-hadron b) jet fragments on 'same side' containing a kaon calibrate with $B_s^0 \rightarrow D_s^- \pi^+$

8 Dan Johnson (CERN)

Results $B_s^0 \to J/\psi K^+ K^ \phi_s = -80 \pm 41 \pm 6 \text{ mrad}$ **main syst:** factorisation of mass and

Dan Johnson (CERN)

9

helicity angle

 $B_s^0 \to J/\psi \pi^+ \pi^-$

1903.05530

 $\phi_s = -57 \pm 60 \pm 11 \text{ mrad}$

main syst: ππ amp. model

Combined, including Run 1 results: $\phi_s = -53 \pm 26 \text{ mrad}$ Most precise determination of ϕ_s to date!

...consistent (0.5 σ) with expectation assuming SM, and 2 σ from zero

CP violation in beauty CP violation in charm

3. Exotic hadron spectroscopy

4. Lepton universality

10 Dan Johnson (CERN)

2. CP violation in charm

Expected to be very small $O(10^{-4} - 10^{-3})$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3\left[1 - (\rho + i\eta)\left(1 - \frac{1}{2}\lambda^2\right)\right] & -A\lambda^2 + \frac{1}{2}A\lambda^4\left[1 - 2(\rho + i\eta)\right] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} + O(\lambda^6)$$

Opportunity to probe NP effects in up-type-quark sector

Imprecise predictions:

small $m_c \Rightarrow$ long-distance effects are significant

Time integrated asymmetry difference

many systematic effects cancel $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-)$

Much sought!

11 Dan Johnson (CERN)

Aspen 2019 Winter Conference

1903.08726

2. CP violation in charm

Data 2015 - 2018: 6 fb⁻¹ @ 13 TeV

Systematic cancellation: $A_{raw}(f) \approx A_{CP}(f) + A_D + A_P$

independent of final state

$$\Delta A_{CP} = A_{\text{raw}}(D^0 \to K^+ K^-) - A_{\text{raw}}(D^0 \to \pi^+ \pi^-)$$

Trigger:

- Hardware: significant calorimeter / muon system deposits
- Software 1: High $p_T \& \chi^2_{IP}$ track or 2-track secondary vtx consistent with D^0

(Nearly) real-time detector alignment and calibration

Software 2: Full reconstruction; kinematic/topological/PID selection

12 Dan Johnson (CERN)

Aspen 2019 Winter Conference

1903.08726

ΠΠ

2. CP violation in charm

Selection

- Exclude regions with large A_D(π^{tag}, μ^{tag})
- Mass window for D^0
- Require good D^{*+} vertex, close to PV
- Correct different KK/ππ tag-kinematics

Muon-tag only:

- Dedicated BDT to suppress comb. bg.
- Explicit veto for $b \to [c\bar{c} \to \mu^+\mu^-]h(=\pi, K)X$

Simultaneous fit

- $m(D^*(2010)^+)$ for pion-tagged
- $m(D^0)$ for muon-tagged

13 Dan Johnson (CERN)

14 Dan Johnson (CERN)

Aspen 2019 Winter Conference

2. CP violation in charm

Systematic uncertainties

- Signal/background mass models Pion-tag: $\sigma(\Delta A_{CP}) = 0.6 \times 10^{-4}$
- Muon mistag

Main syst. for muon-tag: $\sigma(\Delta A_{CP}) = 4 \times 10^{-4}$

- Tag KK/ππ kinematic reweighting
- Bg peaking in $m(D^0\pi^+)$ but not $m(D^0)$ $KKD^0 \rightarrow K^-\pi^+\pi^0$ $\pi\pi D^0 \rightarrow \pi^-\mu^+\nu_\mu$ $D^0 \rightarrow \pi^-e^+\nu_e$ Pion-tag: $\sigma(\Delta A_{CP}) = 0.5 \times 10^{-4}$
- Fractions of B^0 and B^+ in KK or $\pi\pi$
 - different A_P and reco. effs.

1903.08726

2. CP violation in charm

Results

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2 \,(\text{stat.}) \pm 0.9 \,(\text{syst.})] \times 10^{-4}$$
$$\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8 \,(\text{stat.}) \pm 5 \,(\text{syst.})] \times 10^{-4}$$

- In good agreement with world averages and previous LHCb results
- Combining with previous LHCb measurements:

 $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$ 5.3 standard deviations First observation of CPV in charm hadron decay $\Delta A_{CP} \approx \Delta a_{CP}^{\text{dir}} \left(1 + \overbrace{(t)}^{\bullet} \swarrow CP \atop (t)} + \overbrace{(t)}^{\bullet} \overbrace{(t)}^{\bullet} a_{CP}^{\text{ind}} \right)$ • Primarily sensitive to direct CPV • Primarily sensitive to direct CPV • Direction of CPV in charm hadron decay

15 Dan Johnson (CERN)

Aspen 2019 Winter Conference

1903.08726

CP violation in beauty
 CP violation in charm

3. Exotic hadron spectroscopy

4. Lepton universality

16 Dan Johnson (CERN)

LHCb-PAPER-2019-014 in preparation

Back to 2015...

1507.03414

• 6-dimensional amplitude fit to $\Lambda_b^0 \rightarrow J/\psi p K$ with Run 1 ('11-'12) data

- ${\boldsymbol{\cdot}}$ All-known Λ^{*} states, and new ones tried
- Floated masses and widths
- Tested non-resonant terms/ Σ^*
- Cannot be a reflection 1604.05708

17 Dan Johnson (CERN)

... 2 new pentaquarks

LHCb-PAPER-2019-014 in preparation

Data 2011 - 2018: $9 \, \text{fb}^{-1}$ @ 7,8,13 TeV

• new BDT, including hadron ID, doubles Λ_b^0 signal efficiency; still 94% pure • resulting dataset is 9 times larger than that of the earlier analysis

18 Dan Johnson (CERN)

LHCb-PAPER-2019-014 in preparation

Data 2011 - 2018: $9 \, \text{fb}^{-1}$ @ 7,8,13 TeV

• new BDT, including hadron ID, doubles Λ_b^0 signal efficiency; still 94% pure • resulting dataset is 9 times larger than that of the earlier analysis

Complicated Λ^* structure

18 Dan Johnson (CERN)

LHCb-PAPER-2019-014 in preparation

Data 2011 - 2018: $9 \, \text{fb}^{-1}$ @ 7,8,13 TeV

• new BDT, including hadron ID, doubles Λ_b^0 signal efficiency; still 94% pure • resulting dataset is 9 times larger than that of the earlier analysis

Complicated Λ^* structure

Clearly visible Pc states

18 Dan Johnson (CERN)

LHCb-PAPER-2019-014 in preparation

3. Pentaquarks

Run 1 vs Run 2

Aspen 2019 Winter Conference

19 Dan Johnson (CERN)

Strategy

20 Dan Johnson (CERN)

- new, narrow, $J/\psi p~$ structures can be investigated without full model
- binned χ^2 fits performed to $m(J/\psi p)$ in range $4.22 < m(J/\psi p) < 4.57 \text{ GeV}$
- previous, broad, $P_c(4380)^+$ state too broad to be studied for now

Aspen 2019 Winter Conference

LHCb-PAPER-2019-014

in preparation

Results

- Fit with full dataset, Λ^* -veto, and $\cos(\theta_{P_c})$ -weighting
- 1-D fit strategy validated on toys sampled from 6-D amp. models dominant systematic from possible P_c^+ interference, not probed in $m(J/\psi p)$
- In all fits, 3 narrow BW P_c^+ terms + smooth bg description
 - results insensitive to background models
 - $m(J/\psi p)$ negligibly impacted by detector efficiency

Systematic uncertainties account for:

- background model
- P_c^+ interference
- mass resolution
- S-/P-wave production/decay
- alternative (non-BDT) selection

Aspen 2019 Winter Conference

LHCb-PAPER-2019-014

in preparation

LHCb-PAPER-2019-014 in preparation

3. Pentaquarks

Results

State	$M \; [\mathrm{MeV}\;]$	Γ [MeV] (95% CL)	${\mathcal R}$
$P_{c}(4312)^{+}$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-4.5}^{-3.7} (< 27)$	$(0.30\pm0.07^{+0.34}_{-0.09})\%$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1} \ (< 49)$	$(1.11\pm0.33^{+0.22}_{-0.10})\%$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-1.9}^{5.7} (< 20)$	$(0.53 \pm 0.16^{+0.15}_{-0.13})\%$

Significance of P_c(4312): 8.2σ including L.E. effect

Significance of two-peak: 6.2σ resolve P_c(4440) & P_c(4457)

Broad P_c(4380) awaits amp. analysis

Aspen 2019 Winter Conference

22 Dan Johnson (CERN)

LHCb-PAPER-2019-014 in preparation

3. Pentaquarks

Results

State	$M \;[\mathrm{MeV}\;]$	Γ [MeV] (95% CL)	${\cal R}$
$P_{c}(4312)^{+}$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^+_{-4.5} (< 27)$	$(0.30\pm0.07^{+0.34}_{-0.09})\%$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1} \ (< 49)$	$(1.11\pm0.33^{+0.22}_{-0.10})\%$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-1.9}^{5.7} (< 20)$	$(0.53\pm0.16^{+0.15}_{-0.13})\%$

Significance of P_c(4312): 8.2σ including L.E. effect

Significance of two-peak: 6.2σ resolve P_c(4440) & P_c(4457)

Broad P_c(4380) awaits amp. analysis

Aspen 2019 Winter Conference

22 Dan Johnson (CERN)

CP violation in beauty
 CP violation in charm

3. Exotic hadron spectroscopy

4. Lepton universality

23 Dan Johnson (CERN)

"Electroweak couplings of charged leptons are universal"

Standard Model, 1970s

FCNC $b \rightarrow s\ell^+\ell^-$ decays proceed via electroweak loop diagrams sensitive to virtual contributions from BSM particles

Predictions rely on calculation of hadronic effects focus on BF ratios below $q^2(\ell^+\ell^-)$ where charmonium plays a role

- $R_K (1.0 < q^2 < 6.0 \,\mathrm{GeV}^2/c^4)$
- $R_{K^{*0}}(0.045 < q^2 < 1.1 \,\mathrm{GeV}^2/c^4)$
- $R_{K^{*0}}(1.1 < q^2 < 6.0 \,\mathrm{GeV}^2/c^4)$

At such low q^2 , predictions have $\mathcal{O}(1\%)$ precision

Data 2011 - 2016: 5 fb⁻¹ @ 7,8,13 TeV

Very different reconstruction strategy for muons and electrons electron bremsstrahlung; different triggers; so:

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to \mu^{+} \mu^{-}) K^{+})} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to e^{+} e^{-}) K^{+})}$$

 $(J/\psi$ decays lepton-universal at 0.4% level)

Improved reconstruction wrt earlier measurement and higher q_{\min}^2

Identical selections for resonant/non-resonant: exploit topology & PID J/ ψ constraint reduces mass resolution (MeV) 140 \rightarrow 24.5 (e) & 30 \rightarrow 17.5 (μ) Efficiency ratios from simulation, calibrated using the resonant mode

Simultaneous, unbinned fit, constraining resonant yields, fitting R_K

25 Dan Johnson (CERN)

Systematic uncertainties

- Mass shape models: fit pseudo experiments with alternative models
- Efficiency uncertainties inserted via constraints in the fit non-e-triggered events: data-derived trigger efficiency calibration e-triggered events: calib sample statistics and data/MC differences
- q^2 migration studied in MC; negligible impact of data/MC differences
- Negligible uncertainty due to simulation decay model
 (Wilson coefficients, form factors, other hadronic uncertainties)
- Consistent cross-checks:

$$r_{J/\psi} = \mathcal{B}(B^+ \to J/\psi (\to \mu^+ \mu^-) K^+) / \mathcal{B}(B^+ \to J/\psi (\to e^+ e^-) K^+) = 1.014 \pm 0.035$$
$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to \psi(2S)(\to \mu^+ \mu^-) K^+)}{\mathcal{B}(B^+ \to J/\psi (\to e^+ e^-) K^+)} / \frac{\mathcal{B}(B^+ \to \psi(2S)(\to e^+ e^-) K^+)}{\mathcal{B}(B^+ \to J/\psi (\to e^+ e^-) K^+)} = 0.986 \pm 0.013$$

Results

Fit to selected candidates red-dashed line shows R_K=1

27 Dan Johnson (CERN)

Consistent across trigger samples 7,8 TeV consistent with 13 TeV at 1.9σ Reproduce earlier result at $< 1\sigma$ 2017/2018 analysis still to come!

Aspen 2019 Winter Conference

1903.09252

Prospects

- Many Run 1/2 legacy results in preparation
- Installing and commissioning of the new detector well-underway
- Watch this space!

28 Dan Johnson (CERN)

Summary

- World's best measurement of ϕ_s

- Discovery of CP violation in the charm sector
- New pentaguark discoveries Released today!
- Search for lepton non-universality

journal details, hi-res plots and more at cern.ch/go/X7sX

