

LHC DM Searches

M. Cremonesi [FNAL]

on behalf of the ATLAS and CMS collaborations

In this talk:

- Description of the general approach for dark matter searches at the LHC
 - Will use one interpretation as a guide through the experimental approach, will expand to other interpretations at the end.
- Collection of results from ATLAS and CMS experiment, with focus on:
 - the mono-X program (i.e. no SUSY reinterpretations)
 - newest results, based on data collected in Runll
 - mostly 2015+2016
 - Some results with more statistics are also included

Search for DM

- Direct detection (DD): look for nuclear recoil produced when a DM particle collides with an atomic nucleus of a target.
- Indirect detection (ID): look for the products of the annihilation or the decay of DM particles.
- Collider approach: DM production

lirect detectior

Mono-X Searches

Collider experiments are NOT designed

to directly reconstruct DM

Experimental approach:

- Identify events using recoiling object(s)
- Initial state radiation (ISR) of a particle X:

X = jet/gamma/W/Z

measure missing transverse momentum (MET)

$$MET = -\Sigma_{All\ particles} p_T$$

Why at Colliders

- If DM interacts, it does through a mediator
- At colliders, unique possibility to search for the mediator and measure its properties
 - Like mass, spin; they change the kinematic distributions used in the analyses

From EFT to Simplified Models

Simplified Models

Model described by a small number of free parameters:

- M_{med}, M_{DM}, g_{SM}, g_{DM}
- DM:
 - single particle
 - stable and non-interacting
- Mediator
 - to first order, shapes of kinematic distributions not altered by coupling variations
 - $g_q=0.25$, $g_{DM}=1(spin-1)$
 - $g_q=1, g_{DM}=1(spin-0)$
 - Axial/Vector, Scalar/Pseudoscalar
 - minimal decay width (e.g. to DM and to quarks)

LHC DM Forum: arxiv:1507.00966v1

Presentation of Results

LHC DM WG: arxiv:1603.04156

Presentation of Results

LHC DM WG: arxiv:1603.04156

Mono-jet Signature

arXiv:1903.01400

monojet

mono-V

Same theoretical model

Hadronic Mono-V Signature

Boosted W/Z boson decaying hadronically

- => MET recoiling against large-radius jet with
- invariant mass ~ 80-90 GeV
- two prongs identified by studying jet substructure

JHEP 10 (2018) 180

mono-Vqq strongest channel after monojet

Monojet/Mono-V Combination

Combination extends the mass reach

Hadronic Mono-H(->bb) Signature

Boosted Higgs boson decaying to a b-quark pair

=> MET recoiling against a Higgs large-radius jet

Mono-Hbb

Mono-H Combination

EPJC 79 (2019) 280

PAS EXO-18-011

Hadronic Mono-H(->bb) Signature

Boosted Higgs boson decaying to a b-quark pair

=> MET recoiling against a Higgs large-radius jet

Dijet DM Interpretation

Interpret dijet as DM mediator searches, in single model with same coupling

- Large portion of the phase space
 excluded by dijet
- Dijet limits are
 sensitive to the
 coupling variation

arXiv:1903.01400

Scalar Mediator

 $\phi(a)$ χ

arXiv:1903.01400

Scalar Mediator

CMS-EXO-18-010

Higgs Invisible

arXiv:1809.05937

Higgs Invisible

ATLAS-CONF-2018-054

Conclusions

- Broad program of DM searches at the LHC
- Allowed parameter space for DM models substantially reduced, new dataset collected in 2017/18 still needs to be fully analyzed
 - 4x the current statistics
 - new results with full Runll dataset expected by the end of 2019
- Complementarity with ID and DD detection, simplified models allow for a direct comparison
- New theoretical interpretations
 - next-generation DM model, provide the simplest theoretically consistent extension of the DM simplified model
 - Pseudoscalar mediator (2HDM+a), LHCDMWG white paper: arXiv:1810.09420

for full results, please visit the ATLAS/CMS Exotica webpage:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS/

Backup

Dark Matter

- From cosmological observations,
 85% of the matter comprised of dark
 matter (DM)
- What we know:
 - DM does not interact electro-magnetically
 - DM interacts gravitationally

We know nothing about its nature and properties

Hadronic Mono-top Signature

Boosted top quark decaying hadronically

=> MET recoiling against top large radius jet

JHEP 06 (2018) 27

arXiv:1812.09743

$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \ {
m cm}^2 \cdot \left(\frac{g_q g_{
m DM}}{0.25}\right)^2 \left(\frac{1 \, {
m TeV}}{M_{
m med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \, {
m GeV}}\right)^2$$

Limitations

- Results from colliders are model dependent
 - assumption of couplings affects the limits
- Hard to compare with direct/indirect detection, even though we are practically looking at the same model

Introducing Y

annihilation cross section $\sigma_v \sim g_{DM}^2 g_q^2 m_{DM}^2 / m_{Med}^4 = Y m_{DM}^2 Y = g_{DM}^2 g_q^2 m_{DM}^4 / m_{Med}^4$

- Y is a convenient variable to quantify sensitivity:
 - for each choice of m_{DM} there is a unique value of \mathbf{Y} independently of the individual values of g_x , g_q , m_V .
- Direct detection constraints are also naturally expressed as functions of \boldsymbol{Y} and \boldsymbol{m}_{DM}
- Accelerator-based constraints are not, since they depend on the choice of $g_{\text{DM}},\,g_{\text{q}},\,m_{\text{Med}}$

Introducing Y

$$\sigma_{LHC} \sim g_q^2 = Y (1/g_{DM}^2) m_{Med}^4/m_{DM}^4$$

- σ_{LHC} can still be given in terms of \boldsymbol{Y}
- Y can be measured by making assumption on (m_{Med}/m_{DM}) and g_{DM}
 - g_{DM} large
 - m_{Med}/m_{DM} order of unity

