

Searches for Long-Lived Particles at ATLAS & CMS: An Overview

Yangyang Cheng Aspen Winter Conference 03/29/2019

LLP Search: Physics Motivation

Same principles apply to BSM physics: small couplings and no definite mass scale \rightarrow <u>long-lived</u> particles (LLPs)!

LLP Search: Experimental Challenges

Object reconstruction:

- Conventional reconstruction methods often do not work well for LLPs
- Standard methods to remove noise etc. often remove our signals
 - Increased vulnerability to background
- Rich final state: how to #CatchThemAll?

Background estimation:

- Particles do not point back to primary vertex:
 - detector center: LLPs from SM, pile-up,...
 - detector volume: conversion, ...
 - outside detector: cosmics, beam gas, ...
- Limits from detector acceptance & resolution

Triggering:

Trigger strategy B:

trigger on decay products

→ displaced objects, soft and/or with high multiplicity, are very difficult to trigger!

Trigger strategy A:

trigger on production process: ISR or new heavy particle(s) (e.g. HT)
→ high threshold leads to significant loss in signal efficiency

LLP Search: Experimental Landscape

Displaced Decays in the Tracker

For LLPs that decay inside the tracking* volume, displaced vertices or disappearing/ kinked tracks may be reconstructed.

* Focus on inner detectors for now; cases with muons later.

03/29/2019

Displaced Vertices: ATLAS

Displaced Vertices: CMS

			Predicted multijet signal yields		
d _{VV} range	Fitted background yield	Observed	0.3 mm	1.0 mm	10 mm
0–0.4 mm	0.51 ± 0.01 (stat) ± 0.13 (syst)	1	2.8 ± 0.7	3.5 ± 0.8	1.0 ± 0.2
0.4–0.7 mm	0.37 ± 0.02 (stat) ± 0.09 (syst)	0	2.0 ± 0.5	3.7 ± 0.9	0.5 ± 0.1
0.7–40 mm	$0.12 \pm 0.02 (\text{stat}) \pm 0.08 (\text{syst})$	0	1.1 ± 0.3	11 ± 3	31 ± 7

Disappearing Tracks: ATLAS

- Charged particle with lifetime 0.01ns 10ns decays to invisible particle + soft charged particle:
- Trigger on E_T^{miss}

03/29/2019

- Two search channels
 - electroweak: ISR jet + ET^{miss}
 - strong: multijet + ET^{miss}
- "Disappearing" tracklet reconstruction
 - hits in each of the first four pixel layers
 - no hits in the SCT layers
 - isolated; pT > 20 GeV

Yangyang Cheng | LLP Overview@Aspen

Disappearing Tracks: CMS

- Signal lifetime: 0.1ns 100ns
- Trigger: p_T^{miss} >100GeV
- Disappearing track reconstruction:
 - isolated >55GeV track, originating from IP
 - missing >=3 outer tracker hits
 - associated calorimetry energy (dR<0.5) < 10GeV
- Main backgrounds:
 - Charged leptons
 - \rightarrow lepton veto
 - Spurious tracks
 - ightarrow estimated from data in large d0 sideband

arXiv:1804.07321

Run period	Estimated number of background events			Observed events
	Leptons	Spurious tracks	Total	Observed events
2015	0.1 ± 0.1	$0^{+0.1}_{-0}$	0.1 ± 0.1	1
2016A	$2.0\pm0.4\pm0.1$	$0.4 \pm 0.2 \pm 0.4$	$2.4\pm0.5\pm0.4$	2
2016B	$3.1\pm0.6\pm0.2$	$0.9\pm0.4\pm0.9$	$4.0\pm0.7\pm0.9$	4
Total	$5.2\pm0.8\pm0.3$	$1.3\pm0.4\pm1.0$	$6.5\pm0.9\pm1.0$	7

Tracker Upgrade: HL-LHC Prospects

Both ATLAS & CMS trackers will be fully replaced for HL-LHC conditions

- high granularity & radiation hard
- extended $|\eta|^{4}$
- tracking @ L1 hardware trigger
- CMS: inner pixel + outer tracker w/
 2-sided sensor modules (PS or SS)
- ATLAS: inner pixel + outer strip tracker (silicon based; no more TRT)

CMS L1 track trigger (L1TT)

- Two-sided sensor modules in OT
 →stubs: correlated hit pairs, consistent
 with >=2GeV track
- Stubs form input to track finding at L1 trigger rate of 750kHz

Displaced Decays with the ECAL

Displaced Photons: ATLAS

Search for neutral LLP (350ps-100ns) decay to photon + invisible particle

- Trigger: diphoton, >35(25)GeV, no timing constraint
- Offline:
 - diphoton, >50GeV
 - It < 4ns to remove satellite bunches</p>
- ATLAS LAr ECAL provides both photon direction & time measurements \rightarrow 8TeV analysis uses both pointing & timing (7TeV only used pointing) \rightarrow data-driven Nx1D fit: in bins of |Z|, 1D fit of photon time

PRD 90 (2014) 112005 8 TeV 20.3 fb⁻¹

Run 1: di-photon

+ MET Final State

Delayed Photon/ Jets: CMS

CMS ECAL: good timing & energy resolution but no pointing For Run2 displaced photon search, include ECAL cluster shape information in the trigger & OOT photon reconstruction: OOT photon cluster shapes more elliptical than prompt photons Trigger: single displaced photon (>60GeV+shape) + HT (>350GeV) OOT photon reco: OOT seed + photon energy, shape, iso etc. Signal selection: >=1 tightly-ID OOT photon, >=3 jets, HT>400GeV Data-driven background fitted in 2D of vs photon time

New delayed jet search with ECAL timing (~200ps $\stackrel{\circ}{\rightarrow}$ resolution for >50GeV) \rightarrow Trigger: ET^{miss} >120GeV Signal selection: ET^{miss} >300GeV jets: pT >30GeV, time delay >3ns & small time spread, large HCAL fraction

13

Displaced Decays with the HCAL

Yangyang Cheng | LLP Overview@Aspen

Displaced Jets: ATLAS

Inclusive Displaced Jets: CMS

Yangyang Cheng | LLP Overview@Aspen

Emerging Jets: CMS

Yangyang Cheng | LLP Overview@Aspen

Calorimetry Upgrade: HL-LHC Prospects

<u>Calorimeter upgrades</u> (ECAL electronics + HGCAL) at CMS will provide precise timing (10s of ps) for high energy photons in barrel + high energy hadrons/photons in endcap
 <u>MIP Timing Detector (MTD)</u> outside tracker volume at CMS, can provide precision timing (~30ps) for charged hadrons & converted photons down to a few GeV.

Additional spacial segmentation info ← at ATLAS TileCal and CMS HGCAL → can provide shower profile info in triggering & identifying LLP hadronic decays.

Displaced Decays with Muon System

Displaced Muons: ATLAS

 μ

 $Z_{\rm D}$

- Opposite-sign muons with vertex up to 4m from interaction point
- Two search regions: high & low mass
- Muon reconstruction: starting from MS tracks and extrapolate to IP; small displacement matched to ID tracks

Signal type	Trigger	Description	Thresholds	arXiv:1808.03057
High mass	$E_{\rm T}^{\rm miss}$ or single muon	missing transverse momentum single muon restricted to the barrel region	$E_{\rm T}^{\rm miss} > 110 \text{ GeV}$ muon $ \eta < 1.05$ and	$p_{\rm T} > 60 { m GeV}$
Low mass	collimated dimuon trimuon	two muons with small angular separation three muons	$p_{\rm T}$ of muons > 15 and 20 GeV and $\Delta R_{\mu\mu} < 0.5$ $p_{\rm T} > 6$ GeV for all three muons	

All muon candidates (MS-only or matched to tracks) form muon pairs \rightarrow extrapolate from MS to find vertex

- \rightarrow angular separation > 0.1, vertex position |r| < 4m & |z| < 6m
- \rightarrow dimuon mass > 15GeV to remove conversion & multijet
- \rightarrow Background estimated from same- & opposite- sign dimuon CRs in data for prompt & non-prompt muons

300

Displaced Muon Vertices: ATLAS

Displaced Muons: CMS

← Single displaced leptons not from the same vertex; focused on e-mu state

Heavy Stable Charged Particle: ATLAS

HSCP & Stopped LLPs: CMS

Yangyang Cheng | LLP Overview@Aspen

Muon Upgrade: HL-LHC Prospects

s=14 TeV, <PU>

Conclusions & Outlook

- Long-lived particles are predicted in a wide range of BSM scenarios
- Rich, exotic final states present unique, under-explored search opportunities
 - Broad range of lifetime & decay products
- Various *signature-driven* LLP searches performed on ATLAS & CMS experiments
 - Results have broad reinterpretation value
 - Challenges in trigger, reconstruction, & background estimation
- Detector and trigger upgrades @HL-LHC bring tantalizing prospects
 - Increased forward acceptance and improved resolution
 - New timing & L1 trigger capabilities open up new possibilities
 - \rightarrow Stay tuned for Zhen's talk!

THANK YOU!

