

Status and outlook for Muon g-2 at Fermilab

A.P. Schreckenberger on behalf of the Muon g-2 Collaboration In Pursuit of New Particles and Paradigms

To Peek Beyond...

Standard Model predicts and describes most particle

experiment observations

- Exceptions to this include:
 - Matter-antimatter asymmetry
 - Presence of dark matter
 - Mass and strength hierarchy

Muon g-2 indirectly searches for new physics by probing the impact of virtual particles on the behavior of muons

More than a Moment

- Magnetic moment used as the handle
- Relation to particle spin and the dimensionless g-factor

$$\vec{\mu} = g \frac{q}{2m} \vec{S}$$

- For Dirac point-like particle, g=2
 - Radiative corrections from fundamental forces increase value of g

Defining an Anomaly

Consider these processes with respect to

$$a_{\mu} = \frac{g_{\mu}-2}{2}$$
, where a_{μ} is the muon magnetic anomaly

$$a_{\mu}^{SM} = 116591820.4(35.6) \times 10^{-11}, [1]$$

QED processes contribute most to value of magnetic anomaly

> QCD processes contribute most to uncertainty on a_{μ}

— Leading order vacuum polarization — Light-by-light scattering

Defining an Anomaly

Consider these processes with respect to

$$a_{\mu} = \frac{g_{\mu}-2}{2}$$
, where a_{μ} is the muon magnetic anomaly

 $a_{\mu}^{SM} = 116591820.4(35.6) \times 10^{-11}, [1]$

SM Contribution	$\delta a_{\mu} [imes 10^{-11}]$
Leading Order Hadronic Vacuum Polarization (HVP)	±33.3
Hadronic Light-by-Light	±26.0
Electroweak (2 loops)	±1.0
Higher Order HVP	±0.7
QED (to 5 loops)	±0.08

T. Aoyama et al., Phys. Rev. Lett. 109,111808 (2012)

A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97, 114025 (2018)

J. Calmet et al., Phys. Lett. 61B, 283 (1976)

G. Colangelo et al., JHEP 1704, 161 (2017)

C. Gnendiger et al., Phys. Rev. D 88, 053005 (2013)

A. Kurz et al., Phys. Lett. **B734**, 144-147 (2014)

Defining an Anomaly

Consider these processes with respect to

$$a_{\mu} = \frac{g_{\mu}-2}{2}$$
, where a_{μ} is the muon magnetic anomaly

 $a_{\mu}^{SM} = 116591820.4(35.6) \times 10^{-11}, [1]$

SM Contribution	$\delta a_{\mu} [\times 10^{-11}]$
Leading Order Hadronic Vacuum Polarization (HVP)	±33.3
Hadronic Light-by-Light	±26.0
Electroweak (2 loops)	±1.0
Higher Order HVP	±0.7
QED (to 5 loops)	±0.08

T. Aoyama et al., Phys. Rev. Lett. 109, 111808 (2012)

A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97, 114025 (2018)

J. Calmet et al., Phys. Lett. 61B, 283 (1976)

G. Colangelo et al., JHEP 1704, 161 (2017)

C. Gnendiger et al., Phys. Rev. D 88, 053005 (2013)

A. Kurz et al., Phys. Lett. **B734**, 144-147 (2014)

Prologue: why muons?

- Pion decay produces polarized beams
- Parity violation → relation between muon spin and decay positron momentum
- Heavier mass makes muons more sensitive to BSM physics
 - \blacktriangleright Driven by $\left(m_e^2/m_\mu^2\right)$
- Long lifetime permits the precision measurement

A Persisting Puzzle

BNL E821 measured a_{μ} to a precision of 540 ppb

▶ Differs from SM prediction by $> 3\sigma$

Motivated creation of FNAL-based experiment

Precision goal of 140 ppb

- Muon g-2 ring provides 1.45T field in storage vacuum region
- Polarized muons injected from Fermilab accelerator complex
- Mismatch between cyclotron frequency and spin precession frequency provide handle on a_{μ}

$$\overrightarrow{\omega}_C = -\frac{q}{\gamma m} \overrightarrow{B}$$

$$\vec{\omega}_S = -\frac{q}{\gamma m} \vec{B} (1 + \gamma a_\mu)$$

$$\vec{\omega}_a \equiv \vec{\omega}_S - \vec{\omega}_C = -\frac{q}{m} a_\mu \vec{B}$$

Building an Experiment - Some Expansion

- Uniform storage ring field only provides horizontal focusing
- Vertical focusing provided by electrostatic quadrupoles
 - Muons observe magnetic field

$$\vec{\omega}_a \equiv -\frac{q}{m} \left(a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$

- Quadrupole term vanishes when $p_{\mu} = 3.094 \text{ GeV/c}, \gamma = 29.3$
 - Tune beam to exploit the "magic momentum"

$$a_{\mu}(expt) = \frac{g_e}{2} \frac{m_{\mu}\mu_p}{m_e\mu_e} \frac{\omega_a}{\langle \omega_p \rangle}$$

$$m_{\mu}/m_{e}$$
 known to 22 ppb
$$g_{e}$$
 known to 0.26 ppt
$$a_{\mu}(expt) = \frac{g_{e}}{2} \frac{m_{\mu}\mu_{p}}{m_{e}\mu_{e}} \frac{\omega_{a}}{\langle \omega_{p} \rangle}$$

Get from CODATA^[9]: $g_e = -2.00231930436182(52)$ $m_{\mu}/m_e = 206.7682826(46)$ $\mu_e/\mu_p = -658.2106866(20)$

$$m_{\mu}/m_{e}$$
 known to 22 ppb
$$\frac{\mu_{e}/\mu_{p} \text{ known to 3 ppb}}{g_{e} \text{ known to 0.26 ppt}}$$

$$a_{\mu}(expt) = \frac{g_{e}}{2} \frac{m_{\mu}\mu_{p}}{m_{e}\mu_{e}} \frac{\omega_{a}}{\langle \omega_{p} \rangle}$$

- $\langle \omega_p \rangle$ assessed via NMR probes to find average field seen by muons
- $lackbox{\omega}_a$ measured via muon decay products
 - Exploiting the nature of weak decay
- Frequency standard for clocks blinded to ppm level

Get from CODATA^[9]: $g_e = -2.00231930436182(52)$ $m_{\mu}/m_e = 206.7682826(46)$ $\mu_e/\mu_p = -658.2106866(20)$

Building an Experiment: The Field

- Understanding $\langle \omega_p \rangle$ component requires knowledge of the magnetic field and muon beam
 - Muon beam profile extrapolated from decay positrons observed in straw trackers

Building an Experiment: The Field

- Understanding $\langle \omega_p \rangle$ component requires knowledge of the magnetic field and muon beam
 - Muon beam profile extrapolated from decay positrons observed in straw trackers

Proton NMR probes pulled on trolley to measure field along

the azimuth

Building an Experiment: The Field

- Understanding $\langle \omega_p \rangle$ component requires knowledge of the magnetic field and muon beam
 - Muon beam profile extrapolated from decay positrons observed in straw trackers
 - Proton NMR probes pulled on trolley to measure field along the azimuth
 B-field (ppm)
- Magnetic field uniformity efforts reduced systematic uncertainty
 - ▶ 170 ppb (BNL)
 - ▶ 70 ppb (FNAL)

Building an Experiment: Muons

- ω_a assessed using 24 calorimeters that are spaced around the storage ring
- Muons in beam weakly decay $\left[\mu^+ \to \bar{\nu}_{\mu} \nu_e e^+\right]$
 - Positrons preferentially emitted along muon spin vector
 - With high energy cut, selected positrons had initial momenta aligned to muon spins

Building an Experiment: Muons

Energy cut results in sinusoidally-oscillating function for deposition in calorimeters:

$$N(t) = N_0 e^{-t/\tau} [1 + A \cos(\omega_a t + \varphi)]$$

Fit data to extract ω_a

Run 1 Data Taking

- First data run finished on July 7, 2018
 - Acquired almost 2X the BNL dataset in a few months
 - Data quality cuts still need to be applied

In 3 months, I7.5TB e⁺ events recorded (BNL total was 9.4TB e⁺/ e⁻)

Run 1 Learning Points

- Analysis underway on the Run I dataset with aim to unblind Summer 2019
- Several challenges uncovered during this time:
 - ▶ Temperature fluctuations in the experimental hall
 - Stability issues with electrostatic quadrupole system
 - Stability issues with the kicker system

Upgrades for Run 2

- Magnet covered in insulation to address effect of temperature fluctuations
- Electrostatic quadrupole stability improved by adding mechanical supports to HV leads
 - Vibrations caused breakdowns
 - Latest round of conditioning shows improvement
- Additional upgrades to magnet system protections and beamline monitors
- Kicker system underwent largest overhaul

Kicker Upgrade – Overview

When beam enters ring, not on the correct trajectory for storage

Kicker Upgrade – Overview

- When beam enters ring, not on the correct trajectory for storage
 - ▶ Correction comes from three magnets placed ¼ turn from the injection point
 - Reduces field strength by 280G
- ▶ Desired pulse time ~120ns
- Put muons onto closed orbit paths

Kicker Upgrade – Run 1 Findings

- Kicker upgrade driven by several observations
 - Aim to improve the muon flux from 50% design mark
 - Analysis revealed radial distribution that suggested underkicking
 - Additionally generates stronger betatron oscillations
 - Resistive loads were repeatedly damaged
 - PFN measurements showed breakdowns

- Robust system essential for meeting design goals!
 - ▶ Kicker performance, muon storage, beam systematics

- Robust system essential for meeting design goals!
 - Kicker performance, muon storage, beam systematics
- Blumlein pulsers refurbished
 - Surfaces pitted by sparking were polished
 - New mechanical supports were installed

- Robust system essential for meeting design goals!
 - Kicker performance, muon storage, beam systematics
- Blumlein pulsers refurbished
- New resistive loads (bazookas) were designed and constructed

More robust equipment, capacitive 'speed-up' network

- Robust system essential for meeting design goals!
 - ▶ Kicker performance, muon storage, beam systematics
- Blumlein pulsers refurbished
- New resistive loads (bazookas) were designed and constructed
- Superior plumbing for cooling and dielectric fluids installed

- New power supply racks designed, built, and installed at Fermilab
- Trigger controls and data acquisition system also improved

Outlook

- The muon magnetic anomaly provides insight into potential BSM physics
- Muon g-2 Run I data is currently being analyzed
 - Collected roughly 2X the BNL dataset in three months
 - Expected result coming later this year, so stay tuned!
- Significant upgrades were implemented prior to Run 2 that will make the ring systems more robust
 - Kicker system improvements, in particular, will have large impact on muon storage
 - Essential for push to acquiring >20X BNL dataset

Back-Up

The Beam Profile

- Coherent betatron oscillations generated shape of snapshot on Slide 13
 - Consequence of betatron oscillations and detector sampling
 - Understanding behavior critical for measurement

