fcnc top quark rare decays

filipe veloso filipe.veloso@coimbra.lip.pt

workshop valencia — coimbra — granada 26.nov.2009

contents

- introduction
- csc analyses
- recent developments (preliminary)
- data driven normalizations
- photon id studies
- protos validation for fcnc
- extrapolations
- conclusions

introduction

top quark decays

BR($t \rightarrow$ FCNC) in several models:

	SM	QS	2HDM	FC 2HDM	MSSM	R SUSY	TC2
$t \rightarrow q \gamma$	$\sim 10^{-14}$	$\sim 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-6}$	$\sim 10^{-6}$
$t \rightarrow qZ$	$\sim 10^{-14}$	$\sim 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$\sim 10^{-6}$	$\sim 10^{-5}$	$\sim 10^{-4}$
$t \rightarrow qg$	$\sim 10^{-12}$	$\sim 10^{-7}$	$\sim 10^{-4}$	$\sim 10^{-8}$	$\sim 10^{-5}$	$\sim 10^{-4}$	$\sim 10^{-4}$

present experimental limits:

	LEP	HERA	Tevatron
$Br(t \rightarrow q\gamma)$	2.4 %	0.75 %	3.2 %
$Br(t \rightarrow qZ)$	7.8 %	49%	3.7 %
$Br(t \rightarrow qg)$	17 %	13 %	0.1 – 1 % (estimated)

csc analyses

atlas csc study

6

- preparing for first data samples
- $L = 1 \text{ fb}^{-1}$
- not using *b*-tag
- ATLAS full simulation samples:
- ATLAS-CSC-01-02-00 detector geometry
- TopView 12-14-03 common ntuples
- luminosity per background sample: $0.02 \text{ fb}^{-1} 14 \text{ fb}^{-1}$

regular samples:

process	generator
process	generator
$t\bar{t} \rightarrow bWq\gamma$	TopReX
tī → bWqZ	TopReX
tī → bWqg	TopReX
$t\bar{t} \rightarrow bWbW$	MC@NLO
single top	AcerMC
$Z \rightarrow \ell^+ \ell^-$	HERWIG
$W \rightarrow \ell \nu + nj$	ALPGEN
Wbb̄ + nj	ALPGEN
$Wc\bar{c} + nj$	ALPGEN

Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics CERN-OPEN-2008-020 (2008)

event selection

tī → bWqγ	tī → bWqg	tī → bWqZ
$= 1\ell p_T > 25 \text{ GeV}$	$= 1\ell p_T > 25 \text{ GeV}$	$= 3\ell p_T > 25, 15, 15 \text{ GeV}$
$\geq 2j p_T > 20 \text{ GeV}$	$= 3j p_T > 40, 20, 20 \text{ GeV}$	≥ 2 <i>j p</i> _T > 30, 20 GeV
$= 1\gamma p_T > 25 \text{ GeV}$	$= 0\gamma$	$= 0\gamma$
$p_T > 20 \text{ GeV}$	$p_T > 20 \text{ GeV}$	$p_T > 20 \text{ GeV}$
$p_{T\gamma} > 75 \text{ GeV}$	$E_{\rm vis}$ > 300 GeV	2 ℓ same flavour,
·	$p_{T_q} > 75 \text{ GeV}$	oppos. charge
	$m_{qg} > 125 \text{ GeV}$	
	m_{qg}^{-1} < 200 GeV	
e25i, mu20i or g60	e25i or mu20i	e25i or mu20i

kinematics reconstruction

8

method without jet tagging algorithms:

 ν , m_t^{FCNC} , m_t^{SM} , etc. are determined by minimizing

$$\chi^{2} = \frac{\left(m_{t}^{FCNC} - m_{t}\right)^{2}}{\sigma_{m_{t}}^{2}} + \frac{\left(m_{t}^{SM} - m_{t}\right)^{2}}{\sigma_{m_{t}}^{2}} + \frac{\left(m_{W}^{SM} - m_{W}\right)^{2}}{\sigma_{m_{W}}^{2}} + \frac{\left(m_{Z}^{SM} - m_{Z}\right)^{2}}{\sigma_{m_{Z}}^{2}}$$

(b, q, g = j_{1}, j_{2}, j_{3}) (l, Z \to l^{+}l^{-} = l_{1}, l_{2}, l_{3})

kinematics

number of events

 $L = 1 \text{ fb}^{-1}$ 10

	е	μ	l
tt → bWq	γ:		
Total	435 ± 63	216 ± 57	650 ± 66
Signal %	3.6 ± 0.2	4.1 ± 0.2	7.6 ± 0.2
tt̄ → bWq2	Z:		
Total	28 ± 55	11 ± 55	125 ± 56
Signal %	1.4 ± 0.1	2.5 ± 0.1	7.6 ± 0.2
$t\bar{t} \rightarrow bWqg$	g:		
Total	10988 ± 308	8265 ± 193	19252 ± 359
Signal %	1.3 ± 0.1	1.5 ± 0.1	2.9 ± 0.1

trigger efficiencies were also studied:

	$t \rightarrow q\gamma$		t → qZ		t → qg	
	Sig.	Back.	Sig.	Back.	Sig.	Back.
trigger	99.6	99.5	99.2	95.0	83.2	82.2

discriminant analysis

probabilistic analysis (after sequential)

$$P_{S} = \prod_{i=1}^{N} P_{i}^{S}(x_{i})$$
$$P_{B} = \prod_{i=1}^{N} P_{i}^{B}(x_{i})$$
$$L_{R} = \ln(P_{S}/P_{B})$$

discriminant variables

(12)

results

 $L = 1 \, \text{fb}^{-1}$

expected 95% CL limits (BR<):

	-1σ	expected	$+1\sigma$
tt-	→ bWqγ:		
е	4.3×10^{-4}	1.1×10^{-3}	$1.9 imes 10^{-3}$
μ	4.5×10^{-4}	$8.3 imes 10^{-4}$	1.3×10^{-3}
l	3.8×10^{-4}	$6.8 imes 10^{-4}$	1.0×10^{-3}
tī -	→ bWqZ:		
3e	5.5×10^{-3}	9.4×10^{-3}	1.4×10^{-2}
3μ	2.4×10^{-3}	4.2×10^{-3}	$6.4 imes 10^{-3}$
3ℓ	1.9×10^{-3}	2.8×10^{-3}	4.2×10^{-3}
tī -	→ bWqg:		
е	1.3×10^{-2}	2.1×10^{-2}	$3.0 imes 10^{-2}$
μ	1.0×10^{-2}	1.7×10^{-2}	2.4×10^{-2}
l	7.2×10^{-3}	1.2×10^{-2}	1.8×10^{-2}

 5σ discovery hipothesis (BR>) are on average 3.0 times larger

absolute value of the maximum relative changes on the 95% CL limits

source	$t \rightarrow q\gamma$	$t \rightarrow qZ$	$t \rightarrow qg$		
systematic uncertainties:					
jet energy calibration	2%	5%	4%		
luminosity	10%	6%	10%		
top mass	6%	12%	5%		
backgrounds σ	7%	12%	15%		
ISR/FSR	17%	7%	9%		
pile-up	22%	0%	13%		
generator	4%	14%	4%		
\tilde{x}^2	4%	7%	9%		
total	32%	25%	27%		
analysis stability:					
selection criteria	3%	12%	5%		

comparison of results

14

- ATLAS
- $t \rightarrow q\gamma$: 3× better
- $t \rightarrow qZ$: similar
- $t \rightarrow qg$: one order mag. better/worst
- CMS
- $t \rightarrow q\gamma$: 3× better
- $t \rightarrow qZ$: similar
- results from ATLAS and CMS were combined
- present limits
- $t \rightarrow q\gamma$ and $t \rightarrow qZ$: one order mag. better (1 fb⁻¹)
- $t \rightarrow qg$: similar (1 fb⁻¹)

data driven normalizations

data driven backgr. normalizations

dominant backgrounds for the FCNC analyses from the csc exercice:

channel	Z+j	W + j	dB	tĪ	st
tt̄ → bWqγ	30%	29%		38%	
tī → bWqZ	28%		13%	59%	
$t\bar{t} \rightarrow bWqg$		64%		25%	6%

event selection: pre-selection:

- e20_loose or mu20 triggers
- FCNC signal veto: no events with $(N_{\ell} = 1, N_{\gamma} > 0)$ or $(N_{\ell} = 3, N_{\gamma} = 0)$

5 orthogonal samples were defined after the pre-selection (no b-tag)

event selection

	background					
selection	tĪ	st	W + j	Z + j	dB	
tĪ	72.8%	2.3%	23.1%	1.4%	0.3%	
st	55.5%	8.8%	33.5%	1.8%	0.4%	
W + j	1.2%	0.5%	95.8%	2.1%	0.5%	
Z + j	0.0%	0.0%	0.0%	99.9%	0.1%	
dB	21.5%	3.0%	71.0%	2.4%	2.1%	

method

minimize this expression in order to determine the correction factors:

 $\sqrt{\sum_{h=1}^{\#\text{sel.}} (1 - (N_{t\bar{t}}n_{t\bar{t}}^{h} + N_{st}n_{st}^{h} + N_{Wj}n_{Wj}^{h} + N_{Zj}n_{Zj}^{h} + N_{WZp}n_{WZp}^{h})/n_{d}^{h})^{2}}$

eg.: n_d^h is the number of data events in selection h, $N_{t\bar{t}}$ is the $t\bar{t}$ background correction factor, etc...

error contributions:

- data statistical errors
- background statistical errors
- systematical errors from jes (±5% variations)

results for topmixing v2

tī	st	W+j	Z + j	dB
with acermc;	st and dB xs fi	xed to SM:		
0.98 ± 0.06	_	1.11 ± 0.01	1.12 ± 0.01	_
with acermc,	st xs fixed to S	SM:		
0.98 ± 0.05	—	1.11 ± 0.01	1.12 ± 0.01	1.13 ± 0.85
with acermc:				
0.88 ± 0.08	0.10 ± 0.00	1.02 ± 0.05	1.11 ± 0.01	6.46 ± 2.45
with mc@nlo	, st and dB xs f	ixed to SM:		
1.32 ± 0.08	—	1.10 ± 0.01	1.12 ± 0.01	—
with mc@nlo	, st xs fixed to	SM:		
1.32 ± 0.08	—	1.08 ± 0.01	1.12 ± 0.01	0.10 ± 0.00
with mc@nlo	:			
0.92 ± 0.09	0.10 ± 0.00	1.05 ± 0.06	1.11 ± 0.01	4.66 ± 3.33

distributions after normalization

(with acermc; st and dB cross-sections fixed to SM)

photon id studies

photon identification studies

- γ identification is important for the top FCNC decays analysis
- samples:
 - 105510: TopRex, Pythia (20k $t\bar{t} \rightarrow bWq\gamma, W \rightarrow \ell\nu, \ell = e, \mu$)
 - 105200: MC@NLO, Herwig (1.48M $t\bar{t} \rightarrow bWbW$, no fully hadronic)
- tags:
 - 105510: e432, s495, r635 and t53
 - 105200: e357, s462, r635 and t53

definitions

- photons:
 - unconverted (egammaParameters::AuthorPhoton)
 - isEM tight (egammaPID::PhotonTight)
 - p_T > 10 GeV and $|\eta|$ < 2.47 excluding 1.37 < $|\eta|$ < 1.52
- electrons:
 - isEM medium without isolation (egammaPID:::ElectronMediumNoIso)
 - p_T > 10 GeV and $|\eta|$ < 2.47 excluding 1.37 < $|\eta|$ < 1.52
- jets:
 - cone 0.4 and $p_T > 15$ GeV
- true objects:
 - γ from top quark decay
 - e from $t \to W \to \ell \nu$
 - jets from trujets
- true/reco match:
 - closest reco object (jet) with $\Delta R < 0.1~(0.4)$

γ ID efficiencies

 \rightarrow 105200 sample choosen for "true *e* as γ " and "true jet as γ "

γ ID efficiencies (η)

25

γ ID (E_T^{cone20} vs p_T)

26

photon isolation ($p_T^{true} > 25 \text{ GeV}$)

¢	7
\sim	_

isolation cut	true γ as γ	true e as γ	(S/√ <u>B</u>)	true jet as γ (S/ \sqrt{B})
no cut	64.4 ± 0.4	4.830 ± 0.026	(29.3)	0.00665 ± 0.00043 (790)
EtCone20< 6 GeV	61.4 ± 0.4	4.574 ± 0.026	(28.7)	0.00592 ± 0.00041 (798)
EtCone20/Et < 0.06	60.4 ± 0.4	3.553 ± 0.023	(32.1)	0.00347 ± 0.00031 (1027)
EtCone20/Et < 0.08	62.5 ± 0.4	4.151 ± 0.025	(30.7)	0.00428 ± 0.00035 (955)
EtCone20/Et < 0.10	63.4 ± 0.4	4.449 ± 0.025	(30.0)	0.00482 ± 0.00037 (913)
EtCone20/Et < 0.12	63.8 ± 0.4	4.610 ± 0.026	(29.7)	0.00524 ± 0.00038 (881)
EtCone20/Et < 0.14	64.0 ± 0.4	4.691 ± 0.026	(29.6)	0.00547 ± 0.00039 (866)
EtCone20/Et < 0.16	64.1 ± 0.4	4.733 ± 0.026	(29.5)	0.00566 ± 0.00040 (852)
EtCone20/Et < 0.18	64.2 ± 0.4	4.760 ± 0.026	(29.4)	0.00583 ± 0.00041 (841)
EtCone30< 6 GeV	56.8 ± 0.4	4.148 ± 0.025	(27.9)	0.00493 ± 0.00037 (809)
EtCone30/Et < 0.06	53.9 ± 0.4	2.664 ± 0.020	(33.0)	0.00279 ± 0.00028 (1019)
EtCone30/Et < 0.08	58.6 ± 0.4	3.453 ± 0.023	(31.5)	0.00344 ± 0.00031 (999)
EtCone30/Et < 0.10	60.8 ± 0.4	3.932 ± 0.024	(30.6)	0.00395 ± 0.00033 (968)
EtCone30/Et < 0.12	62.0 ± 0.4	4.232 ± 0.025	(30.1)	0.00431 ± 0.00035 (944)
EtCone30/Et < 0.14	62.7 ± 0.4	4.410 ± 0.025	(29.8)	0.00471 ± 0.00036 (914)
EtCone30/Et < 0.16	63.2 ± 0.4	4.521 ± 0.026	(29.7)	0.00493 ± 0.00037 (900)
EtCone30/Et < 0.18	63.4 ± 0.4	4.591 ± 0.026	(29.6)	0.00524 ± 0.00038 (876)
EtCone40< 6 GeV	50.9 ± 0.4	3.608 ± 0.023	(26.8)	0.00426 ± 0.00035 (781)
EtCone40/Et < 0.06	46.6 ± 0.4	2.026 ± 0.017	(32.7)	0.00220 ± 0.00024 (994)
EtCone40/Et < 0.08	53.4 ± 0.4	2.817 ± 0.020	(31.8)	0.00279 ± 0.00028 (1010)
EtCone40/Et < 0.10	56.8 ± 0.4	3.392 ± 0.022	(30.9)	0.00355 ± 0.00032 (954)
EtCone40/Et < 0.12	58.9 ± 0.4	3.762 ± 0.024	(30.4)	0.00378 ± 0.00033 (959)
EtCone40/Et < 0.14	60.3 ± 0.4	4.024 ± 0.024	(30.0)	0.00409 ± 0.00034 (942)
EtCone40/Et < 0.16	61.0 ± 0.4	4.198 ± 0.025	(29.8)	0.00434 ± 0.00035 (927)
EtCone40/Et < 0.18	61.7 ± 0.4	4.320 ± 0.025	(29.7)	0.00468 ± 0.00036 (902)

protos validation for fcnc

protos

protos version 1.2:

- $t\bar{t}$ and single top processes
- includes fcnc vertices with γ , Z, g and H

$$\mathcal{L}_{Htc} = -\frac{1}{\sqrt{2}} \bar{c} \left(\eta_{ct}^L P_L + \eta_{ct}^R P_R \right) t H + \text{H.c.}$$

arXiv:0904.2387v1 [hep-ph]

• the *H* decays are left to the parton shower monte carlo

next page: comparision between protos and toprex (for $t\bar{t} \rightarrow bWqZ$)

protos

- toprex gives the same m distributions for t^{FCNC} and t^{SM} (only Breit-Wigner)
- protos behaves better: gives different *m* distributions (accounts for phase space: $m_W \neq m_Z$; two body decay weight is proportional to W/Z momentum in *t* rest frame)

extrapolations

extrapolations

competitive with 100 pb^{-1} at 7 TeV 3R(t→ qZ) 95% C.L. extrapolation to 3 ab⁻¹: EXCLUDED LEP 10-1 REGIONS $t\bar{t} \rightarrow bWq\gamma$: 2.2×10^{-6} to (extrapolated to 100 pb ATLAS 1.0×10^{-5} TeV from CSC 10⁻² ZEUS ATLAS (1 fb⁻¹ (a=u only) $t\bar{t} \rightarrow bWqZ$: 1.1×10^{-5} to H1 10⁻³ 4.7×10^{-5} (q=u only) $t\bar{t} \rightarrow bWqg$: ATLAS CDF 7.7×10^{-5} to 10-4 (extrapolated to 3 ab⁻¹) (2 fb^{-1}) 2.1×10^{-4} • pile up at 3 ab⁻¹ was not 10⁻⁵ ⊧ (from CSC) considered (perfect detector) dedicated analyses would 10⁻⁶ be better than projections 10⁻³ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻² 10⁻¹

BR($t \rightarrow q\gamma$)

conclusions

conclusions/final remarks

- data driven methods for background normalization:
- method without b-tag gives results compatible with previous ones
- considers st and dB although more work is needed
- add systematics (for example jes, *m*_t, distributions)
- photon identification studies:
- $E_T^{\text{conex}}/p_T < y$ seems better than $E_T^{\text{conex}} < 6 \text{ GeV}$
- test other isolation cuts (\neq values; (E_T^{coneX} , p_T) planes)
- converted photons
- performance of FCNC analysis

conclusions/final remarks

- protos:
- protos seems to behave better than toprex
- has the $t\bar{t} \rightarrow bWqH$ channel
- FCNC top quark decays can be studied with ATLAS:
- results with 1 fb⁻¹ at 14 TeV will be one order of magnitude better than present *BR* limits
- the search for FCNC top quark decays gains significantly with luminosity

backup

dd: samples used

TopPhysDPDMaker:

- topmixing v2 (108173; joined egamma and muon streams without double counting)
- topmixing v3 (108175; joined egamma and muon streams without double counting)
- *t* \bar{t} acermc (105205)
- $t\bar{t}$ mc@nlo with leptons (105200)
- $t\bar{t}$ mc@nlo without leptons (105204)
- single top (105500, 105502)
- W+jets 0-5 partons (107682 107705)
- Wbb (106280 106282)
- *Z*+jets (107650 107675)
- di-bosons (105985 105987)

Z + j:

- = 2 leptons
- leptons with $p_T > 30$ GeV, same flavour, opp. charge
- *p*_T < 20 GeV
- 60 GeV< $m_{\ell\ell}$ < 120 GeV

W + j:

- = 1 lepton
- lepton with $p_T > 30 \text{ GeV}$
- *p*_T > 30 GeV
- 1 to 3 jets
- leading jet with $p_T > 20 \text{ GeV}$

tī:

- = 1 lepton
- lepton with $p_T > 40 \text{ GeV}$
- *p*_T > 30 GeV
- at least 4 jets
- $p_T^{j1} > 70$ GeV; $p_T^{j2} > 60$ GeV; $p_T^{j3} > 50$ GeV; $p_T^{j4} > 40$ GeV
- $|\eta^{j1-j4}| <\!\!2.5$
- solution for reconstruction of $t \rightarrow Wb \rightarrow \ell \nu b$ (quad. eq.)

single top:

- = 1 lepton
- lepton with $p_T > 30$ GeV
- *p*_T > 30 GeV
- at least 4 jets
- $p_T^{j1} > 60 \text{ GeV}; p_T^{j2} > 50 \text{ GeV}; p_T^{j3} > 40 \text{ GeV}; p_T^{j4} > 30 \text{ GeV}$
- one of the two leading jets with $|\eta|>\!2.5$ and the other with $|\eta|<\!2.5$
- $|\eta^{j3,j4}| <\!\!2.5$
- solution for reconstruction of $t \rightarrow Wb \rightarrow \ell \nu b$ (quad. eq.)

di-bosons:

- = 1 lepton
- lepton with $p_T > 30 \text{ GeV}$
- at least 2 jets
- $p_T^{j1} > 40 \text{ GeV}; p_T^{j2} > 30 \text{ GeV}; p_T^{j4} < 35 \text{ GeV}$
- 60 GeV< m_{j1j2} < 100 GeV

results for topmixing v3

tĪ	st	W+j	Z + j	dB			
with acermc; st and dB xs fixed to SM:							
1.24 ± 0.05	_	0.59 ± 0.01	0.92 ± 0.01	—			
with acermc, st xs fixed to SM:							
1.23 ± 0.05	—	0.57 ± 0.01	0.91 ± 0.01	9.00 ± 0.00			
with acermc:							
1.18 ± 0.05	2.13 ± 0.61	0.56 ± 0.01	0.91 ± 0.01	9.00 ± 0.00			
with mc@nlo, st and dB xs fixed to SM:							
1.64 ± 0.06	—	0.59 ± 0.01	0.92 ± 0.01	—			
with mc@nlo, st xs fixed to SM:							
1.61 ± 0.06	_	0.55 ± 0.01	0.91 ± 0.01	7.76 ± 1.25			
with mc@nlo	:						
1.50 ± 0.07	0.10 ± 0.00	0.56 ± 0.01	0.91 ± 0.01	9.00 ± 0.00			

distributions after normalization

(with acermc; st and dB cross-sections fixed to SM)

γ ID efficiencies (p_T)

γ ID (η vs p_T)

۴

γ ID (E_T^{cone20})

γ ID (E_T^{cone20}/p_T)

γ ID (E_T^{cone20} vs η)

protos validation for fcnc

• protos: $m_W = m_Z \rightarrow \text{similar } m_t \text{ for and } m_t \text{ sm}$

extrapolations

52

values can be extrapolated from csc results to $3ab^{-1}$ using the expression for the estimation of the 5σ discovery limits:

$$BR = \frac{5\sqrt{B(\varepsilon_{\ell}, \varepsilon_{\gamma})}}{2 \times L \times \sigma(t\bar{t}_{SM}) \times \varepsilon_{s}(\varepsilon_{\ell}, \varepsilon_{\gamma})}$$

factors for extrapolation from 1 fb⁻¹ to 3 ab⁻¹ at 14 TeV:

$$f_{\text{lum}} = \sqrt{\frac{1}{3000}} \qquad f_{\varepsilon_{\gamma}} = \sqrt{\left(\frac{0.666}{0.9}\right)^{N_{\gamma}}} \qquad f_{\varepsilon_{\ell}} = \sqrt{\left(\frac{0.8535}{0.9}\right)^{N_{\ell}}}$$
$$f_{\text{tot}} = f_{\text{lum}} \times f_{\varepsilon_{\gamma}} \times f_{\varepsilon_{\ell}}$$

applying this to the CSC 95% CL limits gives:

$$t\bar{t} \rightarrow bWq\gamma: 1.0 \times 10^{-5}$$
 $t\bar{t} \rightarrow bWqZ: 4.7 \times 10^{-5}$