
An Introduction to Go
Why and how to write good Go code

@francesc

VP of Product & Developer Relations

Previously:

● Developer Advocate at Google
○ Go team
○ Google Cloud Platform

twitter.com/francesc | github.com/campoy

Francesc Campoy

just for
func

Agenda

Day 3

- Performance
Analysis

- Tooling
- Advanced

Topics
- Q&A

Day 1

- Go basics
- Type System

Day 2

- Concurrency

Day 1

Agenda

● Go basics

● Go’s Type System

● Go’s Standard Library Overview

● Q&A

What is Go?

An open source (BSD licensed) project:

● Language specification,
● Small runtime (garbage collector, scheduler, etc),
● Two compilers (gc and gccgo),
● A standard library,
● Tools (build, fetch, test, document, profile, format),
● Documentation.

Language specs and std library are backwards compatible in Go 1.x.

Go 1.x

Released in March 2012

A specification of the language and libraries supported for years.

The guarantee: code written for Go 1.0 will build and run with Go 1.x.

Best thing we ever did.

Go is about composition.

Composition of:

● Types:
○ The type system allows bottom-up design.

● Processes:
○ The concurrency principles of Go make process composition straight-forward.

● Large scale systems:
○ The packaging and access control system and Go tooling all help on this.

What is Go about?

Hello, CERN!

package main

import "fmt"

func main() {
 fmt.Println("Hello, CERN")
}

Hello, CERN!

package main

import "fmt"

func main() {
 fmt.Println("Hello, CERN")
}

Packages

All Go code lives in packages.

Packages contain type, function, variable, and constant declarations.

Packages can be very small (package errors has just one declaration) or
very large (package net/http has >100 declarations).

Case determines visibility:

Foo is exported, foo is not.

Hello, CERN!

package main

import "fmt"

func main() {
 fmt.Println("Hello, CERN")
}

Hello, CERN!

package main

import "fmt"

func main() {
 fmt.println("Hello, CERN")
}

prog.go:4:5: cannot refer to unexported name fmt.println
prog.go:4:5: undefined: fmt.println

Some packages are part of the standard library:

- “fmt”: formatting and printing
- “encoding/json”: JSON encoding and decoding

golang.org/pkg for the whole list

Convention: package names match the last element of the import path.

import “fmt” → fmt.Println
import “math/rand” → rand.Intn

More packages

https://golang.org/pkg

All packages are identified by their import path

- “github.com/golang/example/stringutil”
- “golang.org/x/net”

You can use godoc.org to find them and see their documentation.

More packages

$ go get github.com/golang/example/hello
$ ls $GOPATH/src/github.com/golang/example/hello
hello.go
$ $GOPATH/bin/hello
Hello, Go examples!

https://godoc.org/

A Go workspace resides under a single directory: GOPATH.

$ go env GOPATH

● defaults to $HOME/go
● will maybe disappear soon (Go modules)

Three subdirectories:

● src: Go source code, your project but also all its dependencies.
● bin: Binaries resulting from compilation.
● pkg: A cache for compiled packages

Understanding GOPATH

package main

import (
"fmt"
"github.com/golang/example/stringutil"

)

func main() {
msg := stringutil.Reverse("Hello, CERN")
fmt.Println(msg)

}

Hello, CERN!

Dependency management:

● vendor directories
● dep / Go modules

Workspace management:

● internal directories
● The go list tool

More info: github.com/campoy/go-tooling-workshop

Further workspace topics

https://github.com/campoy/go-tooling-workshop

Type System

Go is statically typed:

var s string = “hello”
s = 2.0

cannot use 2 (type float64) as type string in assignment

But it doesn’t feel like it:

s := “hello”

More types with less typing.

Go Type System

Declaration with name and type

var number int

var one, two int

Declaration with name, type, and value

var number int = 1

var one, two int = 1, 2

Variable declaration

Short variable declaration with name and value

number := 1

one, two := 1, 2

Default values:

integer literals: 42 int
float literals: 3.14 float64
string literal: “hi” string
bool literal: true bool

Variable declaration

abstract types

concrete types

abstract types

concrete types

concrete types in Go

- they describe a memory layout

- behavior attached to data through methods

int32 int64int16int8

The predefined types

Numerical:

int, int8, int16, int32 (rune), int64
uint, uint8 (byte), uint16, uint32, uint64
complex64, complex128
uintptr

Others

bool, string, error

Creating new types

Arrays:

type arrayOfThreeInts [3]int

Slices:

type sliceOfInts []int

Maps:

type mapOfStringsToInts map[string]int

Creating new types

Functions:

type funcIntToInt func(int) int

type funcStringToIntAndError func(string) (int, error)

Channels:

type channelOfInts chan int

type readOnlyChanOfInts chan <-int

type writeOnlyChanOfInts chan int<-

Structs:

type Person struct {
Name string
AgeYears int

}

Pointers:

type pointerToPerson *Person

Creating new types

Slices are of dynamic size, arrays are not.

You probably want to use slices.

var s []int s := make([]int, 2)
fmt.Println(len(s)) // 0 fmt.Println(len(s)) // 2
s = append(s, 1) // [1] fmt.Println(s) // {0,0}

Slices and arrays

You can obtain a section of a slice with the [:] operator.

s := []int{0, 1, 2, 3, 4, 5} // [0, 1, 2, 3, 4, 5]
t := s[1:3] // [1, 2]
t := u[:3] // [0, 1, 2]
t := s[1:] // [1, 2, 3, 4, 5]
t[0] = 42
fmt.Println(s) // [0, 42, 2, 3, 4, 5]

Sub-slicing

Their default value is not usable other than for reading

m := make(map[int]string) m := map[int]string{1: “one”}

m[1] = “one” fmt.Println(len(m) // 1

delete(m, 1) fmt.Println(m[1]) // “one”

Maps

They can return multiple values.

Functions

func double(x int) int { return 2 *x }

func div(x, y int) (int, error) { … }

func splitHostIP(s string) (host, ip string) { … }

var even func(x int) bool

even := func(x int) bool { return x%2 == 0 }

Functions can be used as any other value.

More functions

func fib() func() int {
a, b := 0, 1
return func() int {

a, b = b, a+b
return a

}
}

f := fib()
for i := 0; i < 10; i++ { fmt.Print(f()) }

Lexical scope is great!

Closures

func fib() func() int {
a, b := 0, 1
return func() int {

a, b = b, a+b
return a

}
}

f := fib()
for i := 0; i < 10; i++ { fmt.Print(f()) }

var a, b int = 0, 1

func fib() func() int {
return func() int {

a, b = b, a+b
return a

}
}

Lexical scope is great!

Closures

Structs

Structs are simply lists of fields with a name and a type.

type Person struct {
AgeYears int
Name string

}

me := Person{35, “Francesc”} me := Person{Age: 35}

fmt.Println(me.Name) // Francesc

Given the previous Person struct type:

func (p Person) Major() bool { return p.AgeYears >= 18 }

The (p Person) above is referred to as the receiver.

When a method needs to modify its receiver, it should receive a pointer.

func (p *Person) Birthday() { p.AgeYears++ }

Methods declaration

Go is “pass-by-value”

In Go, all parameters are passed by value:

- The function receives a copy of the original parameter.

But, some types are “reference types”:

- Pointers
- Maps
- Channels

Note: Slices are not reference types per-se, but share backing arrays.

int

*os.File

*strings.Reader*gzip.Writer
[]bool

Defining Methods

Methods can be also declared on non-struct types.

type Number int
func (n Number) Positive() bool { return n >= 0 }

But also:

type mathFunc func(float64) float64
func (f mathFunc) Map(xs []float64) []float64 { … }

Methods can be defined only on named types defined in this package.

Methods can be declared on any named type

Go does not support inheritance

Go does not support inheritance

There’s good reasons for this.

Weak encapsulation due to inheritance is a great example of this.

A Runner class
class Runner {
 private String name;

 public Runner(String name) { this.name = name; }

 public String getName() { return this.name; }

 public void run(Task task) { task.run(); }

 public void runAll(Task[] tasks) {
 for (Task task : tasks) { run(task); }
 }
}

class RunCounter extends Runner {
 private int count;

 public RunCounter(String message) { super(message); this.count = 0; }

 @override public void run(Task task) { count++; super.run(task); }

 @override public void runAll(Task[] tasks) {
 count += tasks.length;
 super.runAll(tasks);
 }

 public int getCount() { return count; }
}

A RunCounter class

What will this code print?

 RunCounter runner = new RunCounter("my runner");

 Task[] tasks = { new Task("one"), new Task("two"), new Task("three")};

 runner.runAll(tasks);

 System.out.printf("%s ran %d tasks\n",
runner.getName(), runner.getCount());

Let's run and count

running one
running two
running three
my runner ran 6 tasks

Wait … what?

Inheritance causes:

● weak encapsulation,
● tight coupling,
● surprising bugs.

Of course, this prints

A correct RunCounter class
class RunCounter {
 private Runner runner;
 private int count;

 public RunCounter(String message) {
 this.runner = new Runner(message);
 this.count = 0;
 }

 public void run(Task task) { count++; runner.run(task); }

 public void runAll(Task[] tasks) {
 count += tasks.length;
 runner.runAll(tasks);
 }
…

 // continued on next slide ...

A correct RunCounter class (cont.)
…

 public int getCount() {
 return count;
 }

 public String getName() {
 return runner.getName();
 }
}

Pros:

● The bug is gone!
● Runner is completely independent of RunCounter.
● The creation of the Runner can be delayed until (and if) needed.

Cons:

● We need to explicitly define the Runner methods on RunCounter:

public String getName() { return runner.getName(); }

● This can cause lots of repetition, and eventually bugs.

Solution: use composition

The Go way: type Runner
type Runner struct{ name string }

func (r *Runner) Name() string { return r.name }

func (r *Runner) Run(t Task) {
t.Run()

}

func (r *Runner) RunAll(ts []Task) {
 for _, t := range ts {
 r.Run(t)
 }
}

type RunCounter struct { runner Runner; count int}

func New(name string) *RunCounter { return &RunCounter{Runner{name}, 0} }

func (r *RunCounter) Run(t Task) { r.count++; r.runner.Run(t) }

func (r *RunCounter) RunAll(ts []Task) {
r.count += len(ts);
r.runner.RunAll(ts)

}

func (r *RunCounter) Count() int { return r.count }

func (r *RunCounter) Name() string { return r.runner.Name() }

The Go way: type RunCounter

Struct embedding

Expressed in Go as unnamed fields in a struct.

It is still composition.

The fields and methods of the embedded type are exposed on the
embedding type.

Similar to inheritance, but the embedded type doesn't know it's
embedded, i.e. no super.

type RunCounter struct {
 Runner
 count int
}

func New(name string) *RunCounter2 { return &RunCounter{Runner{name}, 0} }

func (r *RunCounter) Run(t Task) { r.count++; r.Runner.Run(t) }

func (r *RunCounter) RunAll(ts []Task) {
 r.count += len(ts)
 r.Runner.RunAll(ts)
}

func (r *RunCounter) Count() int { return r.count }

The Go way: type RunCounter

Is struct embedding like inheritance?

No, it is better! It is composition.

● You can't reach into another type and change the way it works.
● Method dispatching is explicit.

It is more general.

● Struct embedding of interfaces.

This is the only predeclared type that is not a concrete.

type error interface {
Error() string

}

Error handling is done with error values, not exceptions.

if err := doSomething(); err != nil {
return fmt.Errorf(“couldn’t do the thing: %v”, err)

}

The error type

abstract types

concrete types

type Positiver interface {
Positive() bool

}

abstract types in Go

- they describe behavior

- they define a set of methods, without specifying the receiver

io.Reader io.Writer fmt.Stringer

type Reader interface {
Read(b []byte) (int, error)

}

type Writer interface {
Write(b []byte) (int, error)

}

two interfaces

int

*os.File

*strings.Reader*gzip.Writer
[]bool

io.Reader

io.Writer

type ReadWriter interface {
Read(b []byte) (int, error)
Write(b []byte) (int, error)

}

union of interfaces

type ReadWriter interface {
Reader
Writer

}

union of interfaces

int

*os.File

*strings.Reader*gzip.Writer
[]bool

io.Reader

io.Writer

io.ReadWriter

int

*os.File

*strings.Reader*gzip.Writer
[]bool

io.Reader

io.Writer

io.ReadWriter

?

interface{}

“interface{} says nothing”

- Rob Pike in his Go Proverbs

why do we use interfaces?

- writing generic algorithms

- hiding implementation details

- providing interception points

why do we use interfaces?

so … what’s new?

implicit interface satisfaction

no “implements”

funcdraw

package parse

func Parse(s string) *Func

type Func struct { … }

func (f *Func) Eval(x float64) float64

Two packages: parse and draw

Two packages: parse and draw

package draw

import “.../parse”

func Draw(f *parse.Func) image.Image {
for x := minX; x < maxX; x += incX {

paint(x, f.Eval(y))
}
…

}

funcdraw
package draw

package parse

funcdraw
with explicit satisfaction

package draw

package common

package parse

funcdraw
with implicit satisfaction

package drawpackage parse

Two packages: parse and draw

package draw

import “.../parse”

func Draw(f *parse.Func) image.Image {
for x := minX; x < maxX; x += incX {

paint(x, f.Eval(y))
}
…

}

Two packages: parse and draw

package draw

type Evaler interface { Eval(float64) float64 }

func Draw(e Evaler) image.Image {
for x := minX; x < maxX; x += incX {

paint(x, e.Eval(y))
}
…

}

interfaces can break dependencies

define interfaces where you use them

the super power of Go interfaces

type assertions

func do(v interface{}) {

i := v.(int) // will panic if v is not int

i, ok := v.(int) // will return false

}

type assertions from interface to concrete type

func do(v interface{}) {

switch v.(type) {

case int:
fmt.Println(“got int %d”, v)

default:

}
}

type assertions from interface to concrete type

func do(v interface{}) {

switch t := v.(type) {

case int: // t is of type int
fmt.Println(“got int %d”, t)

default: // t is of type interface{}
fmt.Println(“not sure what type”)

}
}

type assertions from interface to concrete type

func do(v interface{}) {

s := v.(fmt.Stringer) // might panic

s, ok := v.(fmt.Stringer) // might return false

}

type assertions from interface to interface

func do(v interface{}) {

switch v.(type) {

case fmt.Stringer:
fmt.Println(“got Stringer %v”, v)

default:

}
}

type assertions from interface to interface

func do(v interface{}) {

select s := v.(type) {

case fmt.Stringer: // s is of type fmt.Stringer
fmt.Println(s.String())

default: // s is of type interface{}
fmt.Println(“not sure what type”)

}
}

type assertions from interface to interface

Many packages check whether a type satisfies an interface:

- fmt.Stringer : implement String() string
- json.Marshaler : implement MarshalJSON() ([]byte, error)
- json.Unmarshaler : implement UnmarshalJSON([]byte) error
- ...

and adapt their behavior accordingly.

Tip: Always look for exported interfaces in the standard library.

type assertions as extension mechanism

use type assertions to extend
behaviors

Day 2

Concurrency FTW!

Agenda

- Live Coding
- ...
- Q&A

Live Coding Time!

Code

github.com/campoy/chat

● Includes Markov chain powered bot, which I skipped during live
coding session.

● Feel free to send questions about it!

https://github.com/campoy/chat

Original talk by Andrew Gerrand: slides

Concurrency is not parallelism: blog

Go Concurrency Patterns: slides

Advanced Concurrency Patterns: blog

I came for the easy concurrency, I stayed for the easy composition: talk

References:

https://talks.golang.org/2012/chat.slide
https://blog.golang.org/concurrency-is-not-parallelism
https://talks.golang.org/2012/concurrency.slide
https://blog.golang.org/advanced-go-concurrency-patterns
https://www.dotconferences.com/2014/10/john-graham-cumming-concurrency-composition

Day 3

Agenda

- Debugging
- Testing and Benchmarks
- pprof & Flame Graphs
- Q&A

Debugging

● github.com/go-delve/delve
● Linux, macOS, Windows
● Written in Go, supports for goroutines
● Debugger backend and multiple frontends (CLI, VSCode, …)

https://github.com/go-delve/delve

Debugging Live Demo! code

https://github.com/campoy/go-tooling-workshop/blob/master/3-dynamic-analysis/webserver/main.go

Testing

Code sample:

import “testing”

func TestFoo(t *testing.T) { … }

$ go test

Marking failure: t.Error, t.Errorf, t.Fatal, t.Fatalf

Table Driven Testing - Subtests: t.Run

Testing Live Demo!

Code sample:

import “testing’

func BenchmarkFoo(b *testing.B) {
for i := 0; i < b.N; i++ {

// do some stuff
}

}

$ go test -bench=.

Benchmarks

Benchmarking Live Demo!

pprof

● go get github.com/google/pprof

$ go test -bench=. -cpuprofile=cpu.pb.gz
-memprofile=mem.pb.gz

$ pprof -http=:$PORT profile.pb.gz

Checks what the program is up *very* regularly, then provides statistics.

http://github.com/google/pprof

Benchmarking Live Demo!

pprof for web servers

import _ net/http/pprof

Web servers … and anything else!

$ pprof -seconds 5 http://localhost:8080/debug/pprof/profile

Notes:

● Requires traffic (github.com/tsliwowicz/go-wrk)
● No overhead when off, small overhead when profiling.

http://localhost:8080/debug/pprof/profile
https://github.com/tsliwowicz/go-wrk

Benchmarking Live Demo!

References

Go Tooling in Action: video

Go Tooling Workshop: github.com/campoy/go-tooling-workshop

● Compilation, cgo, advanced build modes.
● Code coverage.
● Runtime Tracer.
● Much more!

justforfunc #22: Using the Go Execution Tracer: video

https://www.youtube.com/watch?v=uBjoTxosSys
https://github.com/campoy/go-tooling-workshop
https://www.youtube.com/watch?v=ySy3sR1LFCQ

Questions and Answers

● gonum.org/v1/gonum
○ Similar to numpy
○ I love using it, really fast!

● knire­n/gota
○ Similar to Pandas
○ Never used it, but I heard good things

Go for scientific computation?

● go-hep.org/x/hep
○ High Energy Physicis
○ By Sebastien Binet – Research engineer @CNRS/IN2P3

So … Gophers @ CERN?

Go for scientific computation?

Go for Machine Learning?

● github.com/tensorflow/tensorflow/tensorflow/go
○ Rumour says, if you say it out loud Jeff Dean will appear.
○ Bindings for Go, only for serving – training not supported yet.

● gorgonia.org/gorgonia
○ Similar to Theano or Tensorflow, but in Go
○ I love the package, but the docs need some love.

Configuring Go programs?

● github.com/kelseyhightower/envconfig
○ Straight forward but pretty powerful.

● github.com/spf13/viper
○ Very complete and many people use it.

● github.com/spf13/cobra
○ Great to define CLIs, works with viper

● Reading json, csv, xml, …
○ encoding/json, encoding/csv, encoding/xml
○ Find more on godoc.org

Go for Pythonistas: talk

Pros:

- Speed
- Statically typed
- Less *magic*

Cons:

- Less *magic*
- Rigidity of type system (Tensorflow)

Go vs Python

https://talks.golang.org/2013/go4python.slide

Now it’s your time!

Thanks!
Thanks, @francesc

campoy@golang.org

