CONFIGURATION OF TRACKING PLANES

AUDREY KVAM

2 options under consideration, is one preferable over the other? 2 "super-layers" formed Equally spaced layers

from unequal spacing

z = -2 m z = 0 m z = 2 m

In order to test only the effect of the spacing, I assume both configurations have 6 layers and are distributed from -2m to 2m. For unequal spacing, RPCs are at $z = \{-2, -1.8, -1.6, 1.6, 1.8, 2\}$

A hit in any layer gives us a coordinate (x_i, z_i) where z is known from the detector geometry and x is measured with an uncertainty of σ (uncertainty is the same for all layers)

Use χ^2 minimization to find linear track $x = x_0 + x'z$

$$\begin{pmatrix} x_o \\ x' \end{pmatrix} = \frac{1}{\left(\sum_{i} \frac{1}{\sigma_i^2}\right) \left(\sum_{i} \frac{z_i^2}{\sigma_i^2}\right)} \begin{bmatrix} \sum_{i} \frac{z_i^2}{\sigma_i^2} & 0 \\ 0 & \sum_{i} \frac{1}{\sigma_i^2} \end{bmatrix} \begin{bmatrix} \sum_{i} \frac{x_i}{\sigma_i^2} \\ \sum_{i} \frac{z_i x_i}{\sigma_i^2} \end{bmatrix}$$

https://indico.cern.ch/event/578560/contributions/2343779/attachments/1359985/2057719/Telescope.pdf

How do $\sigma_{equal\ spacing}$ and $\sigma_{unequal\ spacing}$ compare?

z [m]	σ_{equal}	$oldsymbol{\sigma_{unequal}}$
0	0.41	0.41
I	0.51	0.47
2	0.72	0.61
5	0.55	1.20
10	3.02	2.30
15	4.50	3.41
20	5.99	4.54

$$= \frac{1}{\sqrt{6}} = \frac{1}{\sqrt{\text{(number of layers)}}}$$