CONFIGURATION OFTRACKING PLANES

AUDREY KVAM

2 options under consideration, is one preferable over the other?

Equally spaced layers
= a hit!

In order to test only the effect of the spacing, I assume both configurations have 6 layers and are distributed from -2 m to 2 m . For unequal spacing, RPCs are at $z=\{-2,-1.8,-1.6,1.6,1.8,2\}$

A hit in any layer gives us a coordinate (x_{i}, z_{i}) where z is known from the detector geometry and x is measured with an uncertainty of σ (uncertainty is the same for all layers)

Use χ^{2} minimization to find linear track $x=x_{0}+x^{\prime} z$

$$
\binom{x_{o}}{x^{\prime}}=\frac{1}{\left(\sum_{i} \frac{1}{\sigma_{i}^{2}}\right)\left(\sum_{i} \frac{z_{i}^{2}}{\sigma_{i}^{2}}\right)}\left[\begin{array}{cc}
\sum_{i} \frac{z_{i}^{2}}{\sigma_{i}^{2}} & 0 \\
0 & \sum_{i} \frac{1}{\sigma_{i}^{2}}
\end{array}\right]\binom{\sum_{i} \frac{x_{i}}{\sigma_{i}^{2}}}{\sum_{i} \frac{z_{i} x_{i}}{\sigma_{i}^{2}}}
$$

https://indico.cern.ch/event/578560/ contributions/2343779/attachments/ 1359985/2057719/Telescope.pdf

How do $\sigma_{\text {equal spacing }}$ and $\sigma_{\text {unequal spacing }}$ compare?

- Equal spacing
- Superlayer spacing

$z[m]$	$\sigma_{\text {equal }}$	$\sigma_{\text {unequal }}$	
0	0.41	0.41	
1	0.51	0.47	
2	0.72	0.61	
5	0.55	1.20	
10	3.02	2.30	
15	4.50	3.41	
20	5.99	4.54	

