

Early thoughts on alternative detectors for MATHUSLA

Erez Etzion (Tel Aviv University)

SIMONS CENTER MATHUSLA workshop

August 2018

In The Beginning

- Five detector planes
- Each plane provides <u>space point</u> with ~1 cm resolution in each transverse direction and ~1 nsec time resolution

Fig. 1: Simplified detector layout showing the position of the $200 \,\mathrm{m} \times 200 \,\mathrm{m} \times 20 \,\mathrm{m}$ LLP decay volume used for physics studies. The tracking planes in the roof detect charged particles, allowing for the reconstruction of displaced vertices in the air-filled decay volume. The scintillator surrounding the volume provides vetoing capability against charged particles entering the detector.

The signal characteristic

- Searching for upward going vertex in the detector volume
 - LLP may decay to jets or lepton pair, signal requires >= two
 - Particles reaching the ground should be relativistically boosted
 - The tracks point toward a common vertex
 - The vertex within a cone from the ATLAS/CMS IP
 - Material could help with particle ID (but induce other BG)
 - ► Determine speed of charged particles with precision of ~0.05%
 - Use a veto based on bottom scintillator?

Full size MATHUSLA 100

Inter module gap - 1m?

9.6 x 9.6 unit

Current benchmark:

- 5 layers of RPC on the top for triggering and tracking.
- Layer at the bottom (if at all probably RPC as well)
- Material could help with particle ID (but induce other BG)
- Assumed RPC weight 35kg =>1.26 Ton unit)

Guiding principles

- Provide the required spatial (O(cm)) and timing (O(ns))
- Simple
- One technology if possible
- Cheap to build (and maintain)

Plastic Scintillators +SiPM

Yuekun Heng, IHEP

Module

- Size: 2m X 2m
- Plastic scintillator strip: 0.5cmX1cmX200cm
- Vertical muon: 1 MeV deposit energy,
 ~10000 photons of original light output
- Two end readout: fast SiPM, for example S14160, time resolution is about 70 ps
- Position resolution
 - Strip width: 1cm
 - Along strip by timing method: ~1cm

COST Estimate per Module of 4 m²

- Box: 100 \$
- Plastic Scintillator: 50 \$/kg X 20 kg = 1000 \$
- SiPM: 400 * 1.5\$ = 600 \$
- Elec.: ~ 400 channels, sharing? ASIC? Not sure

Total: ~ 1700\$ + Elec.

Plastic Scintillators / Fast SiPM

Yuekun Heng, IHEP

SiPM S14160 and its timing performance

Single channel	PDE (Photon Detection Effi)	Gain	CRT(Coincidence resolution time)	peak sensitivity wavelength
3x3 mm^2	50%	2.5*10^6	170ps	450 nm

Fast plastic scintillator performances

Scintillator	Light Output % Anthracene ¹	Wavelength of Maximum Emission, nm	Decay Constant, ns	Bulk Light Attenuation Length, cm
BC-400	65	423	2.4	250
BC-404	68	408	1.8	160
BC-408	64	425	2.1	380
BC-412	60	434	3.3	400
BC-416	38	434	4.0	400
BC-418	67	391	1.4	100
BC-420	64	391	1.5	110

OPERA

arXiv:physics/0701153v1 [physics.ins-det] 12 Jan 2007

Extruded Scintillators

- A slightly cheaper version of plastic scintillator is the extruded scintillators. Studies at Fermilab (FERMILAB-PUB-05-344) show they reach ~75% of of the light yield of BC408 or similar to Kuraray SCSN-81.
- To increase the light yield one can insert WLS fibers to holes prepared during the extrusion process.
- Cast plastic scintillators cost \$50 per kg
- MINOS extruded scintillators (300 tons!) was around \$10 per kg, Fermilab claim to \$5-8 per kg
- D0 experiment use extruded strips for the Central and Forward Preshower detectors

FERMILAB-PUB-05-344

FERMILAB-Conf-03-318-E

technologies

PMT versus SiPMT

- ► SiPMT low cost, high performance alternative.
- ► Bias voltage ~30-35V
- Sensors available in several sizes (1-6mm)
- Single units an arrays

Single-element MPPCs (SiPMs)

HAMAMATSU MPPCs (Multi-Pixel Photon Counters)

Extrusion at Fermilab

Fig. 3. Schematic diagram of the FNAL/NICADD continuous extrusion line for plastic scintillator.

Liquid Scintillators

- Endless combination see e.g. Cocktails for LS, Ronald Edler.
- Requirements: good uptake, high transition for photons, high quantum yield, safe cocktail, low price, low content of 14C
- Contains: solvent, scintillating material (5-12 g/liter), surfactant, sample
- Many studies of materials, and performance, and shapes (e.g. CERN-EP/2000-069), Good summary: "Principles and Applications of Liquid Scintillation Counting", National Diagnostics
- A single container of liquid scintillator segmented by optical separators can provide a granularity of a few centimeters over a large volume.

Liquid Scintillators+WLS+SiPM

Yuekun Heng, IHEP

Module Box

- Filled with LS: 2m X 2m X 1 cm
- Vertical muon deposit energy: ~ 2MeV,
 ~20000 photons of original light output

WLSF+SiPM

- Fiber Type: Kuraray Y-11
 - Light transportation ability: 4.2%
 - Attenuation length ~1.5m
 - Fibers: 2 cm span, X: 100, Y: 100
- Readout: SiPM + Front end elec.
 - Photoelectron number: ~10
 - Charge measurement: Center gravity method to get position precision of ~1cm
 - Time measurement: ~1ns

"Ice cubes"

COST Estimate per Module of 4 m²

Concept

- Box and fiber feedthrough: 500 \$
- Liquid Scintillator: 2000 \$/m³ X 0. 04 m³ = 80 \$
- WLSF 400m*2 /m = 800
- SiPM 200 * 1.5\$ = 300 \$
- Elec.: ~ 200 channels, sharing? ASIC? Not sure

Total: ~ 1700\$ + Elec.

Example of large LS - MACRO

Fig. 1. The complete MACRO detector in perspective view. It is 76.5 m long, 12 m wide and 9.6 m high.

Astroparticle Physics 6 (1997) 113- 128

. 2. A single MACRO supermodule in cross sectional view. It is 12.6 m long, 12 m wide and 9.6 m high.

- ► 49 x (11.9 x 0.75 x 0.25 m3) horizontal scintillators
- ► 28 x(12 x 0.25 x 0.5 m3) vertical scintillators
- ▶ 96.4% mineral oil 3.6% pseudocumence + 1.4 g/liter PPO 1.4 mg/liter bis-MSB (WLS)
- Position resolution 11 cm, energy 1 MeV, time of flight 700 ps.
- ► PMTs 20 cm

Tests of LS at TAU

Initiated test of LS bars in various shapes, aiming at ~ 3 m bars, squares or triangles

Concluding comments

- No conclusions... just early thoughts
- RPC is a clear strategy which will provide the desired spatial resolution and timing
- There are other options such as plastic scintillators, mainly extruded ones (Minos, D0)
- Benefit from the low price of SiPMT compared to PMT
- Enhance the length with WLS fibers
- Attractive alternative Liquid Scintillator in a large container with WLS fibers readout, or long tubes with WLS fibers.
- Additional pros for scintillators:
 - Not sensitive to weather (temperature, humidity..)
 - No need for gas system, maintenance, gas leaks..)
 - For SiPMT run on LV
- Should consider also weight for each option
- ► The advantage of modular MATHUSLA can work on several solution in parallel

Additional reading

- Beckman Instruments, LS 1801, 3801, 5801 Series Liquid Scintillation Systems Operating Manual, 1985.
- Packard Instrument Company, Liquid Scintillation Analysis; Science and Technology, Rev C, 1986.
- Packard Instrument Company, Tri-Carb Liquid Scintillation Analyzers: Models 2100TR/2300TR, Operations Manual, 1995.
- University of Wisconsin Madison, Radiation Safety for Radiation Workers Handbook, 199
- Nationa Diagnostics, Principles and Applications of Liquid Scintillation Counting
- MACRO Collaboration, Astroparticle physics 6 (1997) 113-128
- Ronald Edler, Cocktails for Liquid Scintillation Counting and references there.
 - S. Mufson et al., Liquid scintillator production for the NOvA experiment, NIM, arXiv:1504.04035 [hep-ex]
- Anna Pla -Dalmau et al., Extruding Plastic Scintillator at Fermilab, FERMILAB-Conf-03-31 E
- D. Beznosko et al., FNAL-NICADD Extruded Scintillator, FERMILAB-PUB-05-344
- Saint-Gobain Ceramics & Plastics, Inc. Premium Plastic Scintillators
-