Belle II @ SuperKEKB - Belle II at SuperKEKB is the successor of the Belle experiment at KEKB - Main mission of the Belle II is to search for beyond the SM via studies of heavy flavors: B, charm and τ - The target luminosity for SuperKEKB is 8x10³⁵ /cm²/s which is the world's highest and 40 times larger than that for KEKB. ### SuperKEKB - Sitting on Y(4S) - To produce B meson pairs efficiently - Asymmetric e⁺e⁻ Collision - Electron: 7GeV, Positron 4GeV - To boost B meson to study time dependent CP Violation - Difference of two B meson decay vertices $\Delta z \approx 140 \, \mu \text{m}$ - 40 times larger luminosity - Adopted nano-beam scheme by P. Raimondi - Beam size in vertical plain 1/20 - σ_v *=940nm \rightarrow 48/62nm (positron/electron) - Beam current x2 - 1.7A/1.2A → 3.6A/2.6A #### Belle II Detector - All subdetectors had been upgraded - Work under 40 times larger instantaneous luminosity. - General purpose 4π detector - Excellent momentum and energy resolution - Good PID capability to separate $\pi/K/p$ - KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps , inner 2 barrel layers) EM Calorimeter: CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps) Particle Identification Time-of-Propagation counter (barrel) electrons (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe 2cm diameter Vertex Detector 2 layers DEPFET + 4 layers DSSD positrons (4GeV) Central Drift Chamber He(50%):C2H6(50%), small cells, long lever arm, fast electronics - Accumulate 50ab⁻¹ data in 2027 - Containing 10¹¹ B mesons, 3x10¹¹ charm hadrons, 0.8x10¹¹ tau leptons ### Belle II Collaboration - Worldwide collaboration - ~800 researchers (including ~320 graduate students) from 113 institutions and 26 countries. • 10 Italian institutions: Frascati, INFN, Napoli, Padova, Perugia, Pisa, Roma Uno, Roma Tre, Torino and Trieste ### Phase1: Commissioning Run - 2016 : Phase 1 Commissioning Run - First SuperKEKB operation - No final focus, no collisions, Belle II detector roll out from the beam line - Special beam background monitor detector called BEAST II was installed ### Rolling in Belle II Detector - April 2017 : After Phase 1, Belle II detector was rolled into the beam line - Only 1 ladder of vertex detector ### Final Focus Magnet Moving in January 2018: The superconducting magnets for final focusing of the beams were moved to the core of the Belle II detector ### Phase 2 Commissioning Run - 2018 March-July - First e⁺e⁻ collisions were achieved - Data taking with Belle II minus VXD (vertex detector) - To avoid serious damage of VXD - Beam backgrounds are high but tolerable - Synchrotron radiation (VXD background) observed for first time ### Phase 2 Commissioning Run - 2018 March-July - First e⁺e⁻ collisions were achieved - Data taking with Belle II minus VXD (vertex detector) - To avoid serious damage of VXD - Beam backgrounds are high but tolerable - Synchrotron radiation (VXD background) observed for first time ### SuperKEKB in Phase2 3.5 3 2.5 1.5 0.5 0 05/03 05/17 05/31 06/14 06/28 07/12 Date SuperKEKB/Belle II 2018 (preliminary) $\beta_{..} = 8mm$ $\beta = 3mm$ Ramping up the beam currents Squeezing the beams at the interaction point #### Achieved - Lpeak = 5.55 x 10^{33} /cm²/s - Belle II recorded ~ 500 pb⁻¹ - Confirmed the nano-beam scheme - Reduced β_y^* to 3 mm, σ_y^* ~ 400 nm (Final target β_y^* = 0.3 mm) ### Rediscovery of B mesons - Clearly observed an excess of BB events - Detector and full reconstruction analysis chain working well. #### Vertex Detector Installed - Nov 2018: After phase2, vertex detector was installed - Layer 2 of Pixel detector partially, full SVD 3-6 layers. - Ready for time dependent measurements Half ladder #### 2019 March: Phase 3 started • First collision in phase 3 on 25th Mar 2019. ### **Machine Tuning** - Reached $1x10^{33}$ /cm²/s - Additional beam collimators work fine to reduce beam background which limited the beam current in phase 2 ### Belle II Physics - As Super B-factory - B physics: CPV beyond CKM picture, LFV in B decays, and more. - Heavy flavors - Not only B but charm and τ can be studied - Light dark matter searches - Vector portal, scalar portal - Others - EW measurements at low energy - Hadronic vacuum polarization - Hadron physics ### Early Physics Target: Dark Sector FIG. 4. Projected Belle II sensitivity to $e^+e^- \to \gamma A', A' \to \text{invisible (left)}$, and to production of axion-like particles that couple to photons (right). In both cases Belle II has world-leading sensitivity with only 20 fb⁻¹ of data, which should be collected within the first year of running. (Figures are taken from the Belle II Physics Book and Ref. [73].) - Belle did not have single photon trigger required for this search - BaBar sensitivity reduced due to lack of hermiticity of projective crystals in calorimeter ## $B \rightarrow K(*)|^+|^-$ Recent LHCb results on R_{K(*)} have tensions with the SM $$R_{K(*)}(q^2) = \frac{BF(B \to K^{(*)}\mu^+\mu^-)}{BF(B \to K^{(*)}e^+e^-)}$$ - ~2.6 σ each - Simple combination $\sim 4\sigma$ - Can be explained by Leptoquark or flavorful Z' - New Belle results have large uncertainty 201904: # R_K , R_{K*} and R_{Xs} $$R_H = \frac{\mathcal{B}(B \to H\mu^+\mu^-)}{B(B \to He^+e^-)}$$ - Ideal measurements at e⁺e⁻ B-factory: Belle II - Efflicency for electron and muon similar - · No problem on bremstrahlung recovery - Both low and high q² Lcan be accessible Low 1<q²<6GeV² High q²>14.4GeV² - Inclusive mode R_{xs} possible - In 2022, we can reach the sensitivity of LHCb with 3/fb for low q² # $B \rightarrow D(*)\tau \nu$ B → Dτν and B → D*τν are tree-level SM decays containing 3rd generation quarks and leptons Ratio of heavy-to-light lepton modes provides robust theoretical prediction $$R = \frac{\mathcal{B}(b \to q \tau \bar{\nu}_{\tau})}{\mathcal{B}(b \to q \ell \bar{\nu}_{\ell})}$$ $$\ell = e, \mu$$ - Measurements from BaBar, Belle and LHCb deviate from SM (combined 3.1σ) - Can be explained by leptoquark, flavorful W' or extension of Higgs sector - Belle II can precisely measure R(D) and R(D*) to constrain or identify BSM physics - Both charged and neutral B and various final states #### CKM Matrix and Unitarity Triangle Product of V_{id} and V_{ib}* of CKM matrix $$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$ - Triangle can be drawn in the complex plain - To test new physics in B0-B0bar mixing $\Delta B=2$ - Three observable from tree, another three from loop angle Tree Loop side **CPV** phase ### Unitarity Triangle Measurements - Precision will be limited by theory or Including theory and LQCD uncertains lattice QCD except ϕ_3 - Uncertainties of all the sides ~1% - Uncertainties of all the angles ~1deg - 200TeV NP scale can be accessible with **EFT** analysis arXiv:1309.2293 - >10 TeV in SUSY Tanimoto and Yamamoto (2014) | M_{2} | $d_{12}^{d,s} = (M_{12}^{d,s})_{SM} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$ | |---------|--| | nties | $\frac{C_{ij}^2}{\Lambda^2} \left(\bar{q}_{i,L} \gamma^{\mu} q_{j,L} \right)^2$ | | Couplings | NP loop | Scales (in TeV) probed by | | | |-------------------------------|------------|---------------------------|-----------------|--| | Couplings | order | B_d mixing | B_s mixing | | | $ C_{ij} = V_{ti}V_{tj}^* $ | tree level | 17 | 19 | | | (CKM-like) | one loop | 1.4 | 1.5 | | | $ C_{ij} = 1$ | tree level | 2×10^3 | 5×10^2 | | | (no hierarchy) | one loop | 2×10^2 | 40 | | ### Summary - Belle II recorded first data without vertex detector in Phase2 - Instantaneous luminosity of 5.5x10³³ cm⁻²s⁻¹ - Integrated luminosity of 0.5fb⁻¹ - Phase 3 Physics run is just started in March 2019 - Early physics target : dark sector search - Some rediscoveries in this summer - $B \rightarrow K^* \gamma$ etc - Aim to supersede existing B factory data set by ~2021 - Stay tuned # Backup