

Belle II @ SuperKEKB

- Belle II at SuperKEKB is the successor of the Belle experiment at KEKB
 - Main mission of the Belle II is to search for beyond the SM via studies of heavy flavors: B, charm and τ
- The target luminosity for SuperKEKB is 8x10³⁵ /cm²/s which is the world's highest and 40 times larger than that for KEKB.

SuperKEKB

- Sitting on Y(4S)
 - To produce B meson pairs efficiently
- Asymmetric e⁺e⁻ Collision
 - Electron: 7GeV, Positron 4GeV
 - To boost B meson to study time dependent CP Violation
 - Difference of two B meson decay vertices $\Delta z \approx 140 \, \mu \text{m}$
- 40 times larger luminosity
 - Adopted nano-beam scheme by P. Raimondi
 - Beam size in vertical plain 1/20
 - σ_v *=940nm \rightarrow 48/62nm (positron/electron)
 - Beam current x2
 - 1.7A/1.2A → 3.6A/2.6A

Belle II Detector

- All subdetectors had been upgraded
 - Work under 40 times larger instantaneous luminosity.
- General purpose 4π detector
 - Excellent momentum and energy resolution
 - Good PID capability to separate $\pi/K/p$
- KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps , inner 2 barrel layers) EM Calorimeter: CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps) Particle Identification Time-of-Propagation counter (barrel) electrons (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe 2cm diameter Vertex Detector 2 layers DEPFET + 4 layers DSSD positrons (4GeV) Central Drift Chamber He(50%):C2H6(50%), small cells, long lever arm, fast electronics

- Accumulate 50ab⁻¹ data in 2027
 - Containing 10¹¹ B mesons, 3x10¹¹ charm hadrons, 0.8x10¹¹ tau leptons

Belle II Collaboration

- Worldwide collaboration
 - ~800 researchers (including ~320 graduate students) from 113 institutions and 26 countries.

• 10 Italian institutions: Frascati, INFN, Napoli, Padova, Perugia, Pisa, Roma Uno, Roma Tre, Torino and Trieste

Phase1: Commissioning Run

- 2016 : Phase 1 Commissioning Run
 - First SuperKEKB operation
 - No final focus, no collisions, Belle II detector roll out from the beam line
 - Special beam background monitor detector called BEAST II was installed

Rolling in Belle II Detector

- April 2017 : After Phase 1, Belle II detector was rolled into the beam line
 - Only 1 ladder of vertex detector

Final Focus Magnet Moving in

 January 2018: The superconducting magnets for final focusing of the beams were moved to the core of the Belle II detector

Phase 2 Commissioning Run

- 2018 March-July
- First e⁺e⁻ collisions were achieved
- Data taking with Belle II minus VXD (vertex detector)
 - To avoid serious damage of VXD
- Beam backgrounds are high but tolerable
 - Synchrotron radiation (VXD background) observed for first time

Phase 2 Commissioning Run

- 2018 March-July
- First e⁺e⁻ collisions were achieved
- Data taking with Belle II minus VXD (vertex detector)
 - To avoid serious damage of VXD
- Beam backgrounds are high but tolerable
 - Synchrotron radiation (VXD background) observed for first time

SuperKEKB in Phase2

3.5

3

2.5

1.5 0.5 0 05/03 05/17 05/31 06/14 06/28 07/12 Date

SuperKEKB/Belle II

2018 (preliminary)

 $\beta_{..} = 8mm$

 $\beta = 3mm$

Ramping up the beam currents

Squeezing the beams at the interaction point

Achieved

- Lpeak = 5.55 x 10^{33} /cm²/s
- Belle II recorded ~ 500 pb⁻¹
- Confirmed the nano-beam scheme
- Reduced β_y^* to 3 mm, σ_y^* ~ 400 nm (Final target β_y^* = 0.3 mm)

Rediscovery of B mesons

- Clearly observed an excess of BB events
- Detector and full reconstruction analysis chain working well.

Vertex Detector Installed

- Nov 2018: After phase2, vertex detector was installed
 - Layer 2 of Pixel detector partially, full SVD 3-6 layers.
- Ready for time dependent measurements

Half ladder

2019 March: Phase 3 started

• First collision in phase 3 on 25th Mar 2019.

Machine Tuning

- Reached $1x10^{33}$ /cm²/s
- Additional beam collimators work fine to reduce beam background which limited the beam current in phase 2

Belle II Physics

- As Super B-factory
 - B physics: CPV beyond CKM picture, LFV in B decays, and more.
- Heavy flavors
 - Not only B but charm and τ can be studied
- Light dark matter searches
 - Vector portal, scalar portal
- Others
 - EW measurements at low energy
 - Hadronic vacuum polarization
 - Hadron physics

Early Physics Target: Dark Sector

FIG. 4. Projected Belle II sensitivity to $e^+e^- \to \gamma A', A' \to \text{invisible (left)}$, and to production of axion-like particles that couple to photons (right). In both cases Belle II has world-leading sensitivity with only 20 fb⁻¹ of data, which should be collected within the first year of running. (Figures are taken from the Belle II Physics Book and Ref. [73].)

- Belle did not have single photon trigger required for this search
- BaBar sensitivity reduced due to lack of hermiticity of projective crystals in calorimeter

$B \rightarrow K(*)|^+|^-$

 Recent LHCb results on R_{K(*)} have tensions with the SM

$$R_{K(*)}(q^2) = \frac{BF(B \to K^{(*)}\mu^+\mu^-)}{BF(B \to K^{(*)}e^+e^-)}$$

- ~2.6 σ each
- Simple combination $\sim 4\sigma$
- Can be explained by Leptoquark or flavorful Z'
- New Belle results have large uncertainty

201904:

R_K , R_{K*} and R_{Xs}

$$R_H = \frac{\mathcal{B}(B \to H\mu^+\mu^-)}{B(B \to He^+e^-)}$$

- Ideal measurements at e⁺e⁻ B-factory: Belle II
 - Efflicency for electron and muon similar
 - · No problem on bremstrahlung recovery
 - Both low and high q² Lcan be accessible
 Low 1<q²<6GeV²
 High q²>14.4GeV²
 - Inclusive mode R_{xs} possible
- In 2022, we can reach the sensitivity of LHCb with 3/fb for low q²

$B \rightarrow D(*)\tau \nu$

B → Dτν and B → D*τν are tree-level
 SM decays containing 3rd generation quarks and leptons

 Ratio of heavy-to-light lepton modes provides robust theoretical prediction

$$R = \frac{\mathcal{B}(b \to q \tau \bar{\nu}_{\tau})}{\mathcal{B}(b \to q \ell \bar{\nu}_{\ell})}$$
$$\ell = e, \mu$$

- Measurements from BaBar, Belle and LHCb deviate from SM (combined 3.1σ)
 - Can be explained by leptoquark, flavorful W' or extension of Higgs sector

- Belle II can precisely measure R(D) and R(D*) to constrain or identify BSM physics
- Both charged and neutral B and various final states

CKM Matrix and Unitarity Triangle

Product of V_{id} and V_{ib}* of CKM matrix

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- Triangle can be drawn in the complex plain
- To test new physics in B0-B0bar mixing $\Delta B=2$
 - Three observable from tree, another three from loop

angle

Tree Loop side

CPV phase

Unitarity Triangle Measurements

- Precision will be limited by theory or Including theory and LQCD uncertains lattice QCD except ϕ_3
 - Uncertainties of all the sides ~1%
 - Uncertainties of all the angles ~1deg
- 200TeV NP scale can be accessible with **EFT** analysis arXiv:1309.2293
- >10 TeV in SUSY

Tanimoto and Yamamoto (2014)

M_{2}	$d_{12}^{d,s} = (M_{12}^{d,s})_{SM} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$
nties	$\frac{C_{ij}^2}{\Lambda^2} \left(\bar{q}_{i,L} \gamma^{\mu} q_{j,L} \right)^2$

Couplings	NP loop	Scales (in TeV) probed by		
Couplings	order	B_d mixing	B_s mixing	
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19	
(CKM-like)	one loop	1.4	1.5	
$ C_{ij} = 1$	tree level	2×10^3	5×10^2	
(no hierarchy)	one loop	2×10^2	40	

Summary

- Belle II recorded first data without vertex detector in Phase2
 - Instantaneous luminosity of 5.5x10³³ cm⁻²s⁻¹
 - Integrated luminosity of 0.5fb⁻¹
- Phase 3 Physics run is just started in March 2019
 - Early physics target : dark sector search
 - Some rediscoveries in this summer
 - $B \rightarrow K^* \gamma$ etc
 - Aim to supersede existing B factory data set by ~2021
- Stay tuned

Backup