Soft QCD and Central Exclusive Production at LHCb

M. Kucharczyk on behalf of the LHCb collaboration

IFJ PAN, Kraków

DIS 2019, Turin 8-12 April 2019

Outline

- LHCb general purpose forward experiment
- Inelastic cross section at 13 TeV
- BEC for pion pairs in *p*-*p* collisions at 7 TeV
- Correlations in *bb* production at 7 and 8 TeV
- HeRSCheL detector
- Central Exclusive Production of J/ψ and $\psi(2S)$ at 13 TeV
- Conclusions

LHCb detector

• single arm spectrometer fully instrumented in forward region \rightarrow GPD in forward region

[Int. J. Mod. Phys. A30 (2015) 1530022]

- designed to study CP violation in *B*, but also fixed target, heavy ion physics
- precision coverage unique for LHCb: $2 < \eta < 5$
- complementary results with respect to other LHC experiments

- momentum resolution between 0.4% at 5 GeV to 0.6% at 100 GeV
- impact parameter resolution of 20 μ m for high- p_T tracks
- good PID separation up to 100 GeV (misID ($n \rightarrow K$) $\approx 5\%$ at 95% efficiency)

[IJMPA 30 (2015) 1530022]

Inelastic cross section at 13 TeV

[JHEP 06 (2018) 100]

Inelastic cross section at 13 TeV

- fundamental in the phenomenology of high-energy hadronic interactions
- important for astroparticle physics
 - \rightarrow description of extensive air showers induced by cosmic rays
 - \rightarrow modeling of the transport of cosmic ray particles in the interstellar medium

Dominant processes Image: Display the second seco

[JHEP 06 (2018) 100]

- based on prompt long-lived particles inside the LHCb acceptance
- fiducial cross section
- extrapolate to the full phase space
 - \rightarrow neglect interference and CEP

Fiducial cross section

Selection

- ≥ 1 long-lived prompt charged particle → mean lifetime > 30 ps
- *p* > 2 GeV
- 2 < η < 5

[JHEP 06 (2018) 100]

10.7 nb⁻¹ collected in 2015 at 13 TeV

- \rightarrow unbiased triggers
- → avoid background from previous crossing

Fiducial cross section $\sigma_{\rm neg} = \frac{(\mu - \mu_{\rm bkg})N_{\rm evt}}{(\mu - \mu_{\rm bkg})N_{\rm evt}}$

 N_{evt} - number of events L - integrated luminosity

average number of interaction per event

- \rightarrow from fraction of empty events
- → corrected for detector inefficiency and wrongly reconstructed tracks
- \rightarrow assumed Poisson distribution

 $\sigma_{\rm acc}(\sqrt{s} = 13 \text{ TeV}) = 62.2 \pm 2.5(\text{exp}) \text{ mb}$

→ dominant error from luminosity measurement

 \rightarrow negligible stat. error

Extrapolation to full phase space [JHEP 06 (2018) 100] C LHCP

Extrapolate to full phase-space using simulation

Bose-Einstein correlations

[JHEP 12 (2017) 025]

Correlation function

Experimentally:
$$C_2(Q) = \frac{N(Q)^{DATA}}{N(Q)^{REF}}$$
, $REF = mix, MC, und$

 $N(Q)^{DATA}$ - distribution for same-sign pairs in data (BEC present)

 $N(Q)^{REF}$ - distribution for reference sample with no BEC effect

 $Q = \sqrt{-(q_1 - q_2)^2} = \sqrt{M^2 - 4\mu^2}$

Event-mixed reference sample used

- pions from different events from PVs with same VELO track multiplicity (long-range correl.)
- derived from data
- other correlations also removed \rightarrow construct double ratio (next slide)

Parametrization of correlation function

- Levy parametrization with α =1 (Cauchy) + long-range correlations

$$C_2(Q) = N(1 + \lambda e^{-|RQ|^{\alpha}}) \times (1 + \delta \cdot Q)$$

- *R* the radius of a spherical static source
- *λ* chaoticity parameter
 - (0 coherent source, 1 chaotic case)
- N normalisation factor
- δ long range correlations

Double ratio

Improved correlation function - double ratio (DR)

$$DR(Q) = \frac{C_2(Q)^{\text{data}}}{C_2(Q)^{\text{MC}}}$$

MC without BEC

- reduce possible imperfections in the construction of the reference sample
- eliminate second order effects to large extent
- correct for long range correlations (if properly simulated)

By construction the correlation function is largely independent of

- single particle acceptance and efficiency
- effects due to the detector occupancy, acceptance and material
- selection cuts
- two-track efficiency effects if properly simulated

Coulomb effect

Removed with Gamov penetration factor for *Q* distribution in data:

$$G_2(Q) = \frac{2\pi\zeta}{e^{2\pi\zeta} - 1}, \quad \text{where} \quad \zeta = \pm \frac{\alpha m}{Q}$$

\rightarrow systematics due to Coulomb correction found to be negligible

Results

[JHEP 12 (2017) 025]

Direct comparison between experiments not straightforward (different η ranges)

A trend compatible with previous observations at LEP and the other LHC experiments and with some theoretical models

- R and λ parameters measured in the forward region are slightly lower wrt ATLAS
- Need to measure the BEC parameters using a full three-dimensional analysis to perform a more detailed comparison

Correlations in *bb* **production**

[JHEP 11 (2017) 030]

Correlations in $b\bar{b}$ production

heavy-flavour production

ightarrow important tests for the predictions of QCD

- kinematic correlations between heavy quark and antiquark
 - → better understanding of the production mechanism, i.e. contributions of gluonsplitting, flavour-creation and flavour excitation

[JHEP 11 (2017) 030]

→ better sensitivity to higher-order corrections wrt inclusive single-heavy-flavour production

- correlations of beauty hadrons studied already at SPS, Tevatron and LHC
- LHCb \rightarrow unique acceptance and detector dedicated for *b*-hadron physics

Differential cross sections

- inclusive *b*-hadrons decays $b \to J/\psi X$, $J/\psi \to \mu^+\mu^-$
- signal yield from fit to the 2D mass distribution of $\mu^+\mu^-$ pairs
- normalized differential cross-sections

$$\frac{1}{\sigma}\frac{d\sigma}{dv} \equiv \frac{1}{N^{cor}}\frac{\Delta N_i^{cor}}{\Delta v_i}$$

kinematic variables

 $|\Delta \Phi^*|$ - difference in azimuthal angle of 2 beauty hadrons $|\Delta \eta^*|$ - difference in pseudorapidity of 2 beauty hadrons p_T asymmetry: $A_T \equiv (p_{T(J/\psi 1)} - p_{T(J/\psi 2)} / (p_{T(J/\psi 1)} + p_{T(J/\psi 2)})$ $m_{J/\psi J/\psi}, p_{T(J/\psi J/\psi)}, y_{(J/\psi J/\psi)}$ - mass, p_T and rapidity of J/ψ pair

 Φ^* and η^* estimated from direction of vector between PV and J/ ψ decay vertex

Most systematics cancel out in $\Delta N_i^{cor} / N_{cor}$ ratio

 \rightarrow much smaller with respect to statistical error

Results

- data compared with LO PYTHIA and NLO POWHEG and also datadriven model of uncorrelated bb production
- both PYTHIA and POWHEG describe the data well
 - → only minor NLO effects compared to experimental precision
- small contribution from gluon splitting at low $|\Delta \Phi^*|$
 - \rightarrow opposite to cc

```
(as expected - suppressed due to large mass of b-quark)
```


Central Exclusive Production

[JHEP 1810 (2018) 167]

HeRSCheL

HeRSChel - High Rapidity Shower Counters

- installed at the end of 2014
 → increase η coverage (5 < |η| < 10)
- read-out synchronic LHCb
 → 5 stations with 4 scintillators with PMT
- able to detect forward particle showers and veto events

LHCb

inelastic

[JINST 13 (2018) 04, P04017]

F2, B2 – showers from high rapidity neutral particles

-15

-10

-5

0

η

5

10

HERSCHEI

LHCb results

Run I: *pp* collisions at 7,8 TeV (2011-2012)

- Measurement of the exclusive Y production cross-section at 7 TeV and 8 TeV [JHEP 1509 (2015) 084]
- Observation of charmonium pairs produced exclusively in *pp* collisions [J. Phys. G41 (2014) no.11, 115002]
- Updated measurements of exclusive J/ψ and $\psi(2S)$ production cross-sections in *pp* at 7 TeV

[J. Phys. G41 (2014) 055002]

• Exclusive dimuon measurements: non-resonant and χ_c [LHCb-CONF-2011-022]

Run II (with HeRSCheL): pp at 13 TeV, PbPb at 5 TeV (2015)

- Study of coherent J/ψ production in lead-lead collisions at 5 TeV [LHCb-CONF-2018-003]
- Central exclusive production of J/ψ and $\psi(2S)$ mesons in *pp* collisions at 13 TeV [JHEP 1810 (2018) 167]
- + preliminary results for *pPb* and *Pbp* at 8 TeV

Production of J/ψ and $\psi(2S)$ at 13 TeV

Selection

- 2 muons within 2 < η < 4.5
- no additional tracks or energy
- $J/\psi p_T^2 < 0.8 \text{ GeV}^2$
- within 65 MeV of the $M_{J/\psi}$

 χ^{2}_{HRC} quantifies the activity above noise, including correlations between counters

 $L = 204 \ pb^{-1}$ (2015) 14753 J/ ψ candidates

440 $\psi(2S)$ candidates

[JHEP 1810 (2018) 167]

CEP-enriched dimuons

 \rightarrow non-resonant dimuon events with $p_{\tau}^2 < 0.01 \text{ GeV}^2$ (97% purity)

Inelastic-enriched J/ψ

 \rightarrow additional cut on $J/\psi p_{\tau}^2 > 2 \text{ GeV}^2$

Results

[JHEP 1810 (2018) 167]

Results corrected by $J/\psi \rightarrow \mu\mu$ branching fractions and detector geometry

r - gap survival factor, k_{\pm} - photon energy, dn/dk_{\pm} - photon flux, W_{\pm} - inv. mass of photon-proton system

- measured cross sections for J/ψ and $\psi(2S)$ in better agreement with JMRT NLO
- derived cross section for J/ψ photoproduction differs from power-law extrapolation of H1 data

Conclusions

Inelastic *pp* cross-section in LHCb acceptance

• good agreement with results in other rapidity ranges

First measurement of BEC in the forward region $2 < \eta < 5$

- measured correlation parameters slightly lower as compared to results in central η region
- LHCb shows a potential to perform a set of further quantum correlations analyses with different hadrons, collision energies, collision types etc.

Kinematic correlations for *bb* pairs at 7 and 8 TeV

- agreement with both PYTHIA (LO) and POWHEG (NLO) predictions
- larger samples needed for discrimination of theory predictions

Central exclusive production of J/ψ and $\psi(2S)$

• measured cross-section for J/ψ photoproduction differs from a power-law extrapolation of H1 data