Understanding the large pT spectrum in SIDIS

Nobuo Sato ODU/JLab

In collaboration with: Gonzalez-Hernandez, Rogers, NS, Wang

27th Workshop on Deep-Inelastic Scattering and Related Subjects **DIS 2019** Turin, Italy - PRD98 **2018** - arXiv:1903.01529 **2019**

Breit frame

 $q_{\rm T}/Q = (p_h^{\perp}/z)/Q \rightarrow {\rm scale \ separation}$

Toy example

Existing phenomenology

- \blacksquare These analyses used only W (Gaussian, CSS) \rightarrow no $\rm FO$ nor $\rm ASY$
- \blacksquare Samples with $q_{\rm T}/Q \sim 1.63$ have been included
- \blacksquare BUT TMDs are only valid for $q_{\rm T}/Q \ll 1$!

FO @ LO predictions (DSS07) Gonzalez, Rogers, NS, Wang PRD98 (2018)

Trouble with large transverse momentum

$$\mathbf{FO} = \sum_{q} e_q^2 \int_{\frac{q_T^2}{Q^2} \frac{xz}{1-z} + x}^{1} \frac{d\xi}{\xi - x} H(\xi) \mathbf{f}_q(\xi, \mu) \mathbf{d}_q(\zeta(\xi), \mu) + O(\alpha_S^2) + O(m^2/q^2)$$

+ FFs needs to be updated?

FO @ LO predictions (DSS07) Gonzalez, Rogers, NS, Wang PRD98 (2018)

FO @ LO predictions (JAM18) Gonzalez, Rogers, NS, Wang PRD98 (2018)

Trouble with large transverse momentum

$$\mathbf{FO} = \sum_{q} e_q^2 \int_{\frac{q_T}{Q^2} \frac{xz}{1-z} + x}^{1} \frac{d\xi}{\xi - x} H(\xi) \mathbf{f}_q(\xi, \mu) \mathbf{d}_q(\zeta(\xi), \mu) + O(\alpha_S^2) + O(m^2/q^2)$$

+ $O(\alpha_S^2)$ corrections might be important

order α_S^2 corrections to FO

- There are strong indications that order \(\alpha_S^2\) corrections are very important
- An order of magnitude correction at small p_T.
- As a sanity check, we need to have an independent calculation

$O(\alpha_S^2)$ calculation (Wang, Gonzalez-Hernandes, Rogers, NS - arXiv:1903.01529)

$$W^{\mu\nu}(P,q,P_H) = \int_{x-}^{1+} \frac{d\xi}{\xi} \int_{z-}^{1+} \frac{d\zeta}{\zeta^2} \hat{W}_{ij}^{\mu\nu}(q,x/\xi,z/\zeta) f_{i/P}(\xi) d_{H/j}(\zeta)$$

$$\{\mathbf{P}_{g}^{\mu\nu}\hat{W}_{\mu\nu}^{(N)};\mathbf{P}_{PP}^{\mu\nu}\hat{W}_{\mu\nu}^{(N)}\} \equiv \frac{1}{(2\pi)^{4}} \int \{|M_{g}^{2\to N}|^{2};|M_{pp}^{2\to N}|^{2}\}\,\mathrm{d}\Pi^{(N)}-\text{Subtractions}$$

Born/Virtual

- $\checkmark~$ Generate all $2\rightarrow 2$ and $2\rightarrow 3$ squared amplitudes
- $\checkmark \quad \mbox{Evaluate } 2 \rightarrow 2 \mbox{ virtual graphs} \\ \mbox{(Passarino-Veltman)}$
- $\checkmark~$ Integrate 3-body PS analytically
- $\checkmark\,$ Check cancellation of IR poles

FO @ LO predictions (JAM18)

FO @ NLO (JAM18)

Understanding the large x (Wang, Gonzalez-Hernandes, Rogers, NS - arXiv:1903.01529)

- Large corrections threshold corrections are observed
- The x at the minimum can be used as an indicator of where such corrections are expected to be large

Understanding the large x (Wang, Gonzalez-Hernandes, Rogers, NS - arXiv:1903.01529)

COMPASS kinematics

- The blue region might receive large threshold corrections
- \blacksquare This can potential explain why the ${\cal O}(\alpha_S^2)$ fail to describe the data at large x

Summary and outlook

 $\blacksquare \ O(\alpha_S^2)$ corrections are important to describe SIDIS at COMPASS

- The large x region receives large threshold corrections which can explain the difficulty to describe the data
- Potential impact of SIDIS large p_T data on PDFs/FFs global analysis