

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

QCD Monte Carlo model tuning studies in CMS

Efe Yazgan

XXVII International Workshop on Deep Inelastic Scattering and Related Subjects Torino (Italy), 8-12 April 2019

Underlying Event

- UE: activity in addition to the hard process
 - Consists of beam-beam remnants and multi-parton interactions + some contribution from the hard process
 - Requires modeling of BBR, MPI, hadronization, ISR, FSR.
 - Need to tune the adjustable parameters in MCs.

Comparisons of predictions for UE observables from previous tunes to 13 TeV data

- Main CMS tune (CUETP8M1 based on Monash tune) used until 2017 analyses does not describe well the central values of the data at 13 TeV.
- CUETP8M1: α_s and shower parameters kept as in Monash $\rightarrow \alpha_s^{ISR/FSR}=0.1365$ despite the prefered values of 0.130 in LO and 0.118 in NLO matrix elements/ PDF sets.
 - α_s^{FSR} in Monash \rightarrow by fitting Pythia8 predictions to LEP event shapes and α_s^{ISR} is just assumed to be the same as α_s^{FSR} .
 - $\alpha_s^{MPI} = 0.130$ set to the value prefered in the LO PDF set.

Revisiting Shower Parameters and Tunes

- Starting from parton shower in ttbar events \rightarrow CUETP8M2T4 tune ($\alpha_s^{ISR} \sim 0.11$)
- UE in ttbar events at 13 TeV

 $\rightarrow \alpha_{s}^{FSR} \sim 0.118$ agrees better with data.

- Jet substructure in ttbar events at 13 TeV $\rightarrow \alpha_{s}^{FSR} \sim 0.115.$
- New CMS tunes using (N)(N)LO PDF sets in PS \rightarrow CPX tunes (consistent treatment of PDF+ α_s in matrix element and

parton shower)

UE in Z+jets events at 13 TeV

CMS-PAS-TOP-16-021

EPJC 79 (2019) 123

PRD98 (2018) 092014

arXiv:1903.12179

and

JHEP07 (2018) 032

arXiv:1903.12179

CUETP8M2T4 Event Tune

- CUETP8M1 not only bad in describing the UE but its predictions overshoot the data for large jet multiplicities when out of the box parameters are used (in Monash-based tunes: $\alpha_s^{ISR}=0.1365$)
- Effect also observed with 8 TeV data.

Tune α_s^{ISR} using 8 TeV ttbar Njets (using the parton-shower dominated region) and ttbar jet pT data \rightarrow

$\alpha_s^{ISR} = 0.1108^{+0.0145}_{-0.0142}$
$h_{damp} = 1.581^{+0.658}_{-0.585} m_t$

CMS-PAS-TOP-16-021

SpaceShower:RapidityOrdering=on

→ Significantly lower α_s^{ISR} cures the overshoot of CUETP8M1 at high jet multiplicities. → UE event tune starting with fixed lower α_s^{ISR} describes the UE & min-bias (and top quark) significantly data better.

α_s^{FSR} from jet substructure in ttbar I+jets events

- Measured using charged+neutral and with only charged jet constituents (particle pT > 1 GeV).
- b, light, or gluon jet enriched samples.

PRD98 (2018) 092014

$\alpha_{s}^{\ FSR}$ from Underlying Event in ttbar

- Measurement of the UE for the first time at a scale of $> 2m_t$.
- > 200 distributions investigated in different categories to enhance sensitivity to the modeling of MPI, color reconnection, $\alpha_s^{FSR}(M_z)$ in Pythia8.
- Measurement unfolded to particle level.
- Good agreement of POWHEG+PYTHIA8 with CUETP8M2T4 in UE event regions.

EPJC 79 (2019) 123

Underlying Event in ttbar Events

- Data disfavor default settings in HERWIG++, HERWIG7, and SHERPA \rightarrow Need tuning.
- Choice of NLO ME generator (Powheg or MG5_aMC@NLO[FxFx] + Pythia8) doesn't impact UE in ttbar.
- Overall, these measurements characterize, for the first time, UE properties in ttbar production.
- No deviation from universality hypothesis at energy scales > 350 GeV.

EPJC 79 (2019) 123

α_s^{FSR} from Underlying Event in ttbar

EPJC 79 (2019) 123

$p_{\mathrm{T}}(\ell \ell)$ region	Inclusive	Away	Toward	Transverse
Best fit $\alpha_S^{\text{FSR}}(M_Z)$	0.120	0.119	0.116	0.119
68% CI	[-0.006,+0.006]	[-0.011,+0.010]	[-0.013,+0.011]	[-0.006,+0.006]
95% CI	[-0.013,+0.011]	[-0.022,+0.019]	[-0.030, +0.021]	[-0.013, +0.012]
$\mu_{\rm R}/M_Z$	2.3	2.4	2.9	2.4
68% CI	[1.7,3.3]	[1.4,4.9]	[1.6, 7.4]	[1.7,3.5]

- Data prefer α_s^{FSR}(M_Z)~0.118 → significantly lower than assumed in Monash but similar to new (N)NLO tunes of CMS, i.e. CP3-5.
- Uncertainties correspond to a $\sim \sqrt{2}$ variation of μ_R (instead of a ~ 2 variation).

α_s Consistency in ME and PS and PDF Choices

- PDF and $\alpha_s(M_7)$ appear in ME, PS, and MPI models.
- $\alpha_{s}(M_{7})$ at (N)NLO = 0.118 (=world average) and LO = 0.130
- Different strategies are adopted
 - CMS & ATLAS tunes traditionally based on LO PDFs.
 - PYTHIA tunes are mostly based on LO PDFs.
 - Sherpa tunes are based on NNLO PDFs.
 - HERWIG7 provide tunes based on NLO PDFs (in which MPI is still based on LO PDF).
- Using the same PDF set and $\alpha_s(M_7)$ value in the ME and in the simulation of the PS components in matched configurations advocated
 - i.e. If ME is at NLO, then use $N^{\geq 1}LO$ PDF in ME and PS.
 - Effect depends on the configuration and process.

Cooper et al. EPJC72 (2012) 2078

New CMS Tunes using LO PDF

PYTHIA8 parameter	CP1	CP2	
PDF Set	NNPDF3.1 LO	NNPDF3.1 L	\overline{O}
$\alpha_S(m_Z)$	0.130	0.130	
SpaceShower:rapidityOrder	off	off	
MultipartonInteractions:EcmRef [GeV]	7000	7000	Fixed
$\alpha_S^{\text{ISR}}(m_Z)$ value/order	0.1365/LO	0.130/LO	inputs
$\alpha_S^{\text{FSR}}(m_Z)$ value/order	0.1365/LO	0.130/LO	
$\alpha_S^{MPI}(m_Z)$ value/order	0.130/LO	0.130/LO	
$\alpha_S^{ME}(m_Z)$ value/order	0.130/LO	0.130/LO	
MultipartonInteractions:pT0Ref[GeV]	2.4	2.3	
MultipartonInteractions:ecmPow	0.15	0.14	
MultipartonInteractions:coreRadius	0.54	0.38	Fitted
MultipartonInteractions:coreFraction	0.68	0.33	parameters
ColorReconnection:range	2.63	2.32	
χ^2/dof	0.89	0.54	

New CMS Tunes using (N)NLO PDFs

PYTHIA8 parameter	CP3	CP4	CP5	
PDF Set	NNPDF3.1 NLO	NNPDF3.1 NNLO	NNPDF3.1 NNLO	
$\alpha_S(m_Z)$	0.118	0.118	0.118	
SpaceShower:rapidityOrder	off	off	on	Fixed
MultipartonInteractions:EcmRef[GeV]	7000	7000	7000	Fixed
$\alpha_S^{\text{ISR}}(m_Z)$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
$\alpha_{S}^{FSR}(m_{Z})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
$\alpha_{\rm S}^{\rm MPI}(m_Z)$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
$\alpha_S^{ME}(m_Z)$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
MultipartonInteractions:pTORef [GeV]	1.52	1.48	1.41	
MultipartonInteractions:ecmPow	0.02	0.02	0.03	
MultipartonInteractions:coreRadius	0.54	0.60	0.76	Fitted
MultipartonInteractions:coreFraction	0.39	0.30	0.63	parameters
ColorReconnection:range	4.73	5.61	5.18	
χ^2/dof	0.76	0.80	1.04	

New CMS Tunes using (N)NLO PDFs

PYTHIA8 parameter	CP3	CP4	CP5	
PDF Set	NNPDF3.1 NLO	NNPDF3.1 NNLO	NNPDF3.1 NNLC) _
$\alpha_S(m_Z)$	0.118	0.118	0.118	
SpaceShower:rapidityOrder	off	off	on	Fixed
MultipartonInteractions:EcmRef $[GeV]$	7000	7000	7000	Fixed
$\alpha_S^{\text{ISR}}(m_Z)$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
$\alpha_{S}^{FSR}(m_{Z})$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
$\alpha_S^{MPI}(m_Z)$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
$\alpha_S^{ME}(m_Z)$ value/order	0.118/NLO	0.118/NLO	0.118/NLO	
MultipartonInteractions:pT0Ref[GeV]	1.52	1.48	1.41	
MultipartonInteractions:ecmPow	0.02	0.02	0.03	
MultipartonInteractions:coreRadius	0.54	0.60	0.76	Fitted
MultipartonInteractions:coreFraction	0.39	0.30	0.63	parameters
ColorReconnection:range	4.73	5.61	5.18	
χ^2/dof	0.76	0.80	1.04	

The overlap between two protons modelled by a double-gaussian --> better reproduce 7 TeV CMS data

CMS-PAS-FSQ-12-020

Data used for the fits: charged particle and p_T^{sum} densities in transMIN, transMax vs p_T^{max} at $\sqrt{s} = 1.96$, 7 and 13 TeV. + charged-particle multiplicity vs η at Vs=13 TeV.

α_s Consistency in ME and PS and PDF Choices – MinBias

- Central values of min-bias data are described within ~5% of uncertainties by tunes with LO, NLO, and NNLO NNPDF3.1 sets.
 - Central values of the LO-PDF-tunes worse description of data for $|\eta| > 1.5$

α_s Consistency in ME and PS and PDF Choices –Underlying Event

 13 TeV UE data are described at the same level by tunes with LO, NLO, and NNLO NNPDF3.1 sets.

CPX and UE

arXiv:1903.12179

• Lower pT better described by (N)NLO PDF tunes.

CPX and Energy Dependence

- All predictions reproduce well the central values of UE observables at 1.96, 7, and 13 TeV.
- LO-PDF tunes slightly better in describing the energy dependence.

CPX and ttbar

arXiv:1903.12179

- CP5 (and CUETP8M2T4) → RapidityOrdering for ISR = on
 - Makes a big difference in POWHEG+PYTHIA8
- All predictions equivalently good for MG5_aMC+PYTHIA8 [FxFx]

CPX and double parton scattering

- DPS effective cross sections from the individual measurements and different tunes compatible within ~1σ.
- (N)NLO PDF tunes or RapidityOrdering gives worse predictions for DPS sensitive observables for CPX tunes.
- CUETP8M1 already not good (although LO and even w/o rapidity ordering)

CPX and Z+Jets

arXiv:1903.12179

- Little sensitivity to the tune for low multiplicities.
- All tunes describe the central values of Njets reasonably well.
- CP2 has a slightly better description of the central values.
- CUETP8M1 and CP5 undershoot the data at the PS dominated region with at least 4 jets.

CPX and Z+Jets

arXiv:1903.12179

- Hadronic activity not clustered in jets → imbalance
 - Main contribution from forward jets

 $p_T^{bal} = \left| \vec{p}_T(Z) + \Sigma_{jets} \vec{p}_T(j_i) \right|$

 Gluon radiation wit pT>30 GeV not clustered.

- Different predictions from tunes $p_T^{bal} < 20$ GeV.
 - In this region LO-PDF tunes better describe the data for FxFx.

CPX and Z+Jets

- MLM: poor agreement with data
- FxFx: all tunes give reasonable agreement for $p_T(Z) > ~5$ GeV
- p_T(Z)<10 GeV: description by CUETP8M1 is better

- Central values of the UE observables are, in general, well described by all tunes.
- Away region dominated by hadronic recoil system correlated with $p_T(\mu\mu)$
- UE \neq 0 when p_T(µµ) \rightarrow 0 because of the large initial scale in Z boso events \rightarrow significant overlap between transverse parton densities of the colliding protons \rightarrow Larger # MPI
- UE activity becomes similar in different regions with $p_T(\mu\mu)^{\sim}0 \leftarrow$ activity in the three regions mostly due to varying ISR/FSR contributions.

Summary - 1

- New CMS tunes CUETP8M2T4 and CP1-5 describe the central values of the data better than CUETP8M1.
- ttbar data starting to help reduce modelling uncertainties.
- None of the tunes prior to CPX describe the ttbar jet sub-structure data
- ttbar jet data
 - Njets $\rightarrow \alpha_s^{ISR}(M_z) \sim 0.118$ (also by azimuthal dijet correlation data)
 - groomed subjets $\rightarrow \alpha_{S}^{FSR}(M_{Z}) \simeq 0.118$
- First ever measurement of underlying event in ttbar events.
 - Universality of UE up to energy scale of > 350 GeV tested.

Summary - 2

- Tunes are tested for which $\alpha_{s}(M_{z})$ used for the hard scattering, ISR, FSR, and MPI are chosen consistently with the order of the PDF used.
- For the first time, predictions from PYTHIA8 with (N)NLO-PDF-based tunes are shown to reliably describe the central values of min-bias and underlying event data with similar or better level agreement to predictions from LO-PDF tunes.
- Irrespective of the order of NNPDF3.1 PDF order, predictions from CPX tunes reproduce the UE from 1.96-13 TeV reasonably well (and better than CUETP8M1).
- CPX tunes simultaneously describe the N_{ch} in diffractive and inelastic collisions.
- CPX tunes describe the min-bias data up to $|\eta| < 4.7$.
- No tune describes the very forward region (-6.6 < η < -5.2).
- New tunes tested against min-bias, UE, ttbar, DY, dijet, V+jets, DPS data.

Additional Material

- $pT(\mu\mu) < 5 \text{ GeV} \rightarrow \text{Mainly MPI}$
 - very small contribution from radiation
- UE activity ~doubles w/ logarithmic increase from vs=1.96 to 13 TeV.
- Powheg+Pythia8 provides better description.

 The increase in UE from 7 to 13 TeV is described well by simulations but underestimate the UE evolution from 1.96 to 7 TeV

70