XXVII International Workshop on Deep Inelastic Scattering and Related Subjects

Contribution ID: 49

Type: Parallel Session Talk

Transverse single-spin asymmetry with a $\sin \phi_{S_h}$ modulation for proton and lambda production in SIDIS at subleading twist

Wednesday 10 April 2019 17:06 (17 minutes)

We investigate the transverse single-spin asymmetry with a sin ϕ_{S_h} modulation for the transversely polarized proton and lambda production in semi-inclusive inelastic scattering process, where ϕ_{S_h} is the azimuthal angle of the transverse spin of the final hadron. Theoretically, the spin asymmetry can be interpreted by the convolution of the twist-3 transverse momentum dependent distributions and twist-2 fragmentation functions. In this work, three different origins in terms of the hH_1 term, the $f^{\perp}D_{1T}^{\perp}$ term and the $g^{\perp}G_{1T}$ term are taken into account simultaneously for this asymmetry.

We calculate the twist-3 quark transverse momentum dependent distributions h, f^{\perp} and g^{\perp} by using the quark spectator diquark model, and we investigate the role of the fragmentation functions H_1 , D_{1T}^{\perp} and G_{1T} in the $\sin \phi_{S_h}$ asymmetry as well. We also predict the numerical results of the asymmetries for the proton and the lambda production at JLab with a 12 GeV beam and at COMPASS with a 160 GeV beam, separately. From the comparison of the different sources for the asymmetry, we find that, the distribution h and the fragmentation function H_1 give the dominant contribution to the $\sin \phi_{S_h}$ asymmetry for proton production, while the distribution f^{\perp} might be probed by the convolution with D_{1T}^{\perp} in the lambda production at JLab 12 GeV.

Author: Dr MAO, Wenjuan (School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China)

Co-authors: YANG, Yongliang (Southeast University); LU, Zhun (Southeast University)

Presenter: Dr MAO, Wenjuan (School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China)

Session Classification: WG6: Spin and 3D structure

Track Classification: WG6: Spin and 3D structure