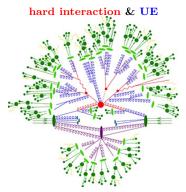
Recent CMS results on the Soft QCD & Forward Physics

Ankita Mehta


(on behalf of the CMS Collaboration)

Eötvös Loránd University, Budapest

27th Workshop on Deep-Inelastic Scattering & Related Subjects Turin, Italy

Bird's Eye View

Understanding particle production at the LHC \rightarrow Important to realize it's physics goals

Diffractive processes dominate in forward regions

Measurements of UE activity in central regions

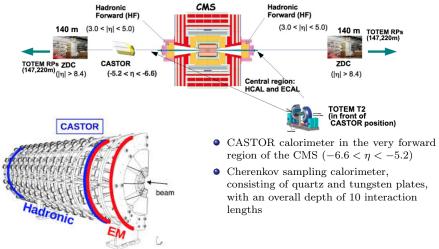
Beam-beam remnants

Multiple-parton interactions (double-parton scattering)

Initial & final state radiations

- Sensitive to interplay between perturbative & nonperturbative regions
- $\bullet\,$ Non-perturbative phenomenological models $\rightarrow\, {\rm free}\,$ parameters to tune
- Forward energy drives development of cosmic ray induced air showers

Expt. measurements \rightarrow MB, UE, total and diffractive cross section & particle correlations


Soft interactions: Why to study them?

- Responsible for a very large fraction of the total cross section
- Their modeling impacts all high- $p_{\rm T}$ measurements
- Indispensable ingredients to improve background estimates for SM & BSM processes

Ankita Mehta

Detector Setup

Soft QCD & forward physics at CMS \rightarrow Facilitated by the forward instrumentation

This talk covers results on energy measurements using CASTOR & DPS WW production

Average Very Forward Energy @13 TeV (CMS PAS FSQ-18-001)

- Energy carried by particles produced in the very forward region powerful probe to study UE activity
- Increase of energy with multiplicity is driven by MPI \rightarrow Model validation & tuning
- Relation between electromagnetic & hadronic energy can constrain muon production in air showers
- First correlation study of hadron activity at very forward & central rapidities performed at 13 TeV
- $\bullet~{\rm Results}$ with 0.22 ${\rm nb}^{-1}$ of low pileup pp data selected using Zerobias triggers at Zero Tesla

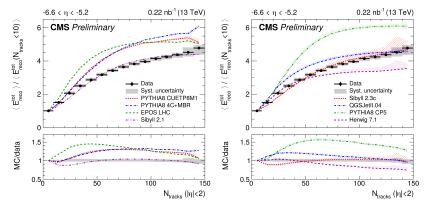
- ▶ PYTHIA8 (CUETP8M1, 4C+MBR, CP5)
- QGSJETII.04
- ► EPOS LHC

- ▶ SIBYLL (2.1,2.3c)
- HERWIG7.1

Analysis Ingredients

- Event selection:
 - ▶ Activity in at-least one tower of HF calorimeter
 - ▶ At-least one track reconstructed in CMS tracker with $|\eta| < 2.0$
 - \blacktriangleright Cut on reconstructed vertex multiplicity \rightarrow reduce pileup contributions
- $\bullet~$ Pixel-based track reconstruction \rightarrow straight line tracking & vertexing
- $\bullet\,$ Tracking efficiency ${\sim}76\%$ & misre construction probability ${\sim}5\%$ for charged particles with $p_{\rm T}>200~{\rm MeV}$
- $\bullet~$ Event classification based on number of reconstructed tracks (N_{\rm tracks})
- CASTOR energy scale \rightarrow Dominating source of uncertainty

Source	Total energy	Electromagnetic energy	Hadronic energy
CASTOR energy scale	17%	17%	17%
CASTOR intercalibration	2–3%	-8%	+15%
HF energy scale	< 0.5%	<0.5%	< 0.5%
Tracking efficiency	1-5%	1–5%	1-5%
Pileup rejection	1-8%	1-8%	1-10%
Statistical uncertainty	0.05-1.6%	0.06-1.9%	0.06-1.8%
Total	18–19%	18–20%	20-26%

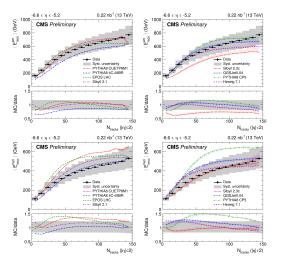

• Novel forward folding technique:

- Model/theory \rightarrow Detector level
- Particle multiplicity and CASTOR energy are smeared

Total Energy

Total energy deposited in CASTOR;

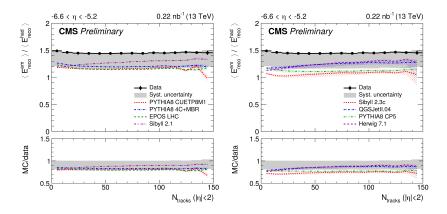
$$E_{reco}^{tot} = \sum_{i=towers} E_i; E_i > \text{Noise threshold}$$


• $\langle E_{reco}^{tot} \rangle$ increases with N_{tracks}

- Only SIBYLL 2.X & HERWIG 7.1 describe the relative increase well
- Mismatch strongest for EPOS LHC & PYTHIA8 CP5

Ankita Mehta

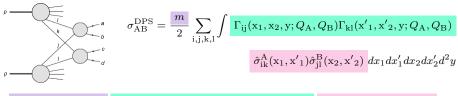
Electromagnetic & Hadronic Energy Components


Relevant for simulation of cosmic ray induced extensive air showers Point towards the modeling accuracy for neutral vs charged pions

- $\langle E_{reco}^{em} \rangle$ described well by all models except SIBYLL2.3c
- PYTHIA8 4C+MBR slightly underestimates $\langle E^{em}_{reco} \rangle$ at low values of N_{tracks}
- $\langle E_{reco}^{had} \rangle$ \rightarrow overestimated by all but SIBYLL2.3c & PYTHIA8 4C+MBR models

Energy Ratio

• Sensitive to differences in underlying final state hadron production mechanisms



- Ratio is almost constant over the whole track multiplicity range → No dramatic change of the particle production mechanism in forward regions
- All model predictions are lower than the data
- Energy ratio best described by QGSJETII.04, SIBYLL2.1, & HERWIG7.1

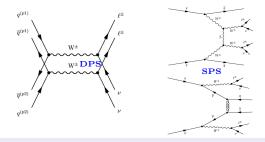
Ankita Mehta

Double-parton Scattering (CMS PAS SMP-18-015)

Double-parton scattering (DPS) \Rightarrow Two separate hard parton-parton interactions in a single pp collision \rightarrow Grows more rapidly as compared to SPS with \sqrt{s}

m = 2 if $A \neq B$, else 1 double-parton distribution functions (dPDFs) parton-level cross sections

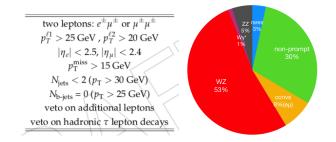
Pocket formula: $\sigma_{AB}^{DPS} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}} \Rightarrow$ Used in all phenomenological calculations $\sigma_{eff} \rightarrow$ transverse profile of partons \rightarrow Assumed to be process & energy independent


Experimental measurements: $\sigma_{\rm eff.} \rightarrow 15\text{--}25 \text{ mb}$ with uncertainties $\approx 30\%$

Importance of DPS

- Possible to explore at colliders \rightarrow even using high scale process at the LHC
- Provides information about hadron structure in transverse plane
- Understanding of background contributions to interesting SM & BSM processes

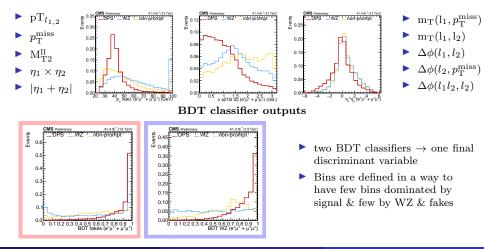
DPS With Same-Sign WW @13TeV


- WW production \rightarrow Golden channel for DPS production
- $\bullet~$ Quark initiated \rightarrow Sensitive to longitudinal quark polarizations
- Non-factorization models predict spin, color, momentum ... interference effects (Phase-2 Upgrade of CMS Muon Detectors)
- SPS $W^{\pm}W^{\pm}$ production suppressed at matrix element level
- Insensitive to pileup effects & clean final state with fully leptonic W decays

- PYTHIA8 predicts a cross section value of 1.9 pb for inclusive WW production via DPS @13TeV \rightarrow calculated with $\sigma_{\text{eff}} = 28$ mb which is also generator tune dependent!!
- $\sigma_{\rm W}({\rm NNLO}) \oplus \sigma_{\rm eff.} = 20.7 \pm 6.6 \text{ mb} ({\rm CMS}) \rightarrow \sigma_{\rm DPSWW}^{\rm factorized} = 0.87 \text{ pb}$
- Comparison of measured cross section with predictions → Important input for development and testing of existing models of dPDFs → Improved MC models

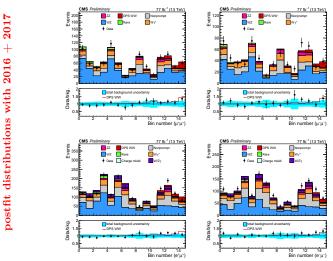
Analysis Strategy

- 77 fb⁻¹ of data from combined 2016 & 2017 at $\sqrt{s} = 13$ TeV
- Signal \Rightarrow two same-sign leptons (dimuon or electron-muon pairs) $\oplus p_T^{\text{miss}}$
- Pythia8 & herwig++ signal samples
- Broad spectrum of background processes & few variables to play with!!
- Dominant backgrounds: WZ & non-prompt leptons



- Signal & background discrimination based on BDT classifiers; trained separately against dominant backgrounds
- $\bullet~$ Two BDT classifiers \rightarrow 1D classifier with bins ordered in S/B for statistical analysis

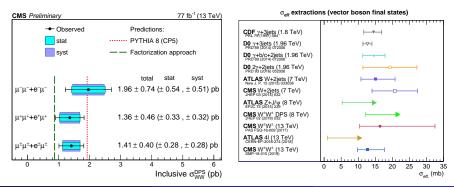
Ankita Mehta


BDT Classifier Training

- Explore topological differences b/w DPS & background processes
- No correlations expected in leptons' kinematic phase space for signal
- $\bullet\,$ Leptons from background processes share the boost \rightarrow correlations in $\eta\text{-}\phi$
- Two different BDTs trained, one against WZ & another against fakes

Results

- Maximum likelihood fit to the final classifier
- Fitting is performed in 4 different lepton charge & flavor categories \rightarrow Benefits from asymmetry in W production \rightarrow better signal sensitivity (by $\sim 10\%$)
- Expected to be more sensitive to ++ configuration than --


Ankita Mehta

Results

- First evidence of DPS WW
- Results from same-sign WW are extrapolated to the inclusive WW phase space

	obtained value	significance (standard deviations)
σ _{DPSWW} ,exp	1.92 pb	5.4
offactorized	0.87 pb	2.5
$\sigma_{\rm DPSWW,obs}$	$1.41\pm$ 0.28 (stat) \pm 0.28 (syst) pb	3.9
$\sigma_{\rm eff}$	$12.7^{+5.0}_{-2.9}$ mb	-

Observed cross section is used to extract $\sigma_{\rm eff}$

Ankita Mehta

Summary

- Data from the LHC provide a new energy scale for studying soft QCD & forward physics
- \bullet Soft QCD processes \to Test predictions from phenomenological models \oplus input for their improvement
- Still quite a few unresolved problems, but we possess a wealth of data
- Model parameters tuned to UE data at central rapidities are consistent with the very forward data within experimental uncertainties
- Energy measurements in the very forward η regions indicate some interesting potential to further improve the underlying event model predictions
- DPS measurements → Important to understand partonic structure of hadrons & for new physics searches @ LHC; very sensitive to non-factorization models
- $\bullet\,$ First evidence for DPS WW production using 2016+2017 CMS data
- Could do some interesting DPS physics with full Run2 data (differential cross sections, correlation studies) other than a DPS WW observation

Soft qcd measurements might not be the discovery channels but important for all future discoveries at the LHC!*

*source: Internet