Local Analytic Sector Subtraction at NNLO

Giovanni Pelliccioli

 University and INFN of Torinoin collaboration with:
L. Magnea, E. Maina, C. Signorile-Signorile, P. Torrielli and S. Uccirati
based on [Magnea et al., arXiv:1806.09570, arXiv:1809.05444]

Motivation

- The Standard Model (SM) is not the end of the story: new physics under investigation at high-energy colliders.
- No spectacular discoveries at the LHC: search for small effects. Very precise knowledge of the SM required.
- QCD predictions more stable when including higher-order corrections.

Needed theoretical predictions with the highest possible precision, in order to compare them with experimental data.

> Strong efforts in calculations
> at next-to-next-to-leading order in α_{S} (NNLO QCD).

Many schemes available for NNLO subtraction:
\rightarrow N-jettiness, qT-subtraction, Antenna, Sector Improved, Nested Soft-Collinear, Colorful, Projection to Born, Sector Decomposition, ε-prescription, Geometric, Unsubtraction

Anatomy of subtractions at NLO

Massless, partons in the final state only: NLO contribution

$$
\begin{equation*}
\frac{d \sigma_{\mathrm{NLO}}}{d X}=\int d \Phi_{n} V \delta_{n}+\int d \Phi_{n+1} R \delta_{n+1} \tag{1}
\end{equation*}
$$

where $R=\left|\mathcal{A}_{n+1}^{(0)}\right|^{2}, V=2 \operatorname{Re}\left[\mathcal{A}_{n}^{(0) *} \mathcal{A}_{n}^{(1)}\right]$, and $X=$ IRC safe obs., $X_{i}=$ computed with $i^{\text {th }}$-body kinematics, $\delta_{i}=\delta\left(X-X_{i}\right)$.

In $d=4-2 \epsilon$, phase-space integration of R results in explicit infrared (IR) poles in ϵ, which cancel those of V, if X infrared safe, ensuring the cross section is finite (KLN).
Subtraction procedure: avoiding analytic integration of the full R amplitudes by adding and subtracting to Eq. (1) a counterterm

$$
\begin{equation*}
\left.\frac{d \sigma_{N L \mathrm{O}}}{d X}\right|_{\mathrm{ct}}=\int d \Phi_{n+1} \bar{K} \delta_{n}, \quad I=\int d \Phi_{\mathrm{rad}} \bar{K} \tag{2}
\end{equation*}
$$

$d \Phi_{n+1} \bar{K}$ has the same singular limits of $d \Phi_{n+1} R$ and must be simple to be analytically integrated in d dim.

$$
\begin{equation*}
\frac{d \sigma_{\mathrm{NLO}}}{d X}=\int d \Phi_{n}(V+I) \delta_{n}+\int d \Phi_{n+1}\left(R \delta_{n+1}-\bar{K} \delta_{n+1}\right) \tag{3}
\end{equation*}
$$

First and the second terms separately finite in $d=4$: efficient numerical integration.

FKS and CS schemes: advantages and bottlenecks

Two main subtraction schemes at NLO:

Frixione-Kunst-Signer procedure [Frixione, Kunst, Signer, hep-ph/9512328]

- Partition of the radiative phase-space with sector functions
- Different parameterization for each sector
- Analytical integration, after eliminating sector functions (sum rules): can be not trivial, due to non optimal parameterization

Catani-Seymour procedure [Catani, Seymour, hep-ph/9605323]

- A counterterm reproduces the IR singularities related to a parton pair in all of phase-space: complicated structure
- Sum of counterterms, each reparameterized with a specific kinematic mapping
- Analytical integration of each term: can be non trivial, as counterterms have a complicated structure

FKS and CS schemes: advantages and bottlenecks

How much can we simplify the NLO subtraction procedure? Our strategy:

Frixione-Kunst-Signer procedure [Frixione, Kunst, Signer, hep-ph/9512328]

- Partition of the radiative phase-space with sector functions
- Different parameterization for each sector
- Analytical integration, after eliminating sector functions (sum rules): can be not trivial, due to non optimal parameterization

Catani-Seymour procedure [Catani, Seymour, hep-ph/9605323]

- A counterterm reproduces the IR singularities related to a parton pair in all of phase-space: complicated structure
- Sum of counterterms, each reparameterized with a specific kinematic mapping
- Analytical integration of each term: can be non trivial, as counterterms have a complicated structure

Partition of the radiative phase-space Φ_{n+1} with sector functions $\mathcal{W}_{i j}$ ($i, j=1, \ldots, n+1$ final-state partons)

- minimal singularity structure: $R \mathcal{W}_{i j}$ is singular only in one soft $\left(\mathbf{S}_{i}\right)$ and one collinear ($\mathbf{C}_{i j}$) configuration
- normalization and sum rules:

$$
\sum_{i, j \neq i} \mathcal{W}_{i j}=1, \quad \mathbf{S}_{i} \sum_{j \neq i} \mathcal{W}_{i j}=1, \quad \mathbf{C}_{i j} \sum_{a b \in \operatorname{perm}(i j)} \mathcal{W}_{a b}=1,
$$

- Summing over sectors sharing a singularity, and taking the singular limit on the sum, the \mathcal{W} 's disappear: simplified analytic integration of the counterterm.
- Choice of sector functions very similar to FKS $\left(s_{q i}=2 q_{\mathrm{cm}} \cdot k_{i}, \quad s_{i j}=2 k_{i} \cdot k_{j}\right)$:

$$
\mathcal{W}_{i j}=\frac{\sigma_{i j}}{\sum_{k, l \neq k} \sigma_{k l}}, \quad \text { with } \quad \sigma_{i j}=\frac{1}{e_{i} w_{i j}}, \quad e_{i}=\frac{s_{q i}}{s}, w_{i j}=\frac{s s_{i j}}{s_{q i} s_{q j}} .
$$

A minimal scheme at NLO (2)

- Singular structure of R in sector $i j$ in terms of dot products $\left\{s_{a b}=2 p_{a} \cdot p_{b}\right\}$:
$\mathbf{S}_{i} R=$ leading term in $R\left(k_{i}^{\mu} \rightarrow 0\right)$,
$\mathbf{C}_{i j} R=$ leading term in $R\left(k_{\perp}^{\mu} \rightarrow 0\right)$.

\longrightarrow combinations of universal IR kernels and Born matrix-elements

$$
\begin{aligned}
\mathbf{S}_{i} R(\{k\}) & =-\mathcal{N}_{1} \sum_{I, m} \underbrace{\delta_{f_{i} g} \frac{s_{l m}}{s_{i l} s_{i m}}}_{\text {Eikonal kernel }} B_{l m}\left(\{k\}_{l}\right) \\
\mathbf{C}_{i j} R(\{k\}) & =\frac{\mathcal{N}_{1}}{s_{i j}} \underbrace{P_{i j}^{\mu \nu}\left(s_{i r}, s_{j r}\right)}_{\text {Altarelli-Parisi split. f. }} B_{\mu \nu}\left(\{k\}_{/ J}, k\right) \\
\mathbf{S}_{i} \mathbf{C}_{i j} R(\{k\}) & =2 \mathcal{N}_{1} C_{f_{j}} \delta_{f_{i} g} \frac{s_{j r}}{s_{i j} s_{i r}} B\left(\{k\}_{/ l}\right)
\end{aligned}
$$

- Candidate counterterm in sector $i j: \quad K_{i j}=\left(\mathbf{S}_{i}+\mathbf{C}_{i j}-\mathbf{S}_{i} \mathbf{C}_{i j}\right) R \mathcal{W}_{i j}$
- Minimal structure as FKS, but no parametrisation yet: freedom to be exploited to simplify analytic integration.

Need a momentum mapping $\left\{k_{1}, \ldots, k_{n+1}\right\} \rightarrow\left\{\bar{k}_{1}, \ldots, \bar{k}_{n}\right\}$ to factorize radiation $d \Phi_{\text {rad }}$ from Born phase-space $d \Phi_{n}$, and integrate counterterm \rightarrow Catani-Seymour mappings

- Mapping $\{k\} \rightarrow\{\bar{k}\}^{(a b c)}$: freedom to choose a, b, c as we want. Optimal choice: adapt to invariants appearing in the kernels.

$$
\begin{aligned}
& \overline{\mathbf{S}}_{i} R(\{k\})=-\mathcal{N}_{1} \sum_{l, m} \delta_{f_{i g} g} \frac{s_{l m}}{s_{i l} s_{i m}} B_{l m}\left(\{\bar{k}\}^{(i / m)}\right) \\
& \overline{\mathbf{C}}_{i j} R(\{k\})=\frac{\mathcal{N}_{1}}{s_{i j}} P_{i j}^{\mu \nu}\left(s_{i r}, s_{j r}\right) B_{\mu \nu}\left(\{\bar{k}\}^{(i j r)}\right) \\
& \overline{\mathbf{S}}_{i} \overline{\mathbf{C}}_{i j} R(\{k\})=2 \mathcal{N}_{1} C_{f_{j}} \delta_{f_{i g}} \frac{s_{j r}}{s_{i j} s_{i r}} B\left(\{\bar{k}\}^{(i j r)}\right)
\end{aligned}
$$

- Definition for the local counterterm (barred limits on \mathcal{W}^{\prime} s act as unbarred):

$$
\begin{equation*}
\bar{K}_{i j} \equiv\left(\overline{\mathbf{S}}_{i}+\overline{\mathbf{C}}_{i j}-\overline{\mathbf{S}}_{i} \overline{\mathbf{C}}_{i j}\right) R \mathcal{W}_{i j}, \quad \bar{K}=\sum_{i, j \neq i} \bar{K}_{i j}, \tag{4}
\end{equation*}
$$

A minimal scheme at NLO (4)

Getting rid of sector functions in \bar{K} :

$$
\begin{gather*}
\bar{K}=\sum_{i, j \neq i} \bar{K}_{i j}=\sum_{i}\left(\overline{\mathbf{S}}_{i} R\right) \underbrace{\left[\mathbf{S}_{i} \sum_{j \neq i} \mathcal{W}_{i j}\right]}_{=1, \text { sum rules }}+\sum_{i, j>i}\left(\overline{\mathbf{C}}_{i j} R\right) \underbrace{\left[\mathbf{C}_{i j}\left(\mathcal{W}_{i j}+\mathcal{W}_{j i}\right)\right]}_{=1, \text { sum rules }}-\sum_{i, j \neq i} \overline{\mathbf{S}}_{i} \overline{\mathbf{C}}_{i j} R \\
=\sum_{i} \overline{\mathbf{S}}_{i} R+\sum_{i, j>i} \overline{\mathbf{C}}_{i j}\left(1-\overline{\mathbf{S}}_{i}-\overline{\mathbf{S}}_{j}\right) R . \tag{5}\\
\quad \text { Recall }: \frac{d \sigma_{\mathrm{NLO}}}{d X}=\int d \Phi_{n}(V+I) \delta_{n}+\int d \Phi_{n+1}\left(R \delta_{n+1}-\bar{K} \delta_{n+1}\right)
\end{gather*}
$$

Final result for the integrated counterterm (over $d \Phi_{\text {rad }}$):

$$
\begin{gather*}
I(\{\bar{k}\})=-\mathcal{N}_{1} \sum_{I, m \neq I} \frac{(4 \pi)^{\epsilon-2}}{\bar{s}_{l m}^{\epsilon}} \frac{\Gamma(1-\epsilon) \Gamma(2-\epsilon)}{\epsilon^{2} \Gamma(2-3 \epsilon)} B_{l m}(\{\bar{k}\}) \\
-\mathcal{N}_{1} \sum_{p} \frac{(4 \pi)^{\epsilon-2}}{\bar{s}_{p r}^{\epsilon}} \frac{\Gamma(1-\epsilon) \Gamma(2-\epsilon)}{\epsilon \Gamma(2-3 \epsilon)}\left(\frac{C_{A}+4 T_{R} N_{f}}{2(3-2 \epsilon)} \delta_{f_{p} g}+\frac{C_{F}}{2} \delta_{f_{p}\{q, \bar{q}\}}\right) B(\{\bar{k}\}) . \tag{6}
\end{gather*}
$$

exact in ϵ, virtual poles analytically reproduced, finite parts checked for a variety of differential distributions (against MadGraph_aMC@NLO).

A local analytic scheme at NNLO

NLO: bridge between FKS (minimality and phase space sectoring) and CS (Lorentz invariance and kinematics mappings) \rightarrow Simplified analytic cterm integration

These nice properties can be exported to NNLO

Anatomy of subtractions at NNLO (1)

$$
\begin{equation*}
\frac{d \sigma_{\mathrm{NNLO}}}{d X}=\int d \Phi_{n} V V \delta_{n}+\int d \Phi_{n+1} R V \delta_{n+1}+\int d \Phi_{n+2} R R \delta_{n+2} . \tag{7}
\end{equation*}
$$

Add and subtract local counterterms:

$$
\begin{equation*}
\int d \Phi_{n+2} \bar{K}^{(1)} \delta_{n+1}, \quad \int d \Phi_{n+2}\left(\bar{K}^{(2)}+\bar{K}^{(12)}\right) \delta_{n}, \quad \int d \Phi_{n+1} \bar{K}^{(\mathrm{RV})} \delta_{n} . \tag{8}
\end{equation*}
$$

$\bar{K}^{(1)}$: same single-unresolved singularities as $R R$
$\left(\bar{K}^{(2)}+\bar{K}^{(12)}\right):$ same double-unresolved singularities as $R R$, the first features double-unres. limits (pure), the second single-unres. limits of double-unres. ones (mixed)
$\bar{K}^{(\mathrm{RV})}$: same single-unresolved singularities as $R V$

Integrated counterterms (in d-dimensions):

$$
I^{(\mathrm{i})}=\int d \Phi_{\mathrm{rad}, i} \bar{K}^{(\mathrm{i})}, \quad I^{(12)}=\int d \Phi_{\mathrm{rad}, 1} \bar{K}^{(\mathbf{1 2)}}, \quad I^{(\mathrm{RV})}=\int d \Phi_{\mathrm{rad}} \bar{K}^{(\mathrm{RV})}
$$

Anatomy of subtractions at NNLO (2)

Subtracted NNLO

$$
\begin{align*}
& \frac{d \sigma_{\text {NNLO }}}{d X}=\int d \Phi_{n} \underbrace{\left(V V+I^{(2)}+I^{(\mathrm{RV})}\right)}_{\text {finite in } \mathrm{d}=4 \text { and in } \Phi_{n}} \delta_{n} \\
& \quad+\int d \Phi_{n+1}[\underbrace{\left(R V+I^{(1)}\right)}_{\text {finite in } \mathrm{d}=4, \text { singular in } \Phi_{n+1}} \delta_{n+1}-\underbrace{\left(\bar{K}^{(\mathrm{RV})}-I^{(12)}\right)}_{\text {finite in } \mathrm{d}=4 \text { and in } \Phi_{n+1}} \delta_{n}] \\
& \quad+\int d \Phi_{n+2} \underbrace{\left[R R \delta_{n+2}-\bar{K}^{(1)} \delta_{n+1}-\left(\bar{K}^{(2)}+\bar{K}^{(12)}\right) \delta_{n}\right]}_{\text {finite in } \mathrm{d}=4 \text { and in } \Phi_{n+2}} .
\end{align*}
$$

Sector functions at NNLO (1)

- Partition of Φ_{n+2} with sector functions $\mathcal{W}_{i j k l},\left(\sum_{i j k l} \mathcal{W}_{i j k l}=1\right)$. Our choice:

$$
\mathcal{W}_{i j k l}=\frac{\sigma_{i j k l}}{\sum_{a, b \neq a} \sum_{\substack{c \neq a \\ d \neq a, c}} \sigma_{a b c d}}, \quad \sigma_{i j k l}=\frac{1}{e_{i}^{\alpha} w_{i j}^{\beta}} \frac{1}{\left(e_{k}+\delta_{k j} e_{i}\right) w_{k l}}, \quad \alpha>\beta>1
$$

- $R R \mathcal{W}_{a b c d}$ is singular only in few configurations ($\mathbf{S}_{a b}=a b$ uniformly soft, $\mathbf{C}_{i j k}=j k$ uniformly collinear to $i, \mathbf{S C}_{i j k}=i$ soft and j, k collinear, $\mathbf{C S}_{i j k}=i, j$ collinear and k soft)

$$
\begin{array}{lllllll}
\mathcal{W}_{i j k} & : & \mathbf{S}_{i}, & \mathbf{C}_{i j}, & \mathbf{S}_{i j}, & \mathbf{C}_{i j k}, & \mathbf{S C}_{i j k} ; \\
\mathcal{W}_{i j k j}: & \mathbf{S}_{i}, & \mathbf{C}_{i j}, & \mathbf{S}_{i k}, & \mathbf{C}_{i j k}, & \mathbf{S C}_{i j k}, & \mathbf{C S}_{i j k} ; \\
\mathcal{W}_{i j k l} & : & \mathbf{S}_{i}, & \mathbf{C}_{i j}, & \mathbf{S}_{i k}, & \mathbf{C}_{i j k l}, & \mathbf{S C}_{i k l}, \\
\mathbf{C S}_{i j k} .
\end{array}
$$

- Sum rules in double-unresolved limits: summing over sectors sharing the same singularity, and taking that singular limit on the sum, \mathcal{W} functions disappear.

Sector functions at NNLO (2)

- In the single-unresolved limits, NNLO sector functions factorise NLO sector functions. For example

$$
\mathbf{c}_{i j} \mathcal{W}_{i j k l}=\mathcal{W}_{k l} \mathbf{C}_{i j} \mathcal{W}_{i j}^{(\alpha \beta)}, \quad \mathbf{S}_{i} \mathcal{W}_{i j k l}=\mathcal{W}_{k l} \mathbf{S}_{i} \mathcal{W}_{i j}^{(\alpha \beta)}
$$

where

$$
\mathcal{W}_{i j}^{(\alpha \beta)}=\frac{\sigma_{i j}^{(\alpha \beta)}}{\sum_{a, b \neq a} \sigma_{a b}^{(\alpha \beta)}}, \quad \sigma_{a b}^{(\alpha \beta)}=\frac{1}{\left(e_{a}\right)^{\alpha}\left(w_{a b}\right)^{\beta}} .
$$

with the same properties of NLO sector functions.

- Allows $\left(R V+I^{(1)}\right)$ and $\left(K^{(\mathrm{RV})}-I^{(12)}\right)$ to be finite in $d=4$ NLO sector by NLO sector.

Counterterms at NNLO (1): sector $\mathcal{W}_{i j k j}$

- Candidate (not remapped) counterterms built collecting singular limits of $R R \mathcal{W}$, written in terms of dot products.
- Ex. sector $\mathcal{W}_{i j k j}$ (nonzero limits: $\mathbf{S}_{i}, \mathbf{C}_{i j}, \mathbf{S}_{i k}, \mathbf{C}_{i j k}, \mathbf{S C}_{i j k}, \mathbf{C S}_{i j k}$):

$$
\begin{aligned}
K_{i j k j}^{(1)}= & {\left[\mathbf{S}_{i}+\mathbf{C}_{i j}\left(1-\mathbf{S}_{i}\right)\right] R R \mathcal{W}_{i j k j}, } \\
K_{i j k j}^{(2)}= & {\left[\mathbf{S}_{i k}+\mathbf{C}_{i j k}\left(1-\mathbf{S}_{i k}\right)+\mathbf{S C}_{i j k}\left(1-\mathbf{S}_{i k}\right)\left(1-\mathbf{C}_{i j k}\right)\right.} \\
& \left.\quad+\mathbf{C S}_{i j k}\left(1-\mathbf{S C}_{i j k}\right)\left(1-\mathbf{S}_{i k}\right)\left(1-\mathbf{C}_{i j k}\right)\right] R R \mathcal{W}_{i j k j}, \\
K_{i j k j}^{(12)}= & -\left[\mathbf{S}_{i}+\mathbf{C}_{i j}\left(1-\mathbf{S}_{i}\right)\right]\left[\mathbf{S}_{i k}+\mathbf{C}_{i j k}\left(1-\mathbf{S}_{i k}\right)+\mathbf{S C}_{i j k}\left(1-\mathbf{S}_{i k}\right)\left(1-\mathbf{C}_{i j k}\right)\right. \\
& \left.\quad+\mathbf{C S}_{i j k}\left(1-\mathbf{S C}_{i j k}\right)\left(1-\mathbf{S}_{i k}\right)\left(1-\mathbf{C}_{i j k}\right)\right] R R \mathcal{W}_{i j k j},
\end{aligned}
$$

- $\mathbf{S}_{i j} R R, \mathbf{C}_{i k j} R R, \mathbf{S C}_{i j k} R R$: universal kernels [Catani, Grazzini, hep-ph/9908523].
- Simplifications possible $\rightarrow \mathbf{S C}_{i j k}, \mathbf{C S}_{i j k}$ cancel in the sum $K^{(2)}+K^{(12)}$.
- Limits on $R R$ and on \mathcal{W} functions commute.

Counterterms at NNLO (2): remapping and integration

Different kernels / different terms in the same kernel are parametrized with different NNLO mappings, to simplify integration.
$\bar{K}^{(1)}$ - to be integrated over $d \Phi_{n+1}$, thanks to the factorization properties of $\mathcal{W}_{a b c d}$ and the sum rules of $\mathcal{W}_{a b}^{(\alpha \beta)}$ (same integral as at NLO, $I^{(1)}$)

- $I^{(1)}$ has the same $1 / \epsilon$ structure as $R V$, NLO sector by NLO sector.
$\bar{K}^{(12)}$ - to be integrated over $d \Phi_{n+1}$, thanks to the factorization properties of $\mathcal{W}_{a b c d}$ and the sum rules of $\mathcal{W}_{a b}^{(\alpha \beta)}$
- $I^{(12)}$ has the same $1 / \epsilon$ structure as $\bar{K}^{(\mathrm{RV})}$, NLO sector by NLO sector.
$\bar{K}^{(2)}$ - to be integrated over $d \Phi_{n+2}, \mathcal{W}$ functions disappear from $\bar{K}^{(2)}$ as well as from $I^{(2)}$ thanks to sum rules
- analytic integration of NNLO kernels \times Born matrix-elements, without \mathcal{W} functions.

Proof-of-concept

$T_{R} C_{F}$ contributions to $e^{+} e^{-} \rightarrow j j @$ NNLO

Inclusive cross-section (NNLO correction) obtained via numerical implementation of the subtraction scheme, compared with the analytic result,

$$
\frac{\sigma_{\mathrm{NNLO}}}{\sigma_{\mathrm{LO}}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} T_{R} C_{F}}=\left(-\frac{11}{2}+4 \zeta_{3}-\log \frac{\mu^{2}}{s}\right)
$$

with the renormalization-scale dependence.
Very good agreement ($\lesssim 0.1 \%$ differences).

Conclusions and outlook

A subtraction procedure at NNLO: local, analytic, general, efficient.

Present procedure is designed for final-state QCD radiation and massless partons.

Status and wishlist:

- implementation in a differential numerical code is in progress,
- analytic integration of part of the double-unresolved and real-virtual counterterms is ongoing,
- we are planning to exted such a procedure to initial state radiation (conceptually straightforward), and to massive partons (more involved)

Backup slides

Mapping from NLO to Born kinematics

- Catani-Seymour massless final-state mapping $\{k\} \rightarrow\{\bar{k}\}^{(a b c)}$:

$$
\bar{k}_{i}^{(a b c)}=k_{i}, \quad \text { if } i \neq a, b, c, \quad \bar{k}_{b}^{(a b c)}=k_{a}+k_{b}-\frac{s_{a b}}{s_{a c}+s_{b c}} k_{c}, \quad \bar{k}_{c}^{(a b c)}=\frac{s_{a b c}}{s_{a c}+s_{b c}} k_{c}
$$

$$
\text { with } s_{a b c}=s_{a b}+s_{a c}+s_{b c} \text {, and } \bar{k}_{b}^{(a b c)}+\bar{k}_{c}^{(a b c)}=k_{a}+k_{b}+k_{c} \text {. }
$$

- Catani-Seymour variables $y, z \in[0,1]$ for mapping $\{k\} \rightarrow\{\bar{k}\}^{(a b c)}$:

$$
s_{a b}=y s_{a b c}, \quad s_{a c}=z(1-y) s_{a b c}, \quad s_{b c}=(1-z)(1-y) s_{a b c}
$$

- Phase-space factorization:

$$
\begin{aligned}
& d \Phi_{n+1}=d \Phi_{n}^{(a b c)} d \Phi_{\mathrm{rad}}^{(a b c)}, \quad d \Phi_{\mathrm{rad}}^{(a b c)} \equiv d \Phi_{\mathrm{rad}}\left(\bar{s}_{b c}^{(a b c)} ; y, z, \phi\right) \\
& \int d \Phi_{\mathrm{rad}}(s ; y, z, \phi) \equiv N(\epsilon) s^{1-\epsilon} \int_{0}^{\pi} d \phi \sin ^{-2 \epsilon} \phi \int_{0}^{1} d y \int_{0}^{1} d z\left[y(1-y)^{2} z(1-z)\right]^{-\epsilon}(1-y), \\
& N(\epsilon) \equiv \frac{(4 \pi)^{\epsilon-2}}{\sqrt{\pi} \Gamma(1 / 2-\epsilon)}, \quad \bar{s}_{b c}^{(a b c)} \equiv 2 \bar{k}_{b}^{(a b c)} \cdot \bar{k}_{c}^{(a b c)}=s_{a b c} .
\end{aligned}
$$

- $\phi=$ azimuth between \vec{k}_{a} and an reference three-momentum $\left(\neq \vec{k}_{b}, \vec{k}_{c}\right)$.

Sector functions at NNLO: sum rules

- Sum rules in double-unresolved limits: summing over sectors sharing the same singularity, and taking that singular limit on the sum, \mathcal{W} functions disappear.

$$
\begin{aligned}
& \mathbf{S}_{i k}\left(\sum_{b \neq i} \sum_{d \neq i, k} \mathcal{W}_{i b k d}+\sum_{b \neq k} \sum_{d \neq k, i} \mathcal{W}_{k b i d}\right)=1, \\
& \mathbf{C}_{i j k} \sum_{a b c \in \operatorname{perm}(j i k)}\left(\mathcal{W}_{a b b c}+\mathcal{W}_{a b c b}\right)=1, \quad \mathbf{C}_{i j k l} \sum_{\substack{a b \in \operatorname{perm}(i j) \\
c d \in \operatorname{perm}(k l)}}\left(\mathcal{W}_{a b c d}+\mathcal{W}_{c d a b}\right)=1, \\
& \mathbf{S C}_{i k l} \sum_{b \neq i}\left(\mathcal{W}_{i b k l}+\mathcal{W}_{i b l k}\right)=1, \quad \mathbf{C S}_{i j k}\left(\sum_{d \neq i, k} \mathcal{W}_{i j k d}+\sum_{d \neq j, k} \mathcal{W}_{j i k d}\right)=1 .
\end{aligned}
$$

Counterterms simplification at NNLO: sector $\mathcal{W}_{i j k j}$

- Simplifications possible, thanks to idempotency relations

$$
\left(1-\mathbf{S}_{i}\right) \mathbf{S C}_{i c d} R R \mathcal{W}_{i b c d}=0, \quad\left(1-\mathbf{C}_{i j}\right) \mathbf{C S}_{i j k} R R \mathcal{W}_{i j k d}=0
$$

- Limits SC, CS: disappear from $K^{(2)}+K^{(12)}$:

$$
K_{i j k j}^{(2)}+K_{i j k j}^{(12)}=\left(1-\mathbf{S}_{i}\right)\left(1-\mathbf{C}_{i j}\right)\left[\mathbf{S}_{i k}+\mathbf{C}_{i j k}\left(1-\mathbf{S}_{i k}\right)\right] R R \mathcal{W}_{i j k j}
$$

very simple structure!

- Still, since integrated $I^{(12)}$ and $I^{(2)}$ enter separately, they receive contributions from SC and CS (which however cancel in the sum).

Counterterms at NNLO: $\bar{K}^{(2)}$

Remapped pure double-unresolved counterterm, to be integrated over $d \Phi_{n+2}$:

$$
\begin{aligned}
& \bar{K}^{(2)}=\sum_{i}\left\{\sum_{j>i} \overline{\mathbf{S}}_{i j}+\sum_{j>i} \sum_{k>j} \overline{\mathbf{C}}_{i j k}\left(1-\overline{\mathbf{S}}_{i j}-\overline{\mathbf{S}}_{i k}-\overline{\mathbf{S}}_{j k}\right)\right. \\
&+\sum_{j>i} \sum_{\substack{ \\
k>i \\
k \neq j}} \sum_{\substack{>k \\
l \neq j}} \overline{\mathbf{C}}_{i j k l}\left(1-\overline{\mathbf{S}}_{i k}-\overline{\mathbf{S}}_{j k}-\overline{\mathbf{S}}_{i l}-\overline{\mathbf{S}}_{j l}\right) \\
&+\sum_{j \neq i} \sum_{\substack{k \neq i \\
k>j}} \overline{\mathbf{S C}}_{i j k}\left(1-\overline{\mathbf{S}}_{i j}-\overline{\mathbf{S}}_{i k}\right)\left(1-\overline{\mathbf{C}}_{i j k}-\sum_{\mid \neq i, j, k} \overline{\mathbf{C}}_{i j k}\right) \\
&\left.+\sum_{j>i} \sum_{k \neq i, j} \overline{\mathbf{C}}_{i j k}\left(1-\overline{\mathbf{S}}_{i k}-\overline{\mathbf{S}}_{j k}\right)\left(1-\overline{\mathbf{C}}_{i j k}-\sum_{\mid \neq i, j, k} \overline{\mathbf{C}}_{i j k l}\right)\right\} R R
\end{aligned}
$$

