Towards a *W* boson mass measurement with LHCb

Martina Pili on behalf of the LHCb Collaboration

This talk is based on [arXiv:1902.04323]

DIS 2019

Torino, 8-12 April 2019

Overview

Precision electroweak tests are a powerful probe of physics beyond the Standard Model

- Currently limited by the precision of *M_W* measurements
- First LHC result from ATLAS¹ already competitive with Tevatron results
 - Limited by *W* production uncertanties, particularly on the PDFs

Martina Pili (University of Oxford)

¹ATLAS, "Measurement of the W-boson mass in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector", Eur. Phys. J. C78, 110 (2018), arXiv:1701.07240

Why LHCb?

LHCb is a forward spectrometer primarily designed to study the decays of beauty and charm hadrons

Acceptance: $2 < \eta < 5$

Almost orthogonal to that of ATLAS and CMS

- Strong track record in measurements of *W* and *Z* boson production in muonic final states (LHCb-PAPER-2015-049, LHCb-PAPER-2016-021, ...)
- LHCb has already measured $\sin^2 \theta_{eff}^{lept}$ (LHCB-PAPER-2015-039)
- Potential for a M_W measurement recently realised

Why LHCb?

- A new measurement of M_W by LHCb was proposed in 2015²
- Based on the muon transverse momentum (p_T^{μ}) distribution from $W \rightarrow \mu \nu$ decays
- Plenty of W[±] data in LHCb Run 1 + 2 O(10M) decays
 Expected O(10) MeV/c² of statistical uncertainty
- Larger PDF uncertainties but <u>partially anticorrelated</u> with those of ATLAS and CMS²
 - $\circ~$ Significant impact of LHCb on the LHC average

Why LHCb?

- A new measurement of M_W by LHCb was proposed in 2015²
- Based on the muon transverse momentum (p_T^{μ}) distribution from $W \to \mu \nu$ decays
- Plenty of W[±] data in LHCb Run 1 + 2 O(10M) decays
 Expected O(10) MeV/c² of statistical uncertainty
- Larger PDF uncertainties but <u>partially anticorrelated</u> with those of ATLAS and CMS²
 - $\circ~$ Significant impact of LHCb on the LHC average

In this talk

What drives the PDF uncertainty in LHCb?

How can we reduce it?

Analysis strategy

Events are generated with POWHEG³+Pythia⁴:

- selected those with 30 $< p_T^\mu < 50\,{\rm GeV/c}$ and 2 $< \eta < 4.5$
- Toy dataset: scaling to the 6 fb^{-1} of LHCb Run 2 data ($\sqrt{s} = 13 \text{ TeV}$)
- **Template** fit to the p_T^{μ} distribution:
 - M_W & PDF hypothesis weight (NNPDF3.1 set, 1000 replicas)

5 / 15

9th April 2019

Analysis strategy

- Toy dataset: scaling to the $6 \, \text{fb}^{-1}$ of LHCb Run 2 data ($\sqrt{s} = 13 \, \text{TeV}$)
- **Template** fit to the p_T^{μ} distribution:
 - *M_W* & PDF hypothesis weight (NNPDF3.1 set, 1000 replicas)

Start with a single toy dataset

For each PDF hypothesis $\rightarrow M_W$ value that minimises χ^2 (toy, templates)

The PDF uncertainty is the width of the PDF spread in M_W

LHCb ГНСр

W production in LHCb

- W⁺(W⁻) production dominated by processes involving valence u(d) quarks
- $\bullet\,$ Contributions from only second generation quark annihilation below 10%

Understanding the PDF uncertainties

Looking at u, \bar{d} , d and \bar{u} PDFs for the replicas corresponding to biased M_W determinations:

- Interesting features at high-x $(x \gtrsim 0.1)$ for d and \bar{u} PDFs
- No obvious pattern in the u and \bar{d} PDFs

The role of the *W* kinematics

- Biases in the determination of M_W strongly correlated with mismodelling of the W kinematics
- These are characterised by p_T^W , y and $\cos \theta^*$
 - · Also looked at all the combinations of these variables

The role of the W kinematics

! The replicas with the largest $|\Delta M|$ lead to variations of several percent in the shape of the η distribution

 \Rightarrow 2D (p_T^{μ} , η) fit with PDF replica reweighting, already suggested by [5] [arXiv:1902.04323]

The proposed method

- p_T^{μ} fit $\rightarrow (p_T^{\mu}, \eta)$ fit + PDF reweighting
 - \circ to each replica: $P(\chi^2) \propto \chi^{n-1} e^{-\chi^2/2}$ (following NNPDF prescription⁶)
- δ_{PDF} distribution for several toy datasets:

Significant reduction of the PDF uncertainty with respect to the original approach [arXiv:1902.04323]

Martina Pili (University of Oxford)

9 th	April	2019	11	/ 15
-----------------	-------	------	----	------

Combining W^+ and W^-

- For each PDF replica extracted $(M_W^+, M_W^-)_{1D, 2D \text{ fit}}$
- Highlighted 10% of replicas giving largest $P(\chi^2) = P(\chi^2_+) \cdot P(\chi^2_-)$

PDF reweighting:

- \checkmark reduces δ_{PDF} in a standalone W^+ (W^-) measurement
- × reduces observed partial W^+/W^- anticorrelation

Simultaneous fit

Using a simultaneous fit of the W^+ and W^- data with their templates sharing the same normalisation factor:

• Integrated charge asymmetry included as an additional constraint

Dependence on the detector acceptance

- p_T^{μ} varies by an amount $\Delta p_T^{\mu}/2$ around the Jacobian peak position
- The bands show the mean and RMS of PDF uncertainty distribution for 1000 toy datasets.

- Enforced the power of the proposed method
- Performed similar study for the η range (see backup)

Summary and Outlook

- A characterisation of the PDF uncertainty in a future measurement of M_W with LHCb has been performed⁷.
- A (p^μ_T, η) fit + PDF reweighting can reduce δ_{PDF} by roughly a factor 2 with respect to a simple p^μ_T fit
 - \circ improvements in both standalone and simultaneous W^{\pm} fits
 - $\circ~$ the yields are assuming LHCb Run 2 dataset

Summary and Outlook

- A characterisation of the PDF uncertainty in a future measurement of M_W with LHCb has been performed⁷.
- A (p^μ_T, η) fit + PDF reweighting can reduce δ_{PDF} by roughly a factor 2 with respect to a simple p^μ_T fit
 - $\circ~$ improvements in both standalone and simultaneous ${\it W}^{\pm}$ fits
 - $\circ~$ the yields are assuming LHCb Run 2 dataset

Future challenges:

- Application of the new fit approach to the analysis of the real data
 - $\circ\,$ need to understand the η dependence of the muon efficiencies at the level of 1%
- Accurate model of the p_T^W spectrum
- Muon momentum scale: correct for misalignment effects
- Control of the background

References

- ATLAS, "Measurement of the W-boson mass in pp collisions at √s = 7 TeV with the ATLAS detector", Eur. Phys. J. C78, 110 (2018), arXiv:1701.07240
- G. Bozzi, L. Citelli, M. Vesterinen, and A. Vicini, "Prospects for improving the LHC W boson mass measurement with forward muons", Eur. Phys. J. C75, 601 (2015), arXiv:1508.06954
- S. Alioli, P. Nason, C. Oleari, and E. Re, "NLO vector-boson production matched with shower in POWHEG", JHEP 07 (2008) 060, arXiv:0805.4802
- T. Sjostrand, S. Mrenna, and P. Z. Skands, "PYTHIA 6.4 Physics and Manual", JHEP 05 (2006) 026, arXiv:hep-ph/0603175
- E. Manca, O. Cerri, N. Foppiani, and G. Rolandi, "About the rapidity and helicity distributions of the W bosons produced at LHC", JHEP 12 (2017) 130, arXiv:1707.09344
- R. D. Ball et al., "Reweighting and Unweighting of Parton Distributions and the LHC W lepton asymmetry data", Nucl. Phys. B855 (2012) 608, arXiv:1108.1758
- S. Farry, O. Lupton, M. Pili and M. Vesterinen, "Understanding and constraining the PDF uncertainties in a W boson mass measurement with LHCb". arXiv:1902.04323 (2019).

Backup

Backup slides

Martina Pili (University of Oxford)

Backup

Understanding the PDF uncertainties (2)

Looking at u, \bar{d} PDFs for the replicas corresponding to biased M_W determinations:

• No obvious pattern in the u and \overline{d} PDFs

Effect of the PDF reweighting

Charge Asymmetry

The variation between the replicas of the integrated charge asymmetry between the W^+ and W^- cross sections, as a function of η :

Backup

η Range Study

- $30 < p_T < 50 \text{ GeV/c}$ range fixed
 - $\circ~$ Lower η cut varies upper cut fixed to 4.5
 - $\circ~$ Upper η cut varies lower cut fixed to 2

