Azimuthal particle correlations as a probe of collectivity in deep inelastic ep collisions

at HERA ZEUS

5

I.Abt, MPI München DIS Turin, April 11

Collectivity in Large Systems

Collectivity: multiparticle correlation from a **common physics mechanism**

Non-central heavy-ion collisions

Initial collision geometry & event-by-event fluctuations cause an azimuthal asymmetry in momentum space wrt to a common symmetry plane.

2-particle correlations

$$n {2} = \langle \cos (n (\phi_{\alpha} - \phi_{\beta})) \rangle$$

Exact only in case of correlations wrt the reaction plane of the collision.

Several particle species show similar collective behaviour.

DIS Turin, April, 2019

Iris Abt, MPI München

6

DIS Turin, April, 2019

Iris Abt, MPI München

7

DIS Turin, April, 2019

Iris Abt, MPI München

ZEUS

00

DIS Turin, April, 2019	to data. not pro spurio	vertexing is not perfect. Was tuned MC do	Tracking and	c _n {2} =		2-particles: excluding electron	Azi
Iris Abt, MPI München 💮	oduce systemat us tracks. "MC closu	MC / data / ≈1.1 0.95 to 1.05 es		$\langle \mathbf{W}_{eff}^{\alpha} \mathbf{W}_{eff}^{\beta} \mathbf{W}_{\phi}^{\alpha} \mathbf{W}_{\phi}^{\beta} $	depending on Nc	c _n {2} = ⟨⟨cos (n (φ)) The inner brackets d The outer brackets th	muthal Correla
ZEUS 9	ic uncertainties: ure " DIS selection, trigger, tracking	$\mathbf{N_{ch}} = \mathbf{\Sigma} \mathbf{W_{eff}} \mathbf{W_{p}}$	depend on charge, ŋ,	cos (n (φ _α - φ _β)))>	^η , Δη, Δρ _Τ	α - φ _β)))> enote the average in a single event. re average over all events.	tions

10

DIS Turin, April, 2019 Iris Abt, MPI Mi	c _n {2} = ⟨⟨cos (r	dipole cascade	n=1: Ariadne does be	Nch	$\begin{array}{c ccccc} 0.3 & & & ZEUS (prel.) 366 \ pb & ^{-1} & \sqrt{s} = 318 \ GeV \\ \hline & & & Ariadne & & Q^2 > 5 \ GeV^2 \\ \hline & & & Lepto & & 0.1$	с,{2, An >0.5} ZEUS Preliminary	Comparing Data
ünchen 😥 🚈 12	ר (φα - φβ)))	DGLAP cascade	tter than Lepto	Δη	$0.2 = 2 = 2 \text{ ZEUS (prel.) 366 pb}^{-1} = 1 \text{ Vs} = 318 \text{ GeV} \\ 0.2 = 0 \text{ ZEUS mirrored} = 318 \text{ GeV}^{-1} = 1 \text{ Q}^{2} > 5 \text{ GeV}^{-2} \\ 0.1$	c ₁ {2} MC not so bad ZEUS Preliminary	and Monte Carlo

C
M
ari
bu
at
0
an
Q
Z
on
te
Q
ar
0

 $c_n \{2\} = \langle \cos(n(\phi_{\alpha} - \phi_{\beta})) \rangle$

n=2: Ariadne does worse than Lepto dipole cascade **DGLAP** cascade

ZEUS

DIS Turin, April, 2019

Comparing Data and Monte Carlo

Overall Monte Carlos describe main features. n=2: Ariadne does worse than Lepto

14

ZEUS

DIS Turin, April, 2019

Well, perhaps DIS is not ideal. were searched for in ZEUS NC DIS data. Nothing beyond expectations [kinematics] **Correlations indicating collective effects** Photoproduction For low Q² they live long and prosper. in the photon can grow. Fluctuations ZEUS data is waiting.

Paa itiona

ZEUS track acceptance

17

ZEUS

DIS Turin, April, 2019

ARIADNE

LEPTO

ratio

 10^{-2}

1/N dN/dp _T

dipole cascade

DGLAP cascade

18

Correlations versus p_T

c_2 {2} for high multiplicity events 10 < N_{ch} < 25

